

SAND91-0893/3 • UC-721 Unlimited Release Printed December 1991

SAND91-0893-3 0002 UNCLASSIFIED 12-91 726P STAC REFERENCE COPY

Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1991

Volume 3: Reference Data

WIPP Performance Assessment Division

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 for the United States Department of Energy under Contract DE-AC04-76DP00789 Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from National Technical Information Service US Department of Commerce 5285 Port Royal Rd Springfield, VA 22161

NTIS price codes Printed copy: A99 Microfiche copy: A01 SAND91-0893/3 Unlimited Release Printed December 1991 Distribution Category UC-721

PRELIMINARY COMPARISON WITH 40 CFR PART 191, SUBPART B FOR THE WASTE ISOLATION PILOT PLANT, DECEMBER 1991

VOLUME 3: REFERENCE DATA

WIPP Performance Assessment Division Editors: Rob P. Rechard, Andrew C. Peterson, James D. Schreiber,¹ Harold J. Iuzzolino², Martin S. Tierney, Jim S. Sandha¹ Sandia National Laboratories Albuquerque, New Mexico 87185

ABSTRACT

This volume documents the data available as of August 1991, which were used by the Performance Assessment Division of Sandia National Laboratories in its 1991 preliminary performance assessment of the Waste Isolation Pilot Plant (WIPP). Ranges and distributions for about 300 modeling parameters, several of which are spatially varying parameters with between 15 and 80 point values, and about 500 well locations and corresponding stratigraphic elevations are presented in both tables and graphics for the geologic and engineered barriers, global materials (e.g., fluid properties), and agents that act upon the WIPP disposal system such as climate variability and human-intrusion boreholes. Sources for the data and a brief discussion of each parameter are also provided.

¹ Science Applications International, Albuquerque, NM 87106

² Geo-Centers, Inc., Albuquerque, NM 87106

ACKNOWLEDGMENTS

The WIPP Performance Assessment Division is comprised of both Sandia and contractor employees working as a team to produce these annual preliminary comparisons with EPA regulations, assessments of overall long-term safety of the repository, and interim technical guidance to the program. The on-site team, affiliations, and contributions to the 1991 performance assessment are listed in alphabetical order:

13 **Performance Assessment Division**

2 5 6

14

15 16	<u>Name</u>	<u>Affil.</u>	<u>Primary A</u> Doc: Sect.	uthor of Major Code	Area of Responsibility
17 18 19 20 21 22	R. Anderson B. Baker J. Bean J. Berglund	SNL TEC UNM UNM	V.2:§6.4 V.2:§4.2.1 V.2:Ch.7 Editor V.2	CUTTINGS	Division Manager SEC02D, Hydrology, Office Manager BRAGFLO & BOASTII, 2-Phase Flow Task Ldr., Undisturbed Repository, Cuttings/Cavings/ Engr. Mech.
23 24 25 26 27 28	W. Beyeler K. Brinster R. Blaine T. Blaine	SAI SAI ECO EPE	V.2:§5.3; 6.1;6.3	PANEL GARFIELD	Geostatistics, Analytical Models, CAMCON Systems Codes Geohydrology, Conceptual Models SEC02D & CAMCON Systems Codes Drilling Technology, Exposure Pathways Data
29 30 31 32 33 34	J. Garner A. Gilkey L. Gomez M. Gruebel R. Guzowski	API UNM SNL TRI SAI	V.2:§5.3 V.1:Ch.1,2, 8,9,10 V.1:Ch.4	PANEL	Source Term, Sens. Anal. CAMCON Systems Codes Task Ldr., Safety Assessments EPA Regulations Geology, Scenario Construction
35 36	J. Helton	ASU	V.1:Ch.3,4 V.2:Ch.2,3	CCDFPERM	Task Ldr., Uncert./Sens. Anal., Probability Models
37 38 39 40	H. luzzolino R. Klett P. Knupp	GC SNL ECO	Editor V.3	CCDFPERM	LHS & CAMCON System Codes EPA Regulations STAFF2D & SECOTR, Comp. Fluid Dyn.
41 42 43 44 45 46 47	C. Leigh M. Marietta G. de Marsily R. McCurley A. Peterson J. Rath R. Rechard	SNL SNL UP UNM SNL UNM SNL	Editor (Set) V.2:§6.2 V.2:§4.2.3 Editor V.3 V.2:§4.2.3 Editor V.2 & V.3	GENII-S	Exposure Pathways Dep. Div. Manager, Tech. Coord. Task Ldr., Geostatistics SUTRA & CAMCON System Codes Task Ldr., Inventory SUTRA, Engr. Mech. Task Ldr., CAMCON, QA, Ref. Data
48 49 50 51	P. Roache D. Rudeen	ECO UNM	X V.3 V.2:§6.4 V.2:§4.2.2; 6.5	SECO	Task Ldr., Comp. Fluid Dyn. STAFF2D, Transport
52 53 54	J. Sandha J. Schreiber	SAI SAI	Editor V.3 V.2:§4.2.1; 5.2.5		INGRES, PA Data Base BRAGFLO & BOASTII, 2-Phase Flow
55 56	P. Swift	TRI	Editor V.3 V.1:Ch.5,11		Task Ldr., Geology, Climate Var.

iii

		6			
1	M. Tierney	SNL	Editor V.3		Task Ldr., CDF Constr., Probability Models
2 3	K. Trauth	SNL			Task Ldr., Expert Panels
4	P. Vaughn	API	V.2:§5.1; B	RAGFLO	Task Ldr., 2-Phase Flow & Waste
5			5.2;5.2.5;		Panel Chemistry
6			App.A		-
7	J. Wormeck	ECO			Comp. Fluid Dyn. & Thermodyn.
8					
9		<u> </u>			
10					ssessment is the underlying data set and
11 12					ineered and natural barrier systems. The the primary source of these data and
12					comes from WEC and its contractors. We
14					rtmental and project colleagues. Some
15					nance assessment team, and we wish to
16			butions individual		,
17					
18	J. Ball	ReS	Computer Syste		
19	H. Batchelder	WEC	CH & RH Inve		
20	R. Beauheim B. Butcher	SNL SNL			drologic Parameters m, Unmodified Waste-Form Parameters,
21 22	D. Dutcher	SINL	Disposal Room		
23	L. Brush	SNL			em, Source Term (Solubility) and Gas
24		~	Generation Par		()
25	L. Clements	ReS	Computer Syste		
26	T. Corbet	SNL			, Geologic & Hydrologic Parameters,
27		a	Conceptual Mo		
28	P. Davies	SNL			Hydrologic & Transport Parameters, &
29 30	P. Drez	IT	2-Phase Flow 1 CH & RH Inve		Modeling
31	E. Gorham	SNL			id Flow & Transport Parameters
32	S. Howarth	SNL			drologic Parameters
33	R. Kehrman	WEC	CH & RH Was		
34	R. Lincoln	SNL	Project Integra		
35	F. Mendenhall	SNL			m, Unmodified Waste Form Parameters,
36		A 1 1 1	Waste Panel Cl		
37	D. Munson	SNL		tigraphy, Co	onstitutive Models, Physical & Mechanical
38	E. Nowak	SNL	Parameters	al Dasign S	Notarial Properties Poliability
39 40	J. Orona	ReS	Computer Syste		eal Material Properties, Reliability
40	J. Tillerson	SNL	Repository Isol		ns Parameters
42	S. Webb	SNL			nalysis & Benchmarking
43					
44	API = Applied				Sandia National Laboratories
45	ASU = Arizona				Technadyne Engineering Consultants
46			search Associates		Fech Reps, Inc.
47	EPE = Epoch E GC = Geo-Cei				Univ. of New Mexico/New Mexico
48 49	IT = Internat				Engineering Research Institute University of Paris
50	ReS = ReSpec		mology		Westinghouse Electric Corporation
51	SAI = Scientifi	ic Applic	ations		C
52			rporation		
53					
54					

1	Peer Review	
2 3	Internal/Sandia	
4	T. Corbet	
5	D. Gallegos	
6	M. LaVenue	
7	S. Hora	
8		
9	Management/Sandia	
0	W. Weart	
1	T. Hunter	
2		
3	PA Peer Review Panel	
4	R. Heath, Chairman	University of Washington
5	R. Budnitz	Future Resources Associates, Inc.
6	T. Cotton	JK Research Associates, Inc.
7	J. Mann	University of Illinois
8	T. Pigford	University of California, Berkeley
9	F. Schwartz	Ohio State University
20		
21	Department of Energy	
22	R. Becker	
23	J. Rhoderick	
24		
25		
26	Expert Panels	
27	Enturos	
28	Futures M. Borom	Boston University
29	M. Baram W. Bell	Yale University
30	G. Benford	University of California, Irvine
31	D. Chapman	The World Bank, Cornell University
32	B. Cohen	University of Pittsburgh
33	V. Ferkiss	Georgetown University
34 35	T. Glickman	Resources for the Future
36	T. Gordon	Futures Group
30 37	C. Kirkwood	Arizona State University
37 38	H. Otway	Joint Research Center (Ispra), Los Alamos National
38 39	II. Otway	Laboratory
39 40	M. Pasqualetti	Arizona State University
40 41	D. Reicher	Natural Resources Defense Council
42	N. Rosenberg	Resources for the Future
42 43	M. Singer	The Potomac Organization
43 44	T. Taylor	Consultant
44 45	M. Vinovski	University of Michigan
45 46	141. V 1110 V 5141	
40 47	Source Term	
48	C. Bruton	Lawrence Livermore National Laboratory
49	I-Ming Chou	U.S. Geological Survey
50	D. Hobart	Los Alamos National Laboratory
51	F. Millero	University of Miami
52		

(database version: X-2.19PR)

1	Retardation	
2	R. Dosch	Sandia National Laboratories
3	C. Novak	Sandia National Laboratories
4	M. Siegel	Sandia National Laboratories
5	0	
6		
7	Geostatistics Expert Group	
8		
9	G. de Marsily, Chairman	U. of Paris
10	R. Bras	Massachusetts Inst. of Tech.
11	J. Carrera	U. Politechnica de Cataluña
12	G. Dagan	Tel Aviv U.
13	A. Galli	Ecole des Mines de Paris
14	A. Gutjahr	New Mexico Tech.
15	D. McLaughlin	Massachusetts Inst. of Tech.
16	S. Neuman	U. of Arizona
17	Y. Rubin	U. of California, Berkeley
18		
19		
20	<u>Report Preparation (TRI)</u>	
21		
22	Editors:	
23		ext); S. Laundre-Woerner (illustrations)
24		; D. Marchand (illustrations)
25	Volume 3: J. Chapman (t	ext); D. Pulliam (illustrations)
26		
27		en, and the Word Processing Department
28		ne Illustration and Computer Graphics
29	Departments	
30	S. Tullar and the Production	Department
31	I Stiker (compilation of DA	Poor Poviow Popol comments)
32 33	J. Sukar (compliation of PA	Peer Review Panel comments)
34		

PREFACE

2 3

4

6 This volume documents the data and other pertinent information used by the Performance 7 Assessment (PA) Division of Sandia National Laboratories in its 1991 preliminary comparison 8 of the Waste Isolation Pilot Plant (WIPP) with the Environmental Protection Agency's (EPA's) 9 Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-10 Level, and Transuranic Radioactive Wastes (40 CFR 191).

11

12 Besides the DOE project office in Carlsbad, New Mexico, which oversees the project, the WIPP currently has two major participants: Sandia National Laboratories in Albuquerque, 13 New Mexico, which functions as scientific investigator; and Westinghouse Electric Company, 14 which is responsible for the management of WIPP operations. The specific tasks of Sandia 15 are (1) characterizing the disposal system and surrounding region and responding to specific 16 concerns of the State of New Mexico, (2) assessing the performance of the WIPP (i.e., 17 assessing regulatory compliance with 40 CFR 191, except the Assurance Requirements), (3) 18 performing analytic, laboratory, field experiments, and applied research to nuclear waste 19 disposal in salt, relevant to support tasks 1 and 2 (disposal system characterization and 20 performance assessment), and (4) providing ad hoc scientific and engineering support (e.g., 21 supporting environmental assessments such as Resource, Conservation, and Reentry Act 22 (1976) and the National Environmental Policy Act (1969). This volume helps fulfill the 23 performance assessment task. 24

25

For the performance assessment, the PA Division at Sandia maintains a data base, the 26 secondary data base, which contains interpreted data from many primary sources. The data 27 are used to form a conceptual model of the WIPP disposal system. The secondary data base 28 provides a set of parameter values (median, range, and distribution type where appropriate) 29 and the source of these values. As better information becomes available, the parameter 30 values reported herein will be updated. Thus, this volume is only a snapshot of the data in 31 the secondary data base compiled as of August 1991. At a minimum, updated data reports 32 will be issued annually as a separate volume of the Preliminary Comparison with 40 CFR Part 33 191, Subpart B for the Waste Isolation Pilot Plant. A previous data report was published in 34 December 1990 (Rechard et al., 1990a). 35

36

The 1991 comparison and background information on the comparison are reported in Volumes 1, 2, and 4 of this report:

39

SNL (Sandia National Laboratories) WIPP Performance Assessment Division. 1991.
 Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation
 Pilot Plant, December 1991-Volume 1: Methodology and Results. SAND91-0893/1.
 Albuquerque, NM: Sandia National Laboratories.

SNL (Sandia National Laboratories) WIPP Performance Assessment Division. 1991.
 Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation
 Pilot Plant, December 1991-Volume 2: Probability and Consequence Modeling.
 SAND91-0893/2. Albuquerque, NM: Sandia National Laboratories.

SNL (Sandia National Laboratories) WIPP Performance Assessment Division. 1991. Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1991-Volume 4: Sensitivity Analyses. SAND91-0893/4. Albuquerque, NM: Sandia National Laboratories. (In preparation)

Other compilations of data used by the WIPP Project are reported in:

Bayley, S. G., M. D. Siegel, M. Moore, and S. Faith. 1990. Sandia Sorption Data Management System Version 2 (SSDMSII). SAND89-0371. Albuquerque, NM: Sandia National Laboratories.

Krieg, R. D. 1984. Reference Stratigraphy and Rock Properties for the Waste Isolation Pilot Plant (WIPP) Project. SAND83-1908. Albuquerque, NM: Sandia National Laboratories.

Munson, D. E., J. R. Ball, and R. L. Jones. 1990a. "Data Quality Assurance Controls through the WIPP In Situ Data Acquisition, Analysis, and Management System" in *Proceedings of the International High-Level Radioactive Waste* Management Conference, Las Vegas, NV, April 8-12. Sponsored by American Nuclear Society and ASCE, New York, p. 1337-1350.

Providing the data as ranges and distributions to the PA Division is a major task. Although the PA Division is responsible for comparing the WIPP with 40 CFR 191, Subpart B, the majority of data used for these comparisons is supplied by experimenters and analysts characterizing the disposal system and surrounding regional geology as noted in the acknowledgments.

27

1

2

3 ⊿

5

6 7

8

9

10 11

12

13

14 15

16

17

18

19

20 21

In addition to individual contributors who established current data (and are listed in 28 Appendix A of this volume), earlier contributors are also acknowledged. Much of the data 29 30 provided prior to 1991 is summarized in Systems Analysis Long-Term Radionuclide Transport, and Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern New 31 Mexico; March 1989, edited by Lappin et al. (1989). Because of this report's wide 32 circulation, we found it convenient to refer to this report as a data source, although in many 33 cases it only summarizes others' work. Its selection as a source is not meant to diminish the 34 contributions of the original authors. However, Lappin et al. (1989) is the first report in 35 which ranges were assigned for many parameters, so it does provide a primary reference for 36 these ranges. Furthermore, some of the data has not yet been published and thus Lappin et 37 al. (1989) may be the only source until the reports are complete. 38

39

We appreciate the time and suggestions supplied by the final peer reviewers: T. F. Corbet
(6344) and A. M. LaVenue (INTERA, Inc.). Furthermore, K. Byle's and J. C. Logothetis'
(New Mexico Engineering Research Institute) efforts in producing the tables and distribution
figures, respectively, from the PA secondary data base for this report are greatly appreciated.
In addition, the editorial help on the text and over 140 illustrations provided respectively by
J. Chapman and D. Pulliam of Tech Reps, Inc., Albuquerque, New Mexico, greatly improved
the report.

CONTENTS

4				
6	1	INTE	RODUCTION	1-1
7		1.1	Purpose and Organization of Report	1-1
8		1.2	Conventions	1-2
9			1.2.1 Median	1-2
10			1.2.2 Mean	1-2
11			1.2.3 Range	1-3
12			Continuous Distribution	1-3
13			Constructed Distribution (Empirical)	1-3
14			Constructed Distribution (Subjective)	
15			Variance and Coefficient of Variation	1-4
16			1.2.4 Units	1-8
17			1.2.5 Distribution Type	1-8
18			Continuous Probability Density Functions	1-8
19			Discrete Probability Density Function	
20			Constructed Distributions	
21			Miscellaneous Categories	
22			1.2.6 Sources	
23			1.2.7 Note on Unnecessary Conservatism of Material-Property Parameters	
24		1.3	Background on Selecting Parameter Distribution	
25			1.3.1 Requests for Data from Sandia Investigators and Analysts	
26			Identify Necessary Data	
27			Request Median Value and Distribution	
28			Update Secondary Data Base	
29			Perform Consequence Simulations and Sensitivity Analyses	
30			Determine Whether Parameter Is Important in Analysis	
31			1.3.2 Construction of Distributions	
32			Step 1	
33			Step 2	
33 34			Step 3	
35			Step 4	
36			Step 5	
30 37			1.3.3 Selection of Parameters for Sampling	
37 38			1.3.4 Elicitation of Distributions from Experts	
39			Selection of Issue and Issue Statement	
39 40			Selection of Experts	
			Elicitation Sessions	1-2
41 42			Recomposition and Aggregation	1-2
42 42			Documentation	1-2
43		1 /	Performance-Assessment Methodology	
44		1.4	1.4.1 Conceptual Model for WIPP Performance Assessment	
45			·	
46			1.4.2 Uncertainty in Risk 1.4.3 Characterization of Uncertainty in Risk	1-2
47				1-2
48			1.4.4 Calculation of Scenario Consequences	
49			1.4.5 Uncertainty and Sensitivity Analyses	1-3

1		1.5	Background on WIPP	1-34
2			1.5.1 Purpose	1-34
3			1.5.2 Location	1-34
4			1.5.3 Geological History of the Delaware Basin	1-36
5			1.5.4 Repository	1-36
6			1.5.5 WIPP Waste Disposal System	1-36
7				
8	2	GEC	DLOGIC BARRIERS	2-1
10		2.1	Areal Extent of Geologic Barriers	2-1
11		2.2	Stratigraphy at the WIPP	2-5
12		2.3	Hydrologic Parameters for Halite and Polyhalite within Salado Formation	2-11
13			2.3.1 Capillary Pressure and Relative Permeability	2-12
14			Threshold Displacement Pressure	2-12
15			Capillary Pressure and Relative Permeability	2-14
16			Residual Saturations	2-16
17			Brooks and Corey Exponent	2-17
18			2.3.2 Density	2-20
19			Grain Density of Halite in Salado Formation	2-20
20			Grain Density of Polyhalite in Salado Formation	2-21
21			Bulk Density of Halite in Salado	2-22
22			Average Density near Repository	2-23
23			2.3.3 Dispersivity	2-24
24			2.3.4 Partition Coefficients and Retardation	2-26
25			2.3.5 Permeability	2-27
26			Undisturbed Permeability	2-27
27			Disturbed Permeability	
28			2.3.6 Pore Pressure at Repository Level in Halite	2-33
29			2.3.7 Porosity	2-35
30			Undisturbed Porosity	2-35
31			Disturbed Porosity	2-37
32			2.3.8 Specific Storage	2-38
33			2.3.9 Tortuosity	2-45
34		2.4	Hydrologic Parameters for Anhydrite Layers within Salado Formation	2-46
35			2.4.1 Capillary Pressure and Relative Permeability	2-48
36			Threshold Displacement Pressure	2-48
37			Residual Saturations	
38			Brooks and Corey Exponent	
39			Capillary Pressure and Relative Permeability	2-51
40			2.4.2 Anhydrite Density	2-54
41			2.4.3 Dispersivity	2-55
42			2.4.4 Partition Coefficients and Retardations	2-56
43			2.4.5 Permeability	2-58
44			Undisturbed Permeability	2-58
45			Disturbed Permeability	2-60
46			2.4.6 Pore Pressure at Repository Level in Anhydrite	2-00
40 47			2.4.7 Porosity	2-63
47 48			Undisturbed Porosity	2-63
48 49			Disturbed Porosity	2-03
50 51			2.4.8 Specific Storage 2.4.9 Thickness of MB139 Interbed	2-65 2-66
51 52				
52			2.4.10 Tortuosity	2-67

1		2.5	Mechanical Parameters for Materials in Salado Formation	2-68
2			2.5.1 Halite and Argillaceous Halite	2-68
3			Elastic Constants	2-68
4			Salt Creep Constitutive Model Constants	2-68
5			Polyhalite Elastic Constants	2-68
6			Anhydrite Elastic Constants	
7		2.6	Parameters for Culebra Dolomite Member of Rustler Formation	2-69
8			2.6.1 Density	2-74
9			2.6.2 Dispersivity	
10			2.6.3 Fraction of Clay Filling in Fractures	
11			2.6.4 Porosity	
12			Fracture Porosity	
13			Matrix Porosity	
14			Fracture Spacing	
15			2.6.5 Storage Coefficient	
16			2.6.6 Thickness	
17			2.6.7 Tortuosity	
18			2.6.8 Freshwater Heads at Wells	
19			2.6.9 Transmissivities for Wells	
20			2.6.10 Partition Coefficients and Retardations	
21			General Rationale for Values Recommended by Siegel (1990)	
22			General Rationale for Constructing Cumulative Distributions	
23			Retardation	
24				
25				
26	3	ENC	INEERED BARRIERS AND SOURCE TERM	3-1
28		3.1	Dimensions of Underground Facility	3-2
29			3.1.1 Disposal Region	3-6
30			3.1.2 Experimental Region	3-7
31			3.1.3 Operations Region	3-8
32			3.1.4 Shafts	
33			3.1.5 Waste Containers	3-10
34			3.1.6 Waste Placement and Backfill in Rooms	3-12
35		3.2	Parameters for Backfill Outside Disposal Region	3-15
36			3.2.1 Description of the Reference Design for Backfill	
37			General Backfill Strategy	
38			Seal Locations	3-17
39			Backfill in Upper Shaft, Water-Bearing Zone, and Dewey Lake Red Beds	3-17
40			3.2.2 Preconsolidated Salt Backfill in Lower Shaft, Drifts, and Panels	
41			Density for Preconsolidated Backfill ("Seals")	
42			Height of Complete Consolidation in Lower Shaft	
43			Permeability for Preconsolidated Backfill ("Seals")	
44			3.2.3 Salt Backfill in Drifts	
45			Density for Backfill	
46			Permeability	
47			3.2.4 Partition Coefficients for Salt Backfill	
48			3.2.5 Concrete and Bentonite	

1	3.3	Param	eters for Contaminants Independent of Waste Form	3-29
2		3.3.1	Inventory of Radionuclides in Contact-Handled Waste	3-41
3		3.3.2	Inventory of Remotely Handled Waste	3-47
4		3.3.3	Radionuclide Chains and Half-Lives	3-53
5			Radionuclides for Cuttings and Repository Modeling	3-53
6			Radionuclides for Transport Modeling	3-53
7		3.3.4	40 CFR 191 Release Limits and Waste Unit Factor	3-60
8			40 CFR 191 Release Limits	3-60
9			Waste Unit Factor	3-61
10			EPA Sums for Each nS Scenario Set	3-61
11		3.3.5	Solubility	3-62
12			General Rationale for Constructing Cumulative Distributions	3-65
13			Radium and Lead	3-66
14			Colloids	3-66
15			Correlations	3-66
16		3.3.6	Eh-pH Conditions	3-67
17			Nolecular Diffusion Coefficient	3-69
18		3.3.8	Gas Production from Corrosion	3-71
19			Gas Production from Microbiological Degradation	3-80
20			Radiolysis	3-85
21	3.4		neters for Unmodified Waste Form Including Containers	3-86
22	••••		Composition of CH-TRU Contaminated Trash (Non-Radionuclide/Non-RCRA	0.00
23		0	Inventory)	3-90
24			Volumes of Various Categories of CH-TRU Contaminated Trash	3-91
25			Masses of Various Categories of CH-TRU Contaminated Trash	3-100
26			Estimated Curie Content of Drums and Standard Waste Boxes	3-107
27			Gas Generation Potential	3-111
28			Comparison with Other Estimates	3-114
29		3.4.2	Composition of RH-TRU Contaminated Trash (Non-Radionuclide/Non-RCRA	••••
30		0.1.2	Inventory)	3-115
31			Volumes of Various Categories of RH-TRU Contaminated Waste	3-115
32		343	Inventory of Organic RCRA Contaminants.	3-119
33			Capillary Pressure and Relative Permeability	3-120
34		0. 1. 1	Threshold Displacement Pressure	3-120
35			Residual Saturations	
36			Brooks and Corey Exponent	
37			Capillary Pressure and Relative Permeability	
38		345	Drilling Erosion Parameters.	3-126
39		0.1.0	Absolute Roughness	3-126
40			Effective Shear Strength for Erosion	3-128
41		346	Partition Coefficients for Clays in Salt Backfill	3-129
42			Permeability	3-123
			Porosity	3-135
43			Saturation	3-133
44	3.5		neters for Salt-Packed Waste Form	3-147
45	3.5			3-140
46		J.J. I	Drilling Erosion Parameter Effective Shear Strength for Erosion	
47		2 5 0	Permeability and Porosity	3-149
48				3-150
49		0.0.0	Solubility	3-152
50				

2	4			ERS OF GLOBAL MATERIALS AND AGENTS ACTING ON	
3		DISF			4-1
4		4.1	Fluid	· · · · · ·	4-1
5			4.1.1	Salado Brine	4-2
6				Salado Brine Compressibility	4-2
7				Salado Brine Formation Volume Factor	4-3
8				Salado Brine Density	4-5
9				Factors Affecting Brine Density	4-6
10				Salado Brine Viscosity	4-7
11			4.1.2	Culebra Brine	4-8
12				Culebra Brine Density	4-8
13				Culebra Brine Viscosity	4-11
14			4.1.3	Castile Brine	4-12
15				Castile Brine Compressibility	4-12
16					4-13
17				Castile Brine Density	4-14
18			4.1.4		4-15
19					4-15
20					4-18
21				•	4-21
22				,	4-23
23			4.1.5		4-26
24				Density	4-26
25				Viscosity	4-26
26				Yield Stress Point	4-26
27		4.2	Hum	an-Intrusion Borehole	4-33
28			4.2.1		4-34
29				Creep	4-34
30				Storage Density near Repository	4-34
31				Bulk Density of Halite in Salado	4-34
32				Final Permeability	4-35
33				Porosity	4-35
34			4.2.2	Drilling Characteristics	4-42
35				Diameter of Intrusion Drill Bit	4-42
36				Historical Drill Bit Diameter	4-42
37				Drill String Angular Velocity	4-47
38				Mud Flowrate	4-48
39		4.3	Para	meters for Castile Formation Brine Reservoir	4-49
40			4.3.1		4-51
41				Elevation of Top	4-51
42				Brine Pressure	4-53
43				Bulk Storativity	4-56
43 44			432	Numerical Brine Reservoir Model	4-60
45			4. 0. 2	Permeability, Intact Matrix	4-60
-				Permeability, Fractured Matrix	4-60
46 47				Permeability, Fractured Matrix	4-60
47				Radius and Thickness	4-62
48					4-04

1		4.4	Climate Variability and Culebra Member Recharge	4-66
2			····	4-67
3				4-70
4			I Contraction of the second	4-70
5				4-74
6				4-75
7			4.4.3 Boundary Recharge Variation	4-76
8				
9				
10	5	PAF		5-1
12		5.1		5-2
13				5-2
14				5-15
15		5.2		5-16
16			5	5-16
17				5-20
18			5.2.3 Times of Multiple Intrusions	5-22
19				
20	6	SUN	MMARY OF PARAMETERS SAMPLED IN 1991	6-1
21				
22	RE	EFERI	ENCES	R-1
23				
24	AF	PEN	DIX A: Memoranda Regarding Reference Data	A-1
25				
26			DIX B: Well Location Data and Elevations of Stratigraphic	-
27	L	ayers	s near WIPP	B-1
28				
29	NC	DMEN		N-1
30	_			
31			RSION TABLES	_
32	1	FORS	SI AND COMMON ENGLISH UNITS Conversion Tables	s-1
33				

2		FIGURES	
3 5	Figure		
6 7	1.2-1	Examples of Distribution Plots	1-9
8 9 10	1.3-1	Five-Step Procedure Used to Construct Cumulative Distribution Functions (cdf) for the 1991 Performance Simulations	1-19
11 12 13	1.4-1	Estimated Complementary Cumulative Distribution Function (CCDF) for Consequence Result cS	1-25
14 15 16 17	1.4-2	Comparison of a CCDF for Normalized Release to the Accessible Enviornment with the EPA Release Limits	1-26
18 19	1.4-3	Example of CCDF Distribution Produced for Results Shown in Eq. 1.4-9	1-31
20 21	1.4-4	CCDF Summary Plot	1-32
22	1.5-1	WIPP Location in Southeastern New Mexico	1-35
23 24 25	1.5-2	Location of the WIPP in the Delaware Basin	1-37
25 26 27	1.5-3	WIPP Repository, Showing Surface Facilities, Proposed TRU Disposal Areas, and Experimental Areas	1-38
28 29	1.5-4	Geologic and Engineered Barriers of the WIPP Disposal System	1-40
30 31 32 33	2.1-1	Position of the WIPP Waste Panels Relative to Land Withdrawal Boundary (16 Contiguous Sections), 5-km Boundary (40 CFR 191.12y), and Surveyed Section Lines	2-1
34 35	2.1-2	UTM Coordinates of the Modeling Domains	2-2
36 37 38	2.1-3	Locations of Wells for Defining General Stratigraphy and Regional and Local Data Domains Typically Plotted in Report	2-4
39 40	2.2-1	Level of WIPP Repository, Located in the Salado Formation	2-6
41 42	2.2-2	Reference Local Stratigraphy near Repository	2-7
43 44 45	2.2-3	Stratigraphy at the Repository Horizon	2-8
45 46	2.2-4	Marker Bed 139, One of Many Anhydrite Interbeds near the WIPP Repository Horizon	2-9
47 48	2.2-5	Lithostatic and Hydrostatic Pressure with Depth	2-10
49 50 51	2.3-1	Correlation of Threshold Pressure with Permeability for a Composite of Data from All Consolidated Rock Lithologies	2-13
52 53	2.3-2	Estimated Capillary Pressure and Relative Permeability Curves	2-14
54 55 56 57	2.3-3	Example of Variation in Relative Permeability and Capillary Pressure When Brooks and Corey Parameters Are Varied	2-15

2 3	Figure		
4 5	2.3-4	Estimated Distribution (pdf and cdf) for Longitudinal Dispersivity in Halite, Salado Formation	2-25
6 7 8	2.3-5	Estimated Distribution (pdf and cdf) for Transverse Dispersivity in Halite, Salado Formation	2-25
9 10	2.3-6	Estimated Distribution (pdf and cdf) for Salado Undisturbed Permeability	2-27
11 12 13	2.3-7	Logarithm of Halite Permeability Fitted to Distance from the Excavation	2-28
14 15 16	2.3-8	Estimated Distribution (pdf and cdf) for Disturbed Permeability in Halite, Salado Formation	2-32
17 18 19	2.3- 9	Estimated Distribution (pdf and cdf) for Brine Pore Pressure at Repository Level in Halite, Salado Formation	2-33
20 21	2.3-10	Non-Linear Fit of Halite Pore Pressure to Distance from Excavation	2-34
22 23 24	2.3-11	Estimated Distribution (pdf and cdf) for Undisturbed Porosity in Halite, Salado Formation	2-36
25 25 26	2.3-12	Estimated Distribution (pdf and cdf) for Specific Storage of Halite, Salado Formation	2-38
20 27 28	2.4-1	Generalized Cross Section of Marker Bed 139	2-47
20 29 30	2.4-2	Estimated Capillary Pressure and Relative Permeability Curves for Anhydrite Layers	2-51
30 31 32 33	2.4-3	Example of Variation of Relative Permeability and Capillary Pressure for Anhydrite Layers in Salado Formation When Brooks and Corey Parameters Are Varied	2-52
34 35 36	2.4-4	Estimated Distribution (pdf and cdf) for Undisturbed Permeability, Anhydrite Layers in Salado Formation	2-59
37	2.4-5	Non-Linear Fit of Anhydrite Permeability to Distance from Excavation	2-59
38 39 40 41	2.4-6	Estimated Distribution (pdf and cdf) for Disturbed Permeability, Anhydrite Layers in Salado Formation	2-60
42 43 44	2.4-7	Estimated Distribution (pdf and cdf) for Brine Pore Pressure in Anhydrite MB139 at Repository Level	2-61
45	2.4-8	Non-Linear Fits of Pore Pressure in Anhydrite to Distance from Excavation	2-62
46 47 48 49	2.4-9	Estimated Distribution (pdf and cdf) for Undisturbed Porosity for Anhydrite Layers in Salado Formation	2-63
50 51 52	2.4-10	Estimated Distribution (pdf and cdf) for Disturbed Porosity for Anhydrite Layers in Salado Formation	2-64
53 54	2.4-11	Estimated Distribution (pdf and cdf) for Anhydrite Specific Storage	2-65
55 56	2.4-12	Estimated Distribution (pdf and cdf) for Thickness of Interbed	2-66

2	Figure		
3 4	2.6-1	Detailed Lithology of Rustler Formation at ERDA-9	2-70
5 6 7	2.6-2	Interpolated Geologic West-East Cross Section across the WIPP Disposal System	2-71
7 8	2.6-3	Location of Wells Used to Define Hydrologic Parameters for Culebra Dolomite	2-72
9 10	2.6-4	Spatial Variation of Grain Density in Culebra Based on Averages from 20 Boreholes	2-76
11 12 13	2.6-5	Estimated Distribution (pdf and cdf) for Longitudinal Dispersivity, Culebra Dolomite Member	2-78
14 15 16	2.6-6	Estimated Distribution (pdf and cdf) for Transverse Dispersivity, Culebra Dolomite Member	2-78
17 18 19	2.6-7	Estimated Distribution (pdf and cdf) for Clay Filling Fraction, Culebra Dolomite Member	2-80
20 21	2.6-8	Estimated Distribution (pdf and cdf) for Fracture Porosity, Culebra Dolomite Member	2-82
22 23 24	2.6-9	Assumed Distribution (pdf and cdf) for Intact Matrix Porosity of Culebra Dolomite Member Assuming No Spatial Correlation	2-84
25 26 27 28	2.6-10	Variation of Intact Matrix Porosity of Culebra Dolomite Member as Estimated by 10 Nearest Neighbors Using Inverse-Distance-Squared Weighting	2-85
29	2.6-11	Estimated Distribution (pdf and cdf) for Culebra Fracture Spacing	2-86
30 31 32	2.6-12	Estimated Distribution (pdf and cdf) for Storage Coefficient	2-89
32 33 34	2.6-13	Spatial Variation of Logarithm of Storage Coefficients within Culebra	5 90
34 35 36	2.6-14	Variation of Culebra Member Thickness in Regional Modeling Domain	2-92
37 38	2.6-15	Measured Distribution (pdf and cdf) for Tortuosity of Culebra Matrix	2-94
39 40 41	2.6-16	Variation of Matrix Tortuosity Measured from Intact Core Samples of Culebra Dolomite Member by 10 Nearest Neighbors Using Inverse-Distance-Squared Weighting	2-95
42 43	2.6-17	Boundary Condition for the Matrix at the Fracture Matrix Interface	2-96
44 45	3.1-1	Excavated and Enclosed Areas in the WIPP Repository	3-3
45 46 47	3.1-2	Planned Dimensions of WIPP Disposal Region and Access Drifts	3-4
48	3.1-3	Ideal Packing of Drums in Rooms and 10-m-wide Drifts	3-13
49 50	3.1-4	Ideal Packing of Standard Waste Boxes in Rooms and Drifts	3-14
51 52	3.2-1	Diagram of Typical Backfilled Access Shaft	3-18
53 54 55	3.2 - 2	Diagram of Typical Concrete Plugs in Backfilled Shafts	3-19
55 56 57	3.2-3	Diagram of Typical Concrete and Preconsolidated Salt Backfill for Drifts and Panels	3-19

2 3	Figure		
4 5 6	3.2-4	Estimated Distribution (pdf and cdf) for Height of Complete Consolidation in Lower Shaft	3-22
7 8	3.2-5	Permeability as a Function of Relative Halite Density	3-24
9 10 11	3.2-6	Time Variation of Permeability Decrease from Consolidation for Disposal Area, Drift, and Seal	3-24
12 13	3.3-1	Total Activity for Stored, Projected, and Scaled CH Waste Activities	3-30
14 15	3.3-2	Total Activity for Stored, Projected, and Scaled RH Waste Activities	3-30
16 17 18	3.3-3	Estimate of Radionuclide Inventory of CH Waste by Site and Isotope for (a) Design Total, (b) Anticipated System Total, (c) Projected Total, and (d) Stored Total	3-42
19 20 21	3.3-4	Activity of (a) Stored, (b) Projected, (c) Anticipated Actual System Total, and (d) Design Radionuclide Inventory of RH Waste	3-51
22 23	3.3-5	Decay of CH Radionuclide Chain in TRU-Contaminated Waste	3-54
24 25	3.3-6	Decay of RH Radionuclide Chain in TRU-Contaminated Waste	3-56
26 27 28	3.3-7	Radionuclides in One Panel Normalized by EPA Release Limits, Which Were Eliminated from Transport Calculations	3-59
29 30 31	3.3-8	Subjective Distribution (cdf) of Solubility for Americium, Curium, Lead, Neptunium, Plutonium, Radium, Thorium, and Uranium	3-63
32 33 34	3.3-9	Estimated Regimes of Stability in the Eh-pH Space for Neptunium, Plutonium, and Uranium and Percentage of Area of Stable Water	3-68
35 36	3.3-10	Uniform Distribution (pdf and cdf) for Molecular Diffusion Coefficient, D^{α}	3-69
37 38 39	3.3-11	Assumed Distribution (pdf and cdf) for Gas Production Rates from Corrosion under Inundated Conditions	3-72
40 41 42	3.3-12	Assumed Distribution (pdf and cdf) for Relative Gas Production Rates from Corrosion under Humid Conditions	3-72
43 44 45	3.3-13	Assumed Distribution (pdf and cdf) for Anoxic Iron Corrosion Stoichiometric Factor, x	3-73
46 47	3.3-14	Pressure-Time Plots for 6-Month Anoxic Corrosion Experiments Under Brine- Inundated and Vapor-Limited ("Humid") Conditions	3-74
48 49 50 51	3.3-15	Estimated Distribution (pdf and cdf) for Gas Production Rates from Microbiological Degradation under Inundated Conditions	3-81
52 53	3.3-16	Estimated Distribution (pdf and cdf) for Relative Gas Production Rates from Microbiological Degradation under Humid Conditions	3-81
54 55 56	3.4-1	Estimates of CH Waste Volumes by Site and Status	3-92

2 3	Figure		
4 5	3.4-2	Changes in Volume Estimates of CH-TRU Contaminated Trash Between 1987 and 1990	3-96
6 7 8	3.4-3	Breakdown of CH Waste Masses by Status, IDB Waste Categories, and Gas- Producing Components	3-100
9 10 11	3.4-4	Estimated Number of Drums and SWBs for Stored, Projected, and Scaled Inventory in Each Activity Range	3-108
12 13 14	3.4-5	Changes in RH Waste Volume Estimates Between 1987 and 1990	3-117
15 16	3.4-6	Estimated Capillary Pressure and Relative Permeability for Unmodified Waste	3-123
17 18 19	3.4-7	Example of Variation in Relative Permeability and Capillary Pressure for Unmodified Waste When Brooks and Corey Parameters Are Varied	3-124
20 21	3.4-8	Estimated Distribution (pdf and cdf) for Waste Absolute Roughness	3-127
22 23	3.4-9	Model of Collapsed WIPP Room	3-132
24 25 26	3.4-10	Predicted Consolidation Curves for Specific Waste Types, Including Combustibles, Metals/Glass, and Sludge Wastes	3-146
27	4.1-1	Variation of Salado Brine Density and Formation Volume Factor with Pressure	4-4
28 29 30	4.1-2	Variation of Brine Density within Culebra Member Estimated by 10 Nearest Neighbors Using Inverse-Distance-Squared Weighting	4-10
31 32 33	4.1-3	Variation of Castile Brine Density and Formation Volume Factor with Pressure	4-13
33 34 35	4.1-4	Formation Volume Factor for Hydrogen Gas	4-15
36 37	4.1-5	Variation of Hydrogen Viscosity with Pressure	4-22
38 39	4.1-6	Variation of Hydrogen Solubility with Pressure	4-25
40 41	4.1-7	Distribution of Drilling Mud (Saturated Brine) Density	4-29
42 43	4.1-8	Various Models for Modeling Drilling Fluid Shear Stress	4-30
44 45	4.1-9	Estimated Distribution (pdf and cdf) for Drilling Mud Viscosity	4-32
46 47	4.1-10	Estimated Distribution (pdf and cdf) for Drilling Mud Yield Stress (Ideal Plastic)	4-32
48 49	4.2-1	Required Casing and Plugs	4-38
50 51 52	4.2-2	Increased Permeability of Cement Grout Plugs in Intrusion Borehole with Time because of Degradation	4-39
52 53 54 55	4.2-3	Lognormal Distribution (pdf and cdf) for Borehole Permeability after Degradation but before Creep Deformation	4-39
55 56 57 58	4.2-4	Normal Distribution (pdf and cdf) for Borehole Porosity after Degradation but before Creep Deformation	4-40

2	Figure	
3 4	4.2-5	Normalized Closure for Shaft
5 6 7	4.2-6	Estimated Probability of Drilling an Intrusion Borehole with a Specific Diameter
, 8 9	4.2-7	Distribution of Historical Drill Bit Diameter
10 11	4.2-8	Definition of Parameters Describing Human Intrusion by Drilling
12 13	4.2-9	Distribution (pdf and cdf) of Drill String Angular Velocity
14 15 16	4.3-1	Deep Boreholes that Encountered Brine Reservoirs within the Castile Formation, Northern Delaware Basin
17 18	4.3-2	Estimated Distribution (pdf and cdf) for Elevation of Castile Formation Brine Reservoir
19 20 21	4.3-3	Estimated Distribution (pdf and cdf) for Castile Brine Reservoir Initial Pressure
22 23	4.3-4	Estimated Distribution (pdf and cdf) for Bulk Storativity of Castile Brine Reservoir
24 25 26	4.3-5	Conceptual Model of Castile Brine Reservoir, Repository, and Borehole Requires a Specified Initial Brine Reservoir Pressure and a Bulk Storage Coefficient
27 28	4.3-6	Numerical Model of Castile Brine Reservoir
29 30	4.4-1	Normal Distribution (pdf and cdf) for Mean Annual Precipitation
31 32 33	4.4-2	Contours of Normal (Mean Annual between 1940 and 1970) Precipitation near the WIPP
34 35	4.4-3	Estimated Mean Annual Precipitation at the WIPP during the Late Pleistocene and Holocene
36 37 38	4.4-4	Precipitation Fluctuations Assumed at the WIPP for Next 10,000 Yr
39 40 41	4.4-5	Uniform Distribution (pdf and cdf) for Recharge Boundary Amplitude Factor for Culebra Dolomite Member
42 43	5.1-1	Distribution of Fraction of WIPP Disposal Area Overlapped by Brine Reservoir
14 15 16	5.1-2	Frequently Reported Contour Map of Depth of First Major Conductor below WIPP Disposal Area
10 17 18 19	5.1-3	Conservative Contour Map of Elevation of First Major Conductor below WIPP Disposal Area
+9 50 51	5.1-4	Example Variogram Illustrating Typical Behavior of γ with h
52 53	5.1-5	Population Distribution and Statistics for Conductor Elevations
54 55	5.1-6	Scatter Plots of Conductor Elevation vs. X and Y Location
56 57	5.1-7	Empirical Variogram of Conductor Elevations

2	Figure		
3 4 5 6	5.1-8	Cumulative Distribution of Area Fraction Using the "Random" and "Block" Assumptions	5-13
7 8	5.1-9	Illustration of Hypothetical Variability of Regular Sampling of Extensive Narrow Features	5-14
9 10 11	5.2-1	Estimated Distribution (pdf and cdf) of Constant Failure Rate	5-16
12 13	5.2-2	Alternative Forms of a Failure Rate for Exploratory Drilling	5-18
14 15 16	5.2-3	Estimated Distribution (pdf and cdf) for Time of Intrusion for E1, E2, and E1E2 Scenarios	5-20
17 18 19	5.2-4	Estimated Distribution (pdf and cdf) for Time of Intrusion for Multiplte Hits Used in 1990	5-22
20 21 22	6.0-1	General Relationship Maintained between Halite and Anhydrite Permeabilities of Salado Formation Using a Rank Correlation Coefficient (r) of 0.80.	6-2

2 3

TABLES

5 6	Table		
7 8	1.2-1	Probability of Parameters Lying within Range Defined by x \pm hs	1-4
9 10	1.2-2	Descriptions of Several Probability Distributions	1-5
11 12	1.4-1	Release Limits for Containment Requirements	1-23
13 14	2.3-1	Parameter Values for Halite and Polyhalite within Salado Formation near Repository	2-11
15 16 17	2.3-2	Data for Calculating a Rank Correlation between Halite and Anhydrite Permeability in Salado Formation	2-29
18 19	2.3-3	Ranks Halite and Anhydrite Data	2-30
20 21	2.4-1	Hydrologic Parameter Values for Anhydrite Layers within Salado Formation	2-46
22 23	2.4-2	Partition Coefficients for Anhydrite Layers	2-56
24 25	2.6-1	Parameter Values for Culebra Dolomite Member of Rustler Formation	2-73
26 27	2.6-2	Average Grain Density of Intact Dolomite at 20 Wells in Culebra Member	2-75
28 29	2.6-3	Average of Porosity Measurements of Intact Culebra Dolomite at Selected Wells	2-84
30 31	2.6-4	Storage Coefficients at Wells within Culebra Dolomite Member	2-88
32 33 34	2.6-5	Summary of Selected Steady-State Freshwater Head Measurements in Culebra Dolomite Member	2-98
35 36	2.6-6	Logarithms of Selected Transmissivity Measurements in Culebra Dolomite Member	2-99
37 38 39	2.6-7	Logarithms of Transmissivity of Calibrating Points (Pilot Points) for Culebra Dolomite Member	2-101
40 41 42	2.6-8	Cumulative Density Function for Partition Coefficients for Culebra Dolomite Member within <u>Matrix</u> Dominated by Culebra Brine (average of Dosch and Novak estimates)	2-104
43 44 45 46	2.6-9	Cumulative Density Function for Partition Coefficients for Culebra Dolomite Member within <u>Fracture</u> Dominated by Culebra Brine (average of Dosch and Novak estimates)	2-106
47 48 49	2.6-10	Cumulative Density Function for Partition Coefficients for Culebra Dolomite Member within Matrix Dominated by Culebra Brine (estimated by Siegel, 1991, 1990)	2-109
50 51 52	2.6-11	Cumulative Density Function for Partition Coefficients for Culebra Dolomite Member within <u>Fracture</u> Dominated by Culebra Brine (estimated by Siegel, 1991, 1990)	2-110
53 54 55	3.1-1	Summary of Excavated and Enclosed Areas and Initial Volumes of Excavated Regions within the WIPP Repository, Not Considering the DRZ or Closure	3-5
56 57	3.1-2	CH-TRU Waste Containers	3-11
58 59	3.2-1	Parameter Values for Backfill Outside Disposal Region	3-15

Table

3.2-2	Partition Coefficients for Salt Backfill Containing Trace (0.1%) Amounts of Clay	3-27
3.3-1	Inventory and Parameter Values for TRU Radioisotopes	3-31
3.3-2	Parameter Values for TRU Waste Radioelements	3-39
3.3-3	Retrievably Stored Design Radionuclide Inventory by Waste Generator for Contact- Handled Waste	3-44
3.3-4	Projected Radionuclide Inventory by Waste Generator for Contact-Handled Waste	3-45
3.3-5	Design Radionuclide Inventory by Waste Generator for Contact-Handled Waste	3-46
3.3-6	Retrievably Stored Design Radionuclide Inventory by Waste Generator for Remotely Handled Waste	3-48
3.3-7	Projected Radionuclide Inventory by Waste Generator for Remotely Handled Waste	3-49
3.3-8	Design Radionuclide Inventory by Waste Generator for Remotely Handled Waste	3-50
3.3-9	Half-Lives of Isotopes Disposed or Created in WIPP	3-57
3.3-10	Cumulative Release Limits (L _i) to the Accessible Environment 10,000 Yr after Disposal for Evaluating Compliance with Containment Requirements	3-60
3.3-11	Estimated Solubilities of Radionuclides	3-64
3.3-12	Estimated Molecular Diffusion Coefficient for Radionuclide Transport in Culebra Dolomite	3-69
3.4-1	Parameter Values for Unmodified TRU Waste Categories, Containers, and Salt Backfill	3-87
3.4-2	Summary of Waste Acceptance Criteria and Requirements Applicable to Performance Assessment	3-89
3.4-3	Estimated Composition by Volume of CH-TRU Contaminated Trash from 1987 to 1990	3-95
3.4-4	Estimate of a Design Volume for CH-TRU Waste	3-97
3.4-5	Estimated Composition of CH-TRU Contaminated Trash in 1990 by Generator	3-98
3.4-6	Calculation of Constituent Volume Distribution in CH Waste	3-99
3.4-7	Estimated Inventory of Containers in 1990	3-103
3.4-8	Summary of Bins and Boxes	3-104
3.4-9	Estimate of the Number of Drums and SWBs in a Design Volume	3-105
3.4-10	Estimated Composition of CH-TRU Contaminated Trash Including Containers in 1990	3-106
3.4-11	Estimate of Curie Content of Drums and Standard Waste Boxes in a Design Volume	3-110

2 3	Table		
4 5	3.4-12	Estimates of Masses for a CH Design Volume	3-112
6 7	3.4-13	Estimated Composition by Volume of RH-TRU Contaminated Trash from 1987 to 1990	3-116
8 9 10	3.4-14	Estimate of a Design Volume for RH-TRU Waste	3-118
11 12	3.4-15	Partition Coefficients for Salt Backfill Containing Trace (0.1%) Amounts of Clay	3-129
13 14	3.4-16	Summary of Initial Porosity Calculations	3-139
15 16	3.5-1	Parameter Values for Salt-Packed Waste	3-148
17 18	3.5-2	Estimated Permeability and Porosity Distributions	3-150
19 20	4.1-1	Fluid Properties	4-1
21 22	4.1-2	Average Brine Density at Wells within Culebra Dolomite Member	4-9
23 24	4.2-1	Characteristics of Human-Intrusion Borehole	4-33
25 26	4.2-2	Specifications for Gas and Oil Exploratory Boreholes	4-45
27 28	4.3-1	Parameter Values for Castile Formation Brine Reservoir	4-49
29 30 31	4.3-2	Estimated Initial Pressures of Brine Reservoirs Encountered in the Region around the WIPP Corrected to the Depth at the WIPP-12 Brine Reservoir	4-55
32 33	4.4-1	Climate Variability and Culebra Member Recharge	4-66
34 35 36	5.1-1	Cumulative Percentages of the Disposal Region Underlain by a Brine Reservoir, Assuming Various Maximum Depths	5-6
37 38	5.2-1	Probability of Multiple Hits into Disposal Region of Repository	5-19
39 40 41	6.0-1	Distributions of Sample Parameters in December 1991 WIPP Performance Assessment for Geologic Barriers	6-1
42 43 44	6.0-2	Distributions of Sample Parameters in December 1991 WIPP Performance Assessment for Engineered Barriers	6-3
45 46 47 48	6.0-3	Distributions of Sample Parameters in December 1991 WIPP Performance Assessment for Agents Acting on Disposal System and Probability Models for Scenarios	6-4

1. INTRODUCTION

5 1.1 Purpose and Organization of Report

8

3 4 5

The purpose of this volume is to present data and information compiled and available in 10 August 1991 for use by the Performance Assessment (PA) Division of Sandia National 11 12 Laboratories in its 1991 evaluation of the long-term performance ("performance assessment") of the Waste Isolation Pilot Plant (WIPP). The data are critical for generating a well-founded 13 and defensible analysis. In this volume, performance assessment refers to the prediction of 14 all long-term performance. For example, the data compiled can be used to compare WIPP 15 performance with the requirements of the Environmental Protection Agency's (EPA's) 16 Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-17 Level, and Transuranic Radioactive Wastes (40 CFR 191), with long-term safety goals for 18 individual exposure (doses) which may be necessary for environmental impact statements 19 (National Environmental Policy Act [NEPA, 1969]), and with hazardous waste regulations 20 (Resource, Conservation, Recovery Act of 1976 [RCRA, 1976]). 21

22

About 300 distinct parameters are listed in this report for use in the consequence and 23 probability models used in simulations of the WIPP. Most of these parameters specify the 24 physical, chemical, or hydrologic properties of the rock formations (geologic barriers) in 25 which the WIPP is placed; a substantial number of the parameters specify physical, chemical, 26 or hydrologic properties of the seals, backfill, and waste form (engineered barriers); and some 27 pertain to future climatic variability or future episodes of exploratory drilling at the WIPP. 28 Dimensions of selected engineered features of the WIPP underground facility are also listed, 29 although these dimensions are not counted as part of the 300 parameters. 30

31

The EPA Standard, 40 CFR 191, explicitly acknowledges the uncertainties associated with scientific predictions, especially when predictions cover thousands of years, and mandates that this uncertainty be reported when making comparisons with 40 CFR 191. One of several sources of uncertainty in scientific predictions is uncertainty in the data; consequently, this report not only tabulates median values and sources for these values but also lists estimates of the range and distribution (uncertainty) of the parameters. A brief discussion accompanies each parameter description.

39

40 The organization of this volume is as follows:

- 41
- 42 43
- 44 45
- The remainder of Chapter 1 presents conventions used in the data tables, and background information on the selection of distributions, performance assessments, and the WIPP. Chapter 1 is arranged so that information specific to the data is presented first, followed by more general information (e.g., background on the WIPP)
- 46 47 48
- Chapter 2 provides consequence-model parameters for geologic barriers

- Chapter 3 provides consequence-model parameters for the engineered barriers
- Chapter 4 provides consequence-model parameters for global materials such as fluid properties (e.g., Salado Formation brine compressibility) and properties of agents that act upon the WIPP disposal system such as climate variability and human-intrusion boreholes
 - Chapter 5 provides probability model parameters for scenario-probability estimation
 - Chapter 6 lists the specific parameters that were varied for the December 1991 preliminary comparison of the WIPP with 40 CFR 191
 - Appendices A and B provide endorsements of the data currently in use and tabulated data from numerous wells near the disposal system
 - Following the cited references is a table of conversion factors between SI and common English units; a glossary of terms; and a list of variables, acronyms, and initialisms.

¹⁹ **1.2 Conventions**

22

1 2

3

4

5

6 7

8 9

10

11 12

13

14 15

16

17 18

Chapters 2 through 5 provide the data that make up the 1991 conceptual model of the WIPP. The tables in these chapters list modeling parameters by their median (x_{50}) , range (a,b), units, distribution type, and data source. Plots of both probability and cumulative distribution functions (pdfs and cdfs) of these parameters depict the mean (\bar{x}) and median (x_{50}) . These terms are defined below.

30 1.2.1 Median

32

29

The median (x_{50}) , a measure of the central tendency of the distribution, represents the value in the cumulative distribution function (cdf) of the parameter that occupies the position at which 50% of the data lie above and below it (i.e., 0.5 quantile).

³⁷ 39 **1.2.2 Mean**

40

42 The mean (\bar{x}) , another measure of the central tendency of the distribution, is the expected 43 value (E) (first moment about the origin) of the x-variable with respect to a continuous or 44 discrete probability distribution function (pdf).

54

57

$$\bar{\mathbf{x}} = \int_{-\infty}^{\infty} \mathbf{f}(\mathbf{x}) d\mathbf{x} \sim \sum_{i} \mathbf{x}_{i} \mathbf{f}(\mathbf{x})_{i} = \mathbf{E}(\mathbf{x})$$
(1.2-1)

52 Because the mean is strongly influenced by the tails of the distribution, it is not tabulated; 53 however, it is shown on plots of cdfs.

The sample mean, also denoted by \bar{x} , is the arithmetic average of sample data pertaining to a modeling parameter.

2 1.2.3 Range

The range of a distribution, (a,b), is the pair of numbers in which a and b are respectively
the minimum and the maximum values that are taken by the random variable x.

Continuous Distribution

For PA work, continuous distributions with range $(-\infty, +\infty)(e.g.)$, the normal distribution) are truncated at the 0.01 and 0.99 quantiles.

13 Constructed Distribution (Empirical)

Empirical distributions, cdfs and pdfs, are constructed from sets of measurements of a variable. Empirical cdfs are represented by histograms, which are piecewise constant functions based on the empirical percentiles derived from a set of measurements; an empirical cdf constructed in this way is an unbiased estimator of the unknown cdf associated with the variable (Blom, 1989, p. 216). The PA Division may modify empirical distributions in one or more of the four ways described below.

22 (1) Since the range of measurements in a data set may not reflect the true range of the 23 random variable underlying the measurements, the PA Division may estimate the range 24 by $\bar{x} + 2.33s$, where \bar{x} is the *sample* mean and s is the *sample* standard deviation.

(The lower limit of this estimate is not allowed to be less than zero for an intrinsically positive variable: both the upper and lower limit are not allowed to exceed physical limits.) This estimate of range is justified by the fact that the indicated end-points are estimates of the 0.01 and 0.99 quantiles if the variable is normally distributed. If the variable is not normally distributed, the quantiles will differ in inessential ways (Table 1.2-1). For any distribution with finite mean and variance, Chebyshev's inequality states that the probability that the random variable x lies outside the interval ($\bar{x} - hs$, $\bar{x} + hs$), h > 0, is a quantity less than $1/h^2$ (Blom, 1989, p. 121); i.e.,

$$P(|x - \bar{x}| \ge hs) \le \frac{1}{h^2}$$
 (1.2-2)

If the pdf of the unknown distribution is known to be unimodal and symmetric about the mean value, then the right-hand side of Eq. 1.2-2 can be replaced with $4/(9h^2)$ (Gauss' inequality); i.e.,

$$P(|x - \bar{x}| \ge hs) \le \frac{4}{9h^2}$$
 (1.2-3)

(2) If only two data points are available, the PA Division may estimate the range by $(\bar{x} \pm \sqrt{3}s)$ (see uniform distribution, Table 1.2-2).

INTRODUCTION Conventions

h	Chebyshev's Inequality	Gauss' Inequality	Exponential pdf	Normal pdf	Uniforn pdf
1	0	0.56	0.86	0.68	0.58
2	0.75	0.89	0.95	0.96	1.00
2.33	0.82	0.92	0.964	0.9901	1.00
3	0.89	0.95	0.982	0.9973	1.00
4	0.94	0.97	0.993	0.99993	1.00

2 Table 1.2-1. Probability of Parameters Lying within Range Defined by $\bar{x} \pm hs$ (after Harr, 1987, 3 Table 1.8.2)

(3) Empirical cdfs for intrinsically continuous variables are always converted to piecewise
 linear cdfs by joining the empirical percentile points (including extrapolated end points)
 with straight lines in linear space (Tierney, 1990a, p. II-5). (Cumulative distribution
 functions in log space will be piecewise exponential.)

28 Constructed Distribution (Subjective)

29

27

21

Subjective distributions are histograms constructed from subjective estimates of range (the 0 and 1.0 quartiles) and at least one interior quartile (usually the 0.5 quartile) provided by experts in the subject matter of the variable of concern. The subjective cdf of an intrinsically continuous variable is always converted to a piecewise linear cdf by joining the subjective quartile points with straight lines in linear space (not log space). (Cumulative distribution functions in log space will be piecewise exponential.)

36

Variance and Coefficient of Variation

37 38

42

51

52

53 54

55555566666

The variance, s^2 , a measure of the width of a distribution, is the expected value of the square of the difference of the variable and its mean value (i.e., the second moment about the mean):

 $s^{2} = \int_{1}^{\infty} (x - \bar{x})^{2} f(x) dx, \text{ or } s^{2} = \sum_{i} (x_{i} - \bar{x})^{2} f(x_{i})$ (1.2-4)

The standard deviation, s, is the positive square root of the variance. The coefficient of variation, s/\bar{x} , is the ratio of the standard deviation to the mean value. The sample variance of a set of measurements of the x-variable, say x_1 , x_2 , x_3 , ..., x_n , is the sum

$$\frac{1}{(N-1)} \sum_{n=1}^{N} (x_n - [sample mean])^2$$

64 The sample variance is an unbiased estimator of the variance (Blom, 1989, p. 197).

1. Beta $\frac{1}{B(\alpha,\lambda)}$ (ba < where $B(\alpha, \lambda) =$ $= \frac{\alpha!}{(\alpha+\lambda)}$

2. Gamma $\frac{\lambda^{\alpha} \mathbf{x}^{\alpha-1} \mathbf{e}^{-\lambda \mathbf{x}}}{\Gamma(\alpha)}$ $\int_0^X f(\chi) d\chi$ $\frac{\alpha}{\lambda^2}$ $\frac{\alpha}{\lambda}$ 3. Exponential $\frac{1}{\lambda^2}$ $\frac{1}{\lambda}$ $1-e^{-\lambda x}$ $\lambda e^{-\lambda \mathbf{x}} \mathbf{x} \ge 0$

1-5

Table 1.2.2 Description of Several Probability Distributions

Table 1.2-2 Description of Several Probability Distributions						
Probability Density Function f(x)	Cumulative Distribution Function F(x)	Expected Value μ	Variance σ ²			
Beta						
$\frac{\frac{1}{B(\alpha,\lambda)} \begin{pmatrix} x-a \end{pmatrix}^{\alpha-1} \begin{pmatrix} b-x \end{pmatrix}^{\lambda-1}}{(b-a)^{\alpha+\lambda-2}}$	$\int_{a}^{x} f(\chi) d\chi$	$a = \frac{\alpha}{\alpha + \lambda}$	$\frac{\left(\mathbf{b}-\mathbf{a}\right)^{2} \alpha \lambda}{\left(\alpha+\lambda\right)^{2} \left(\alpha+\lambda+1\right)}$			
$a < x < b$, $\alpha > 0$, $\lambda > 0$						
where						
$B(\alpha,\lambda) = \frac{\Gamma(\alpha) \Gamma(\lambda)}{\Gamma(\alpha+\lambda)} \text{ and } \Gamma(\gamma)$	$= \int_{0}^{\infty} x^{\gamma-1} e^{-x} dx$					
$= \frac{\alpha! \ \lambda!}{(\alpha+\lambda-1)!} \text{if } \alpha \text{ and } \lambda \text{ are}$	integers					
Gamma						

Probability Density Function f(x)	Cumulative Distribution Function F(x)	Expected Value μ	Variance σ ²
. Normal $N(\mu, \sigma^2)$			
$\frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{\left(\mathbf{x}-\boldsymbol{\mu}\right)^2}{2\sigma^2}\right]$	$\int_{-\infty}^{\mathbf{X}} f(\chi) d\chi$	μ	σ^2
-∞ ≤ x ≤ ∞			
but for WIPP PA			
a ≤ x ≤ b where P(x>a) = 0.99 and P(x>b) = 0.01		$\mu = \frac{a+b}{2}$	$\left(\frac{b-a}{4,66}\right)^2$
. Lognormal		$\exp\left[\mu(\mathbf{y}) + \frac{\sigma^2(\mathbf{y})}{2}\right]$	
$\frac{1}{\sigma \mathbf{x} \overline{2\pi}} \exp \left[-\frac{1}{2\sigma^2} \left(\ln \mathbf{x} - \mu \right)^2 \right]$	$\int_{0}^{x} f(\chi) d\chi$	Median = $e^{\mu(y)}$	$e^{2\mu(y)+\sigma^2(y)} \left(e^{\sigma^2(y)} - 1 \right)$
$x \ge 0$ $x = e^y$ where $y = N(\mu, \sigma^2)$			
at for WIPP PA			
'y>a) = 0.99 and			
(y>b) = 0.01		$\mu(\mathbf{y}) = \frac{\mathbf{a} + \mathbf{b}}{2}$	$\sigma^2(\mathbf{y}) = \left(\frac{\mathbf{b}-\mathbf{a}}{4.66}\right)^2$

Table 1.2-2 Description of Several Probability Distributions (Continued)

 Probability Density Function f(x)	Cumulative Distribution Function F(x)	Expected Value	Variance σ ²
Uniform		$\frac{a+b}{2} = \mu$	$\frac{(b-a)^2}{12}$
$\frac{1}{b-a} a \le x \le b$	<u>x-a</u> b-a	$a = \mu - \sqrt{3\sigma}$	
 		$\mathbf{b} = \mu + \sqrt{3\sigma}$	
Loguniform			
$\frac{1}{x(lnb-lna)}$ a < x < b	<u>lnx-lna</u> lnb-lna	 lnb-lna Median = √ab	$(b-a)\left[\begin{array}{c} (lnb-lna)(b+a) - 2(b-a)\\ 2(lnb-lna) \end{array}\right]^2$
 Binomial (discrete)		······································	<u> </u>
$\frac{\mathbf{n}!}{\mathbf{x}!(\mathbf{n}-\mathbf{x})!} \rho \stackrel{\mathbf{x}}{=} \left(1-\rho\right)\mathbf{n}-\mathbf{x}$	$ \begin{array}{c} \mathbf{x} \\ \boldsymbol{\Sigma} \mathbf{f}(\boldsymbol{\chi}) \\ \boldsymbol{\chi}=0 \end{array} $	np	np(1-p)
<pre>x = 0,1,2,,N; Poisson (discrete)</pre>	<u></u>		
$\frac{u^{x}e^{-\mu}}{x!} x = 0, 1, 2, \dots, n$	$\begin{array}{c} \mathbf{x} \\ \boldsymbol{\Sigma} \mathbf{f}(\boldsymbol{\chi}) \\ \boldsymbol{\chi}=0 \end{array}$	μ	μ

 Table 1.2-2
 Description of Several Probability Distributions (Concluded)

1 1.2.4 Units

2

The units indicate how the parameter is expressed quantitatively. Only SI units are used in
the tables and the PA secondary data base (except for radionuclide inventory activity, which
is expressed in curies since EPA release limits for 40 CFR 191 are expressed in curies).
However equivalent values in English units are given in the text. In addition, conversion
factors for SI and English units are listed at the end of the report.

9 10

11

17

18 19

20 21

22

23 24

1.2.5 Distribution Type

12 The distribution types listed in the tables are grouped into four major categories (Table1.2-2):

- 1516 1. Continuous pdf: beta, normal, lognormal, uniform, or loguniform (Figure 1.2-1a)
 - 2. Discrete pdf: Poisson (Figure 1.2-1b)
 - 3. Constructed distributions: a piecewise linear cdf designated as "cumulative" (subjective); a piecewise uniform pdf designated as "data" or a piecewise uniform cdf designated as "delta" (Figure 1.2-1b)
 - 4. Miscellaneous categories (null distributions): constant, spatial, and table.

The figures in the text emphasize the cdf of the distribution--the form of the distribution from which samples are taken; however, the pdf of the distribution is also shown.

29 Continuous Probability Density Functions

30

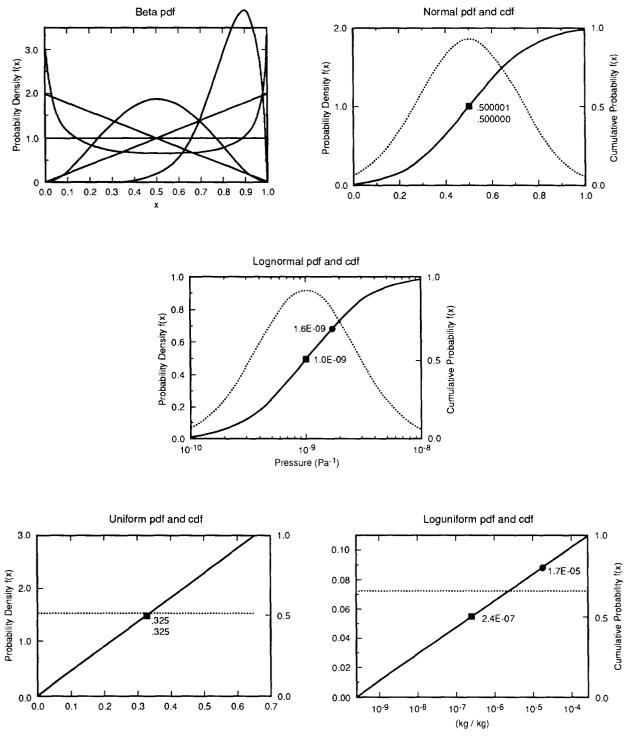
28

Five continuous pdfs are described below:

31 32

Beta. Beta designates the beta pdf, which is a versatile density function specified by two parameters (α, λ) that can assume numerous shapes in a specified range (a,b) (Harr, 1987, p. 79; Johnson and Kotz, 1970b, p. 37; Miller and Freund, 1977, p. 119).

36


Normal. Normal designates the normal pdf, a good approximation of many physical parameters. Most arguments for the use of the normal distribution are based on the central limit theorem (Miller and Freund, 1977, p. 104; Johnson and Kotz, 1970a, p. 40). The distribution is truncated at the 0.01 and 0.99 quantiles (i.e., the probability that the parameter will be smaller or larger is 1%), which corresponds to $\bar{x} \pm 2.33s$.

42

43 Lognormal. Lognormal designates a lognormal pdf, a distribution of a variable whose
44 logarithm follows a normal distribution. The distribution is truncated at the 0.01 and 0.99
45 quantiles.

46

47 Uniform. Uniform designates a pdf that is constant in the interval (a,b) and zero outside of 48 that interval.

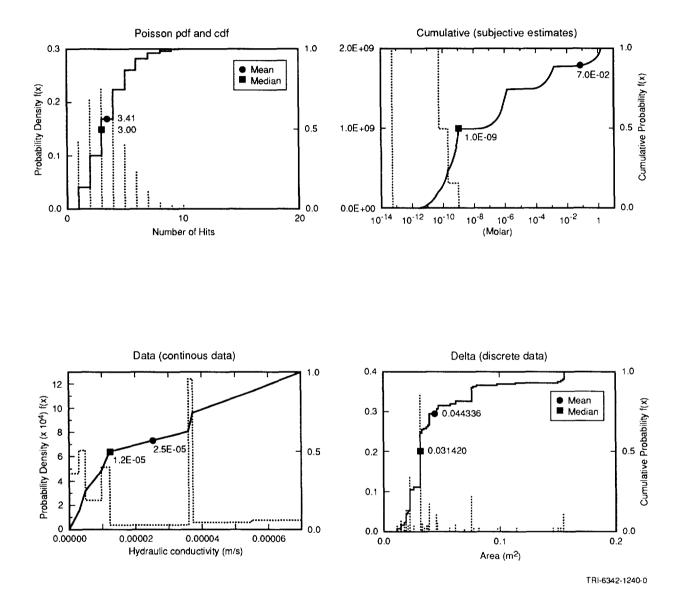

TRI-6342-1240-0

Figure 1.2-1. Examples of Distribution Plots

```
(page date: 15-NOV-91)
```

(database version: X-2.19PR)

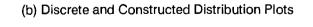


Figure 1.2-1. Examples of Distribution Plots (Concluded)

1 **Loguniform.** Loguniform designates a loguniform pdf, a distribution of a variable whose 2 logarithm follows a uniform distribution.

3

5

4 Discrete Probability Density Function

6 One discrete probability density function, the Poisson, was used.

7

8 **Poisson**. Poisson designates a discrete Poisson pdf. The Poisson pdf is often used to model 9 processes taking place over continuous intervals of time such as the arrival of telephone calls 10 at a switch station (queuing problem) or the number of imperfections continuously produced 11 in a bolt of cloth. The Poisson pdf is used in the probability model for human intrusion by 12 exploratory drilling.

13

14 Constructed Distributions

15

16 The cumulative, data, and delta distributions are described below:

17

Cumulative. The cumulative distribution type refers to the piecewise linear cdf constructed by linearly connecting subjective point estimates of the distribution percentiles supplied by experts (Tierney, 1990a, Section 3.1). Distributions are stored in the secondary data base as a cdf when the distribution is subjectively estimated from sparse or no data. Plots of the subjectively estimated distributions show a corresponding piecewise uniform pdf, but the pdf is not used for calculations.

24

Data. The data distribution type indicates an empirical distribution (i.e., measured data points are stored in the data base and used to form the distribution). The pdf is piecewise uniform; the cdf, which is constructed from this data for purposes of Monte Carlo sampling, is piecewise linear (see Cumulative). However, the name indicates that the distribution is based on empirical information rather than subjective estimates.

30

Delta. The delta distribution type refers to a pdf where parameters must be assigned discrete values (i.e., the pdf is a series of dirac delta functions ($\Sigma \delta(x_i-x)$); the cdf is a series of step functions). As an example, in the 1990 preliminary comparison (Bertram-Howery et al., 1990) the drill-bit diameters used for the human-intrusion borehole were not assumed to vary continuously between the minimum and maximum drill bit sizes, but were fixed at diameters of bits that are actually available.

38 Miscellaneous Categories

37 38 39

40 The constant, spatial, and table distributions are described below:

41

42 **Constant**. When a distribution type is listed as constant, a distribution has not been assigned 43 and a constant value is used in all PA calculations.

INTRODUCTION Conventions

Spatial. The spatial category of data indicates that the parameter varies spatially. This spatial variation is shown on an accompanying figure. The median value recorded is a typical value for simulations that use the parameter as a lumped parameter in a model; however, the value varies depending upon the scale of the model. The range of a spatially varying parameter is also scale dependent.

6

7 Table. The table category of data indicates that the parameter varies with another property
8 and the result is a tabulated value. For example, relative permeability varies with saturation;
9 its distribution type is listed as table (also, the median value is not meaningful and is
10 therefore omitted in the table).

11

Note on Correlations. Most of the uncertain variables studied during the 1991 PA calculations were assumed to be independent random variables, although it was known some were interdependent, i.e., correlated in some way. Correlations of the model variables may arise from the fact that there are natural correlations between the local quantities used to determine the form of the model variable (e.g., local porosity could be strongly correlated with local permeability); or correlations of model variables may be implicit in the form of the mathematical model in which they are used.

20 1.2.6 Sources

22

19

The source indicates the document in which the parameter value is cited. Several sources are
cited when one source cannot supply all the data or information (e.g., median, range,
distribution type, or explanatory information).

27

29

1.2.7 Note on Unnecessary Conservatism of Material-Property Parameters

30

32 The following arguments attempt to show why some of the current assignments of probability distributions to material-property parameters of WIPP performance models are unnecessarily 33 34 conservative, given the present level of detail and spatial resolution of the models. Current methods of assigning uncertainty to some of the material-property parameters (e.g., including 35 small-scale spatial variability as a source of uncertainty) may distort results of sensitivity 36 analyses performed to identify those important model variables that are material-property 37 parameters and result in unnecessary expense, but will probably not affect validity of results 38 of the uncertainty analyses that are used to make preliminary comparisons with EPA 39 standards. 40

41

WIPP performance models described in Volume 2 of this report are based on the numericalsolution of one or more of three types of equations:

- 44 45
- 46 47
- (a) Partial differential equations which are reduced to a set of algebraic equations or ordinary differential equations in order to effect a solution by finite-difference or finite-element methods. Examples: the equations of groundwater and brine flow, solute transport, gas flow, and salt creep.

- (b) Ordinary differential equations which may be the result of a reduction of a partial differential equation or may directly model the dynamics of a lumped-parameter system, e.g., punctured brine reservoirs, leaching and decay of radioactive waste stored in a panel.
- 5 6 7

8 9

10

11

12

13 14

1

2

3

4

(c) Algebraic equations of the form

$$F(x_1, x_2, x_3, ..., x_n; y) = 0$$

which may arise indirectly from equilibrium solutions of ordinary differential equations (i.e., solutions for time $\rightarrow \infty$) or may directly express a model of some physical relationship between WIPP performance-model variables $(x_1, x_2, x_3, ..., x_n)$ and y.

In addition to dependent variables and independent variables of position and time, certain 15 constants, or free parameters, will appear in each of the three types of equations. In most 16 cases, these free parameters are intended to represent physical and chemical properties of real 17 materials of the WIPP system: e.g., the hydraulic conductivity, porosity, and specific storage 18 in models of fluid flow in the Salado Fm.; the fracture spacing, dispersivity, diffusivity, and 19 chemical distribution coefficients in models of solute transport in the Culebra Fm.; the 20 porosity, permeability and solubility of waste forms emplaced in a typical WIPP panel. This 21 kind of free parameter will be called a material-property parameter in the remainder of this 22 note. 23

24

Many of the material-property parameters of WIPP performance models were included in the 25 set of uncertain variables that was sampled in a recent study of variable sensitivity of 26 performance models (Helton et al., 1991) and in a recent preliminary assessment of WIPP 27 system performance (Rechard et al., 1990a). (Note: In these two reports, all uncertain model 28 parameters were usually called "variables" or "independent variables.") In these studies, 29 uncertainty associated with a sampled variable was quantified by assigning an empirical or 30 subjective probability distribution to the values taken on by that variable within a 31 predetermined range of values. Current procedures for the assignment of probability 32 distributions are described in Section 3.1 of Tierney (1990a); these procedures include 33 construction of empirical cumulative distribution functions (cdfs) from data sets or, if there is 34 little or no data, construction of cdfs from subjective quantiles obtained by elicitation of 35 expert opinion. Tierney (1990a; Chapter III) also briefly noted the problems involved in 36 scaling uncertainty from measured data to model parameters and he suggested some rules for 37 estimating the mean and variance of a material-property parameter using the sample mean 38 and variance of a set of measurements of the material property. 39

40

The distribution of a material-property parameter needs to reflect spatial variability of the material property and also the scale of the model. The zones or cells of numerical models (finite-element, finite-difference, or lumped-parameter models) must be few in number in order to minimize computational time and expense; in a typical problem involving geologic media, these cells will have dimensions of tens of meters or more and volumes of thousands

of cubic meters. Material-property parameters must therefore represent the effects of a 1 physical or chemical property of matter in these relatively large, arbitrarily defined volumes 2 of space. It follows that material-property parameters are model dependent and usually not 3 observable quantities, i.e., quantities that can be measured in the field or in the laboratory. 4 On the other hand, with few exceptions (e.g., formation transmissivity measured by pumping 5 tests) most physical and chemical properties of geologic or anthropogenic materials are 6 7 actually measured on spatial scales typical of the laboratory or an exploratory borehole, a matter of at most a few tens of centimeters. In addition, natural materials and many man-8 made materials (e.g., defense waste) tend to be inhomogeneous on spatial scales characteristic 9 of model cell sizes; accordingly, a set of measurements of a material property taken randomly 10 from large volumes of real material may show wide variability. The question is: How to 11 assign values to material-property parameters in a way that correctly reflects both cell size 12 and the small-scale variability that may appear in measurements of the corresponding material 13 14 property?

15

To begin to answer this question, assume that the material property can be represented as a scalar field in space, say $\phi(x)$, where x = (x,y,z) denotes position in space. (The assumptions of a scalar quantity in three dimensions are for the sake of simplicity of argument and involve no loss of generality; the property could be a vector or tensor.) It is argued in some modern textbooks that the material-property parameter, say Φ , to be used in type (a) equations (above) should be taken as a spatial average of ϕ over the cell or zone; for instance, in a cell or zone of volume V,

23 24507 89

35

44

$$\Phi(\mathbf{V}) = \frac{1}{\mathbf{V}} \int_{\mathbf{V}} \phi(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$
(1.2-5)

where dx is the volume element dxdydz. (Again, no loss of generality is involved; a line or surface average could replace the volume average.) The arguments for this choice of material-property parameter are highly technical and limitations of time and space preclude their inclusion in this note; however, see the discussion in de Marsily (1986, Chapter 3 and Section 4.4).

To account for spatial variability of $\phi(\mathbf{x})$, it can be assumed that ϕ is a *stationary*, *random* scalar field within a cell volume V, with realizations $\phi(\mathbf{x},\mu)$ and the following statistical properties:

Expectation of
$$\phi(\mathbf{x},\mu) = \mathbb{E}[\phi(\mathbf{x})] = \overline{\phi}$$
, a constant, (1.2-6)

43 and

Covariance of
$$\phi(\mathbf{x}, \mu) = \mathbb{E}\left(\left[\phi(\mathbf{x}) - \tilde{\phi} \right] \left[\phi(\mathbf{y}) - \tilde{\phi} \right] \right)$$

= $\sigma^2 \rho(|\mathbf{x} - \mathbf{y}|),$ (1.2-7)

(1.2-8)

where σ^2 is a constant (called the <u>variance</u> of ϕ), and $\rho(\bullet)$ is a function of r = |x - y| with the properties

3 $\rho(\mathbf{r}) \ge 0 \text{ for } \mathbf{r} \in (0,\infty),$ $\rho(\mathbf{r}) \rightarrow 1 \text{ as } \mathbf{r} \rightarrow 0$ $\rho(\mathbf{r}) \rightarrow 0 \text{ as } \mathbf{r} \rightarrow \infty.$

7

8 The function $\rho(\bullet)$ is called the <u>autocorrelation function</u> (Yaglom, 1962); it is a measure of the 9 statistical dependence of the values of ϕ measured at two different points x and y. The 10 assumptions of constant mean value ϕ and variance σ^2 can be slightly weakened by allowing 11 these quantities to depend on the coordinates of the center of the volume V; i.e., ϕ and σ^2 12 may vary from cell to cell.

13

22

222222222233

32

14 Treating $\phi(\mathbf{x})$ as a stationary random field with statistical properties 1.2-6 through 1.2-8 15 allows estimates of the mean value and variance of the volume average of ϕ , $\Phi(V)$, to be 16 made. It is shown in many textbooks (see for instance Yaglom, 1962, pgs. 23-24) that

Expectation of
$$\Phi(V) = E[\Phi(V)] = \tilde{\phi}$$
, (1.2-9)

21 and

Variance of
$$\Phi(V) = \frac{\sigma^2}{V^2} \int_{V} \int_{V} \rho(|\mathbf{x} - \mathbf{y}|) d\mathbf{x} d\mathbf{y}.$$
 (1.2-10)

If ϕ , σ^2 and $\rho(r)$ were known, the problem would be essentially solved in that the distribution 33 of the material-property parameter, $\Phi(V)$, could be approximated by a normal distribution 34 with mean and variance given respectively by Eqs. 1.2-9 and 1.2-10. In general, ϕ , σ^2 and 35 the function $\rho(\mathbf{r})$ must be estimated using sets of measurements of the material property ϕ , 36 say $(\phi_1, \phi_2, ..., \phi_N)$. The estimators of ϕ and σ^2 are the usual unbiased estimators of mean 37 and variance (see Tierney, 1990a, pp. II-4,5) and, given a sufficiently large set of spatially 38 coordinated measurements of ϕ , approximations to the autocorrelation function could be 39 constructed and used in the numerical evaluation of the volume integrals in Eq. 1.2-10. This 40 ideal solution to the problem cannot be implemented, however, since there are few 41 measurements of the material properties appearing in WIPP performance models (and most are 42 43 not spatially indexed; measured transmissivity, grain density, porosity, and tortuosity of the Culebra Formation are exceptions). Thus, one must try to use available measurements and 44 insight to infer the statistical properties, given by Eqs. 1.2-9 and 1.2-10, of material-property 45 46 parameters $\Phi(V)$. The following observations may be useful in inferring statistical properties of material-property parameters. 47

INTRODUCTION Conventions

1 (1) The variance of a material-property parameter is less than or equal to the apparent 2 variance of the material property. Note that because of the properties of $\rho(r)$ (Eq. 1.2-8), the 3 integrand in the double volume integral of Eq. 1.2-10 is always less than one so that

Variance of $\Phi(V) \leq \sigma^2$.

In particular, if we take the special form of autocorrelation function ("cookie cutter"),

$$\rho(|\mathbf{x} - \mathbf{y}|) = 1 \text{ if } |\mathbf{x} - \mathbf{y}| \le a,$$

= 0 otherwise, (1.2-11)

then

4

5 6

7 8 9

10 11 12

13

1456789012

35

Variance of
$$\Phi(V) \approx \frac{v}{v} \sigma^2$$
 (1.2-12)

where $v = \frac{4\pi}{3} a^3$ can be called the *volume of correlation*. Equation 1.2-12

suggests that if the volume of correlation is <<V, then the distribution of $\Phi(V)$ is peaked about the mean value of the material property, ϕ . If the coefficient of variation of the material property, σ/ϕ , is not large (say, of the order of one), the distribution of $\Phi(V)$ is more sharply peaked about the mean value, ϕ , than is the distribution of the material property, $\phi(x)$. If this tendency is strong enough, then $\Phi(V)$ can simply be assigned the mean value, 28

 $\Phi(V) \approx \overline{\phi}$

This is what is usually done in studies with numerical models that are not probabilistic; that is, not directed explicitly towards sensitivity and uncertainty analyses.

(2) If, as suggested above, $\Phi(V) \approx \overline{\phi}$, then one must consider the uncertainty inherent in 36 37 estimating the mean value ϕ , that arises from (a) a limited number of measurements of the material property, and (b) relationships between ϕ and other uncertain problem parameters. 38 Uncertainty of type (a) can be handled by fitting available data to a "t-distribution" (Blom, 39 1989) which, in a Bayesian approach, gives the distribution of the true mean of the material 40 property about the sample mean of measurements. However, this was not done in assigning 41 ranges to parameters and thus introduces conservatism. Uncertainty of type (b) is model 42 dependent and must be handled on a case-by-case basis. 43

44

The standard techniques of statistical estimation cannot be directly applied when the distribution of the material property, $\phi(\mathbf{x})$, must be gained by subjective means, i.e., the elicitation of expert judgment. In such cases, the PA Division must make the unnecessarily conservative assumption that the distribution of the material property, $\phi(\mathbf{x})$, is also the distribution of the material-property parameter, $\Phi(V)$.

1.3 Background on Selecting Parameter Distribution

3

1.3.1 Requests for Data from Sandia Investigators and Analysts

5 7

When evaluating long-term performance, the PA Division follows a fairly well-defined
procedure for acquiring and controlling the data used in consequence and probability models.
A data base, called the secondary data base, contains the interpreted data and in essence
embodies the conceptual model(s) of the disposal system. The data provided in this report are
from the secondary data base as of July 1991 and are used in the 1991 preliminary
performance assessment of the WIPP (Volume 1 of this report).

15

16 The major sources of the data are the task leaders and investigators at Sandia and from 17 Westinghouse.

18 ·

19 Identify Necessary Data

20

Each year, the PA Division identifies data that are necessary to perform the calculations for the preliminary performance assessment. Members of the PA Division informally compile data from published reports, personal communications with investigators, and other sources.

24

25 Request Median Value and Distribution

26

The PA Division then requests that the investigators provide a median value and distribution for each parameter in a large subset of the parameters. Some model parameters are specific to the PA calculations and so individuals in the PA Division are considered the experts for these parameters (e.g., probability model parameters).

31

Initially, the investigator is responsible for providing the median value and distribution for all parameters. As this procedure for acquiring data is repeated, a few parameters are evaluated through formal elicitation.

36 Update Secondary Data Base

37

35

The PA Division enters the endorsed or elicited data into the secondary data base. The PA Division then selects a subset of the data to sample, keeping all other values constant at the median or mean value, unless specifically noted.

41

42 Perform Consequence Simulations and Sensitivity Analyses

43

The PA Division runs consequence simulations and sensitivity analyses with the selected subsets of data from the updated secondary data base. The sensitivity analysis may evaluate either or both the sensitivity and the importance of a parameter in determining variation of the result (i.e., CCDF). During this time, the PA Division prepares a report that lists the data in the secondary data base at the time of these calculations (i.e., this data report).

INTRODUCTION Background on Selecting Parameter Distribution

1 Determine Whether Parameter Is Important in Analysis

2

By means of the sensitivity analyses, the PA Division can determine whether the parameter is significant in the calculations. If the parameter does not appear to be significant in the sensitivity analyses, and the review process of the Data Report does not question the parameter value, then the parameter is flagged as not likely to change or be sampled.

9 1.3.2 Construction of Distributions

10

7

The steps below describe the procedure developed by the PA Division to construct probability
distributions (cdfs or pdfs) for the uncertain independent variables in consequence and
probability models (Figure 1.3-1) (modified from Tierney, 1990a).

15 16 **Step 1**

16 17

Determine whether site-specific data for the variable in question exists, i.e., find a set of site-specific sample values of the variable. Data are usually either documented in a formal report or are described in an internal memorandum (see Appendix A). If data sets exist, go to Step 3; if no data sets are found, go to Step 2.

22

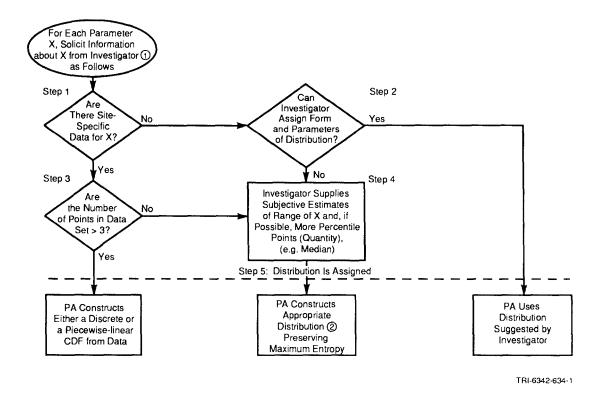
23 Step 2

24

Request that the investigator supply a specific shape (e.g., normal, lognormal) and associated numerical parameters for the distribution of the variable. If the investigator assigns a specific shape and numerical parameters, go to Step 5; if the investigator cannot assign a specific shape and appropriate parameters, go to Step 4. In responding to this request, the investigator may use his or her knowledge of global data to form an answer.

31 Step 3

32


30

Determine the size of the combined data sets. If the number of values in the combined data set is >3, use the combined data to evaluate the data range as $\bar{x} \pm 2.33$ s and construct a piecewise-linear cumulative distribution function or, alternatively, a discrete

a piecewise-linear cumulative distribution function or, alternatively, a discrete cumulative distribution function, and then go to Step 5. If the number of variables in the combined data set is ≤ 3 , evaluate the data range as $\overline{x} \pm \sqrt{3}s$ and go to Step 4.

- 39 40 Step 4
- 40 41

Request that the investigator provide subjective estimates of (a) the range of the variable 42 (i.e., the minimum and maximum values taken by the variable with at least 99% confidence 43 and preferably 100% confidence) and (b) if possible, one of the following (in decreasing 44 order of preference): (1) percentile points for the distribution of the variable (e.g., the 25th, 45 50th [median], and 75th percentiles), (2) the mean value and standard deviation of the 46 distribution, or (3) the mean value. Again, in responding to this request, the investigator may 47 use his or her knowledge of global data to form an answer. Then, using the maximum 48 entropy formalism (MEF), construct one of the following distributions depending upon the 49 kind of subjective estimate that has been provided (Tierney, 1990a; Harr, 1987): 50 51

56 7 8 9	Figure 1.3-1.	Five-Step Procedure Used to Construct Cumulative Distribution Functions (cdf) for the 1991 Performance Simulations. Investigator refers to expert in subject matter; MEF refers to maximum entropy formalism (after Tierney, 1990a).	
10 11	• Unifor	• Uniform pdf over the range of the variable	
12	• Piecewise-linear cdf based on the subjective percentiles		
13 14	• Exponential pdf (truncated) based on the subjective range and mean value		
15 16	• Norma	I pdf based on subjective mean value and standard deviation	
17 18 19 20		odf based on the subjective range, mean value, and standard deviation. (The istribution is not a maximum-entropy distribution under these constraints.)	
21 22	Then go to Step	p 5.	
23	Step 5		
24 25 26 27		dure; distribution is assigned. Computational restrictions may require later some distributions and are discussed with each parameter.	

2 1.3.3 Selection of Parameters for Sampling

3

For the 1991 preliminary performance assessment of the WIPP, the 45 parameters that were selected for variation (sampling) together with a brief description of why they were selected are discussed in Chapter 6. Other studies on subsystems of the WIPP disposal system (e.g., sensitivity of the repository to gas generation) may use different subsets of the approximately 300 parameters for which distributions are reported herein.

10 1**2**

1.3.4 Elicitation of Distributions from Experts

13

This section discusses formal elicitation of probability distributions for model parameters that are uncertain and are considered significant in the performance assessment (e.g., estimate of radionuclide concentration in the disposal region [Trauth et al., 1991]). Formal elicitation is also being used in the performance assessment of the WIPP to hypothesize about possible futures of society and the effects of appropriate markers to warn future societies about the WIPP; these elicitation efforts are discussed elsewhere (Hora et al., 1991).

21

In all aspects of data gathering, professional judgment (i.e., opinion) must bridge the gaps in knowledge that invariably exist in scientific explanations. For example, the selection of methods to collect data (characterizing a site), interpretation of data, development of conceptual models, and selection of model parameters all require professional judgment by the investigator. This volume summarizes these judgments.

27

When data are lacking, either because of the complexity of processes or the time and resources it would take to collect data or when data have a major impact on the performance assessment, a formal elicitation of expert judgment is pursued. The procedure has the following advantages. First, formal elicitation offers a structured procedure for gathering opinions. Second, it encourages diversity in opinions and thus guards against understating the uncertainty. Finally, it promotes clear and thorough documentation of how the results were achieved (Hora and Iman, 1989).

35

The judgments that result from formal elicitation are a snapshot of the current state of knowledge. As new observations are made, the state of knowledge is refined. Even though the compilation of information through formal elicitation is often enlightening and helps to prevent bias, it does not create information. An important aspect of the elicitation, which occurs either during or following the procedure, is to examine how new data collected may improve understanding.

42

A successful formal elicitation of expert opinion includes the following five components
(Hora and Iman, 1989):

45

46 Selection of Issue and Issue Statement

47

The first component of the formal elicitation process is a clear statement of the issue that cannot be practically resolved by other means. For example, the issue may not be resolved For example, the issue may not be resolved either because of time (the judgment may be a temporary solution until laboratory or field data become available) or because the complexity of the issue prevents a resolution regardless of the resources applied.

5 Selection of Experts

6

4

7 The second component is the selection of experts with the recognized training and experience 8 to address the issue. The experts should be free from motivational biases and represent a 9 diversity of opinions. (Experts in a subject who may be motivationally biased can give 10 testimony to the selected expert(s) as part of the training described below.) For controversial 11 issues, the selection may require that an external committee select individuals from a list of 12 nominees provided by diverse groups such as universities, the government, consulting firms, 13 and intervenor groups.

14

Once selected, the experts may be asked to respond to a single question individually, respond to similar questions as a group, or become part of a team of experts who are expected to fully analyze a complex problem. The strategy selected is based on the importance of the issue and the time and resources available.

19

20 Elicitation Sessions

21

The third component consists of the elicitation sessions. Elicitation training includes informing the experts about the methods that will be used to process and propagate their subjective beliefs, introducing the assessment tools and practicing with these tools, providing calibration training using almanac questions, and introducing the psychological aspects of probability elicitation.

27

At the session (or a subsequent session), the issues are presented to the analysts. Included in 28 each presentation is a proposed decomposition of the problem. Problem decomposition 29 30 improves the quality of assessments by structuring the analysis so that the expert is required to make a series of simpler assessments rather than one complex assessment. Decomposition 31 32 also provides a form of self-documentation since the expert's thought process is made explicit. The elicitation sessions are led by a normative analyst (i.e., an expert trained in 33 decision analysis). The session may include a substantive analyst, who is an expert in the 34 subject matter under discussion. 35

36

37 **Recomposition and Aggregation**

38

The fourth component is the recomposition of an expert's opinions and the aggregation of the diverse opinions from several experts. The tools employed in recomposing the assessments vary from issue to issue. In most issues, however, three levels of action are required. The first level is the modification of the assessed values to obtain cumulative distribution functions for any continuous quantities. The second level of action is the recomposition of each expert's individual assessments to obtain a recomposed distribution for the specific issue
in question. The final level is the aggregation of the experts' judgments to obtain the
aggregated distribution.

4

5 Documentation

6

7 The final component is documentation of the elicitation process. Documentation usually
8 includes a record of problem decomposition, the diversity of opinion, and the recomposition
9 and aggregation performed.

10

11

12 1.4 Performance-Assessment Methodology

14

17

23

24 25

26 27

28

29

16 The Containment Requirements of the Standard state that:

18 Disposal systems for spent nuclear fuel or high-level or transuranic radioactive 19 wastes shall be designed to provide a reasonable expectation, based upon 20 performance assessments, that the cumulative releases of radionuclides to the 21 accessible environment for 10,000 years after disposal from all significant 22 processes and events that may affect the disposal system shall:

(1) Have a likelihood of less than one chance in 10 of exceeding the quantities calculated according to Table 1 (Appendix A); and

(2) Have a likelihood of less than one chance in 1,000 of exceeding ten times the quantities calculated according to Table 1 (Appendix A). (\S 191.13(a))

As defined by the Standard, the term accessible environment means "(1) the 30 atmosphere; (2) land surfaces; (3) surface waters; (4) oceans; and (5) all of the 31 lithosphere that is beyond the controlled area" (191.12(k)). Controlled area is defined to 32 be "(1) a surface location, to be identified by passive institutional controls, that 33 encompasses no more than 100 square kilometers and extends horizontally no more than 34 5 kilometers in any direction from the outer boundary of the original location of the 35 radioactive wastes in a disposal system; and (2) the subsurface underlying such a 36 surface location" (191.12(g)). Table I of Appendix A of the Standard, which is 37 referred to in the preceding Containment Requirements, is reproduced here as Table 38 1.4-1. The complete text of the Standard is reproduced as Appendix A of Volume 1 of 39 this report. 40

41

46

47890 551 52

For releases to the accessible environment that involve a mix of radionuclides, the limits in
Table 1.4-1 are used to define normalized releases for comparison with the release limits.
Specifically, the normalized release for transuranic waste is defined by

 $R = \sum_{i=1}^{nR} {Q_i \choose L_i} \cdot (1 \times 10^6 \text{ Ci/C})$ (1.4-1)

53 where

Table 1.4-1. Release Limits for Containment Requirements (40 CFR 191, Appendix A, Table 1) 2 3 ő 6 Release limits (L_i) 7 per 1000 MTHM* or Other Unit of Waste 8 9 (Ci) 10 12 Americium (Am) -241 or -243 100 13 Carbon (C) -14 100 14 Cesium (Cs) -135 or -137 1000 15 lodine (I) -129..... 100 16 Neptunium (Np) -237..... 100 17 Plutonium (Pu) -238, -239, -240, or -242..... 100 18 Radium (Ra) -226..... 100 19 Strontium (Sr) -90 20 1000 21 Thorium (Th) -230 or -232 22 10 Tin (Sn) -126..... 23 1000 24 Uranium (U) -233, -234, -235, -236, or -238..... 100 Any other α -emitting radionuclide with $t_{1/2} > 20$ yr.... 100 25 26 Any other non α -emitting radionuclide with $t_{1/2} > 20$ yr 1000 28 20 Metric tons of heavy metal exposed to a burnup between 25,000 megawatt-days per metric ton of heavy metal (MWd/MTHM) and 40,000 MWd/MTHM. 31 32 38 36 nR = number of radionuclides included in the analysis, 37 C = amount of TRU waste with half-lives greater than 20 years (1 x 10^6 Ci/C is the 38 reciprocal of the waste unit factor f_w used in Chapter 3) (Ci) emplaced in the 39 repository, 40 Q_i = cumulative release (Ci) of radionuclide i to the accessible environment during the 41 10,000-yr period following closure of the repository, 42 43 and 44 45 L_i = the release limit (Ci) for radionuclide i given in Table 1.4-1. 46 47 In addition, the EPA suggests that the results of a performance assessment intended to show 48 compliance with the release limits in § 191.13 can be assembled into a single complementary 49 cumulative distribution function (CCDF). Specifically, the nonbinding guidance contained in 50 Appendix B of the Standard indicates that 51 52 ... whenever practicable, the implementing agency will assemble all of the results 53 of the performance assessments to determine compliance with § 191.13 into a 54 "complementary cumulative distribution function" that indicates the probability of 55 exceeding various levels of cumulative release. When the uncertainties in 56 parameters are considered in a performance assessment, the effects of the 57

(page date: 15-NOV-91)

uncertainties considered can be incorporated into a single such distribution function for each disposal system considered. The Agency assumes that a disposal system can be considered to be in compliance with § 191.13 if this single distribution function meets the requirements of § 191.13(a). (U.S. EPA, 1985, p. 38088).

1.4.1 Conceptual Model for WIPP Performance Assessment

8 9

1 2

3 4

5

6

Construction of a CCDF for comparison to the Standard requires a clear conceptual 10 12 representation for a performance assessment. A representation based on a set of ordered triples provides a suitable way to organize a performance assessment and leads naturally to 13 the presentation of the outcome of a performance assessment as a CCDF (Kaplan and 14 Garrick, 1981; Helton et al., 1991; Volume 1, Chapter 3). Specifically, the outcome of a 16 performance assessment can be represented by a set R of ordered triples of the form

17 18

22

23

24 25

15

```
R = \{(S_i, pS_i, cS_i), i = 1, ..., nS\},\
                                                                                                           (1.4-2)
```

19 20

where 21

 S_i = a set of similar occurrences,

 pS_i = probability that an occurrence in set S_i will take place,

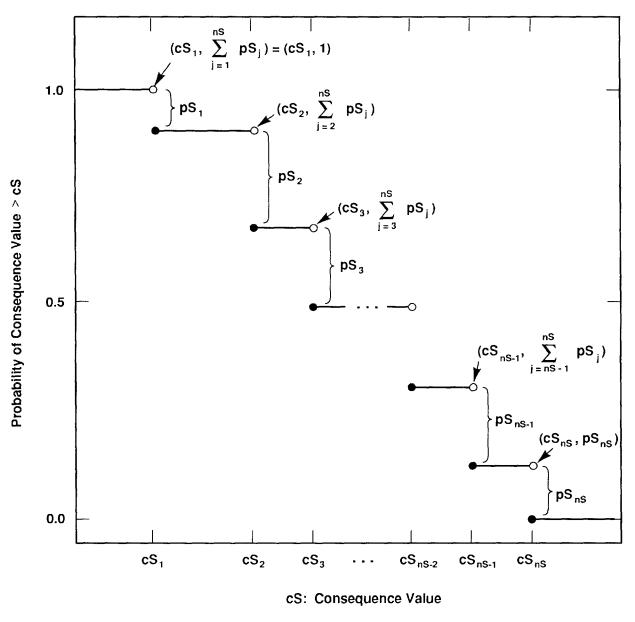
 \mathbf{cS}_i = a vector of consequences associated with S_i ,

and 26

27 28

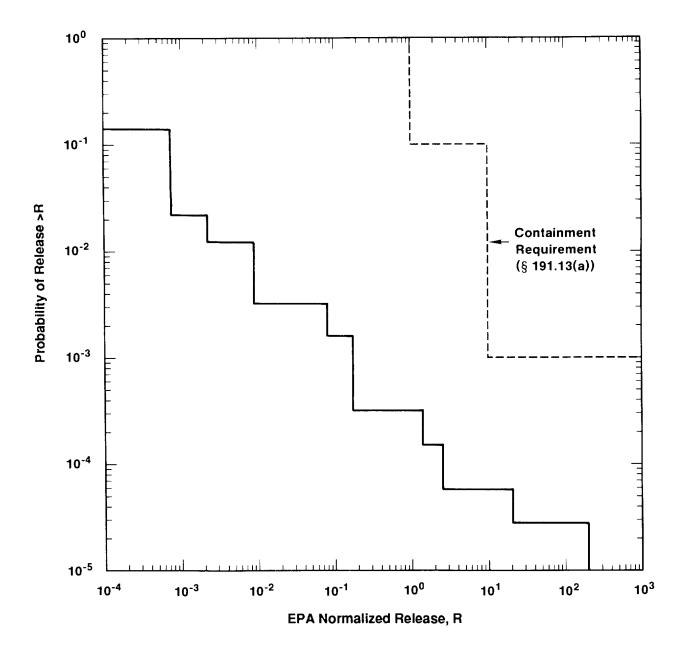
29

32


nS = number of sets selected for consideration.

30 In terms of performance assessment, the S_i are scenarios, the pS_i are scenario probabilities, and the cS_i are vectors containing results or consequences associated with scenarios. 31

33 The information contained in the pS_i and cS_i shown in Eq. 1.4-2 can be summarized in CCDFs. With the assumptions that a particular consequence result cS (e.g., normalized release 34 35 to the accessible environment) is under consideration and that the values for this result have been ordered so that cS_i is less than or equal to cS_{i+1} for i = 1, 2, ..., nS-1, the resultant CCDF 36 37 is shown in Figure 1.4-1. As illustrated in Figure 1.4-2, the EPA containment requirement in 191.13 specifies that the CCDF for normalized release to the accessible environment should 38 39 fall below a CCDF defined by the points (1, 0.1) and (10, 0.001). The vertical lines in Figure 40 1.4-2 have been added for visual appeal but are not really part of the CCDF. A waste 41 disposal site can be considered to be in compliance with the EPA release limits if the CCDF for normalized release to the accessible environment falls below the bounding curve shown in 42 43 Figure 1.4-2.


44

Since the representation for a performance assessment in Eq. 1.4-2 and the resultant CCDFs 45 in Figures 1.4-1 and 1.4-2 involve probabilities, there must be an underlying sample space. 46 For performance assessments conducted to provide comparisons with the EPA release limits, 47 the sample space is the set & defined by 48

TRI-6342-730-5

Figure 1.4-1. Estimated Complementary Cumulative Distribution Function (CCDF) for Consequence Result **cS**. (Helton et al., 1991, Figure VI-1).

TRI-6342-740-3

Figure 1.4-2. Comparison of a CCDF for Normalized Release to the Accessible Environment with the EPA Release Limits.

1 2 3

$$\delta = (x : x \text{ a single 10,000-yr time history beginning at} decommissioning of the facility under consideration}.$$
 (1.4-3)

Each 10,000-yr history is complete in the sense that it provides a full specification, including time of occurrence, for everything of importance to performance assessment that happens in this time interval. The S_i appearing in Eq. 1.4-2 are disjoint subsets of & for which

- $\begin{array}{l} nS \\ \$ = \bigcup \quad S_i. \\ i=1 \end{array}$ (1.4-4)
- 10 11

7

8

9

In the terminology of probability theory, the S_i are events and the pS_i are the probabilities for these events. It is the discretization of into the sets S_i that leads to the steps in the estimated CCDFs in Figures 1.4-1 and 1.4-2. The use of more sets will reduce the step sizes but will not alter the fact that CCDFs are the basic outcome of a performance assessment (Helton et al., 1991, Chapter VI).

18

Important parts of any performance assessment are the discretization of S into the sets S_{i} , 19 commonly referred to as scenario development (Hunter, 1989; Ross, 1989; Cranwell et al., 20 1990; Guzowski, 1990), and the subsequent determination of probabilities for these sets 21 (Mann and Hunter, 1988; Hunter and Mann, 1989; Guzowski, 1991). For radioactive waste 22 disposal in sedimentary basins, many S_i result from unintended intrusions due to exploratory 23 drilling for natural resources, particularly oil and gas. To construct CCDFs of the form 24 shown in Figures 1.4-1 and 1.4-2, the time histories associated with these drilling intrusions 25 must be sorted into disjoint sets such that (1) each S_i is sufficiently homogeneous that it is 26 reasonable to use the same consequence result \mathbf{cS}_i for all elements of S_i , (2) a probability can 27 be determined for each S_i , and (3) estimation of pS_i and cS_i is computationally feasible. 28

29

Chapter 2, Volume 2 of this report describes a decomposition of drilling intrusions into computational scenarios on the basis of number of intrusions and their times of occurrence, and derives the necessary formulas to convert from drilling rates to scenario probabilities. Chapter 3, Volume 2 describes a computational procedure that can be used to determine CCDFs for intrusions due to drilling.

35

1.4.2 Uncertainty in Risk

38

A number of factors affect uncertainty in risk results, including completeness, aggregation,
 model selection, imprecisely known variables, and stochastic variation. The risk representation
 in Eq. 1.4-2 provides a convenient structure in which to discuss these uncertainties.

42

Completeness refers to the extent that a performance assessment includes all possible occurrences for the system under consideration. In terms of the risk representation in Eq. 1.4-2, completeness deals with whether or not all possible occurrences are included in the union of the sets S_i (i.e., in U_iS_i). Aggregation refers to the division of the possible occurrences into the sets S_i , and thus relates to the logic used in the construction of the sets S_i . Resolution is lost if the S_i are defined too coarsely (e.g., nS is too small) or in some other

inappropriate manner. Model selection refers to the actual choice of the models for use in a 1 risk assessment. Appropriate model choice is sometimes unclear and can affect both pS_i and 2 cS_i . Similarly, once the models for use have been selected, imprecisely known variables 3 required by these models can affect both pS_i and cS_i . Due to the complex nature of risk 4 assessment, model selection and imprecisely known variables can also affect the definition of 5 the S_i . Stochastic variation is represented by the probabilities pS_i , which are functions of the 6 many factors that affect the occurrence of the individual sets S_i . The CCDFs in Figures 1.4-1 7 and 1.4-2 display the effects of stochastic uncertainty. Even if the probabilities for the 8 individual S_i were known with complete certainty, the ultimate result of a risk assessment 9 would still be CCDFs of the form shown in Figures 1.4-1 and 1.4-2. 10

11

The calculation of risk is driven by the determination of the sets S_i . Once these sets are 12 determined, their probabilities of pS_i and associated consequences cS_i must be determined. In 13 practice, development of the S_i is a complex and iterative process that must take into account 14 the procedures required to determine the probabilities pS_i and the consequences cS_i . Typically, 15 the overall process is organized so that pS_i and cS_i will be calculated by various models whose 16 exact configuration will depend on the individual S_i . These models will also require a number 17 of imprecisely known variables. It is also possible that imprecisely known variables could 18 19 affect the definition of the S_i .

- 20
- 21 22

These imprecisely known variables can be represented by a vector

- $\mathbf{x} = [x_1, x_2, ..., x_{nV}], \tag{1.4-5}$
- 23 24

where each x_j is an imprecisely known input required in the analysis and nV is the total 25 number of such inputs. In concept, the individual x_i could be almost anything, including 26 vectors or functions required by an analysis. However, an overall analysis, including 27 uncertainty and sensitivity studies, is more likely to be successful if the risk representation in 28 Eq. 1.4-2 has been developed so that each x_i is a real-valued quantity for which the overall 29 analysis requires a single value, but it is not known with preciseness what this value should be. 30 With the preceding ideas in mind, the representation for risk in Eq. 1.4-2 can be restated as a 31 function of x: 32

33 34

35

 $R(\mathbf{x}) = \{ (S_i(\mathbf{x}), pS_i(\mathbf{x}), cS_i(\mathbf{x})), i=1, ..., nS(\mathbf{x}) \}$ (1.4-6)

As **x** changes, so will $R(\mathbf{x})$ and all summary measures that can be derived from $R(\mathbf{x})$. Thus, rather than a single CCDF for each consequence value contained in **cS**, a distribution of CCDFs results from the possible values that **x** can take on.

39

The individual variables x_j in x can relate to different types of uncertainty. Individual variables might relate to completeness uncertainty (e.g., the value for a cutoff used to drop low-probability occurrences from the analysis), aggregation uncertainty (e.g., a bound on the

value for nS), model uncertainty (e.g., a 0-1 variable that indicates which of two alternative 1 models should be used), stochastic uncertainty (e.g., a variable that helps define the 2 probabilities for the individual S_i , or variable uncertainty (e.g., a solubility limit or a 3 retardation for a specific element). Variable uncertainty may include uncertainty resulting 4 from the incompleteness of data and measurement uncertainty resulting from systematic or 5 random errors that may occur in the data. Measurement uncertainty has, in general, received 6 little attention in this report because, as discussed in the following section, values for most 7 variable parameters used in the performance assessment are assessed subjectively, not 8 empirically. Even for those parameters for which values are derived empirically, the 9 conservative use of total variability rather than variability about the mean discussed in Section 10 1.2 limits the potential to expand parameter uncertainty. 11

12 18

1.4.3 Characterization of Uncertainty in Risk

15

21

23

If the inputs to a performance assessment as represented by the vector x in Eq. 1.4-5 are 16 uncertain, then so are the results of the assessment. Characterization of the uncertainty in the 17 results of a performance assessment requires characterization of the uncertainty in x. Once the 18 uncertainty in x has been characterized, then Monte Carlo techniques can be used to 19 characterize the uncertainty in the risk results. 20

The outcome of characterizing the uncertainty in \mathbf{x} is a sequence of probability distributions 22

$$D_1, D_2, \dots, D_{nV},$$
 (1.4-7)

22222223 where D_j is the distribution developed for the variable x_j , j=1, 2, ..., nV, contained in x. (Elsewhere in this volume these distributions are indicated by $F(x_i)$.) The definition of these 31 distributions may also be accompanied by the specification of correlations and various 32 33 restrictions that further define the possible relations among the x_i . These distributions and other restrictions probabilistically characterize where the appropriate input to use in the 34 performance assessment might fall given that the analysis is structured so that only one value 35 can be used for each variable under consideration. In most cases, each D_i will be a subjective 36 distribution that is developed from available information through a suitable review process and 37 serves to assemble information from many sources into a form appropriate for use in an 38 integrated analysis. However, it is possible that the D_i may be obtained by classical statistical 39 techniques for some variables. Details related to the probability distributions D_j used by WIPP 40 PA are provided in the previous section. 41

42

Once the distributions in Eq. 1.4-7 have been developed, Monte Carlo techniques can be used 43 to determine the uncertainty in $R(\mathbf{x})$ from the uncertainty in \mathbf{x} . First, a sample 44

 $\mathbf{x}_{k} = [x_{k1}, x_{k2}, ..., x_{knV}], k=1, ..., nK$ (1.4-8)

46 47 48

45

is generated according to the specified distributions and restrictions, where nK is the size of the sample. The performance assessment is then performed for each sample element $\mathbf{x}_{\mathbf{k}}$, which 49 yields a sequence of risk results of the form 50

INTRODUCTION Performance-Assessment Methodology

 $R(\mathbf{x}_{k}) = \{(S_{i}(\mathbf{x}_{k}), pS_{i}(\mathbf{x}_{k}), cS_{i}(\mathbf{x}_{k})), i=1, ..., nS(\mathbf{x}_{k})\}$ (1.4-9)

3

for k=1, ..., nK. Each set $R(\mathbf{x}_k)$ is the result of one complete performance assessment performed with a set of inputs (i.e., \mathbf{x}_k) that the review process producing the distributions in Eq. 1.4-7 concluded was possible. Further, associated with each risk result $R(\mathbf{x}_k)$ in Eq. 1.4-9 is a probability or weight^{*} that can be used in making probabilistic statements about the distribution of $R(\mathbf{x})$.

9

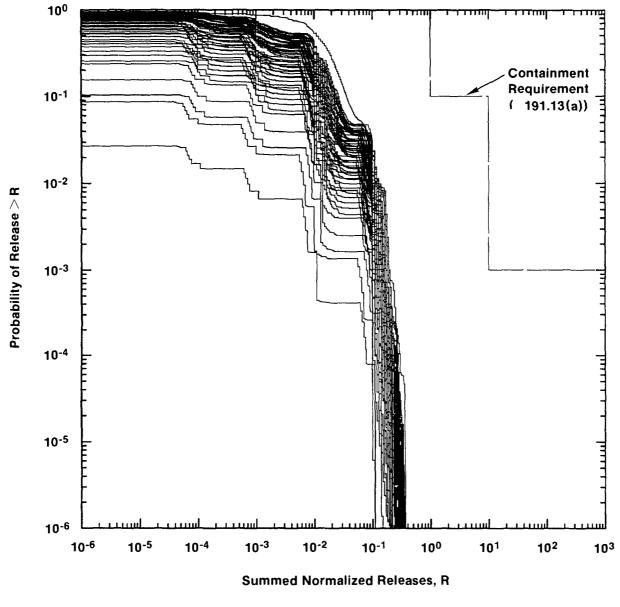
In most performance assessments, CCDFs are the results of greatest interest. For a particular consequence result, a CCDF will be produced for each set $R(\mathbf{x}_k)$ of results shown in Eq. 1.4-9. This yields a distribution of CCDFs of the form shown in Figure 1.4-3.

13

Although Figure 1.4-3 provides a complete summary of the distribution of CCDFs obtained 14 for a particular consequence result by propagating the sample shown in Eq. 1.4-8 through a 15 performance assessment, the figure is hard to read. A less crowded summary can be obtained 16 by plotting the mean value and selected percentile values for each consequence value on the 17 abscissa. For example, the mean plus the 5th, 50th (i.e., median) and 95th percentile values 18 might be used. The mean and percentile values can be obtained from the exceedance 19 probabilities associated with the individual consequence values and the weights or 20 "probabilities" associated with the individual sample elements. If the mean and percentile 21 values associated with individual consequence values are connected, a summary plot of the 22 form shown in Figure 1.4-4 is obtained. 23

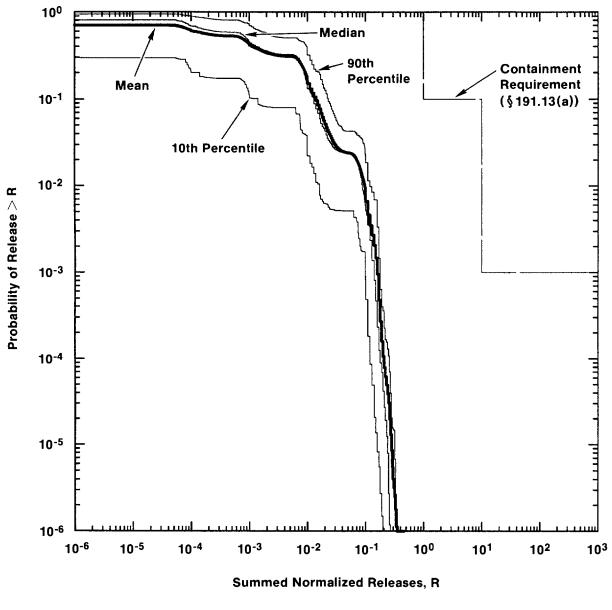
24

A point of possible confusion involving the risk representation in Eq. 1.4-2 is the distinction 25 between the uncertainty that gives rise to a single CCDF and the uncertainty that gives rise to 26 a distribution of CCDFs. A single CCDF arises from the fact that a number of different 27 occurrences have a real possibility of taking place. This type of uncertainty is referred to as 28 stochastic variation in this report. A distribution of CCDFs arises from the fact that fixed, 29 but unknown, quantities are needed in the estimation of a CCDF. The development of 30 distributions that characterize what the values for these fixed quantities might be leads to a 31 distribution of CCDFs. In essence, a performance assessment can be viewed as a very complex 32 function that estimates a CCDF. Since there is uncertainty in the values of some of the 33 independent variables operated on by this function, there will also be uncertainty in the 34 dependent variable produced by this function, where this dependent variable is a CCDF. 35


36

41

Both Kaplan and Garrick (1981) and a recent report by the International Atomic Energy
Agency (IAEA, 1989) distinguish between these two types of uncertainty. Specifically, Kaplan
and Garrick distinguish between probabilities derived from frequencies and probabilities that


^{42 *} In random or Latin hypercube sampling, this weight is the reciprocal of the sample size (i.e, 1/nK) and can be used in 44 estimating means, cumulative distribution functions, and other statistical properties. This weight is often referred to as the

⁴⁵ probability for each observation (i.e., each sample element x_k). However, this is not technically correct. If continuous 46 distributions are involved, the actual probability of each observation is zero.

TRI-6342-1293-0

Figure 1.4-3. Example of CCDF Distribution Produced for Results Shown in Eq. 1.4-9.

TRI-6342-1294-0

Figure 1.4-4. CCDF Summary Plot.

1 characterize degrees of belief. Probabilities derived from frequencies correspond to the probabilities pS_i in Eq. 1.4-2 while probabilities that characterize degrees of belief (i.e., 2 subjective probabilities) correspond to the distributions indicated in Eq. 1.4-7. The IAEA 3 report distinguished between what it calls Type A uncertainty and Type B uncertainty. The 4 IAEA report defines Type A uncertainty to be stochastic variation; as such, this uncertainty 5 corresponds to the frequency-based probability of Kaplan and Garrick and the pS_i of Eq. 6 1.4-7. Type B uncertainty is defined to be uncertainty that is due to lack of knowledge about 7 fixed quantities; thus, this uncertainty corresponds to the subjective probability of Kaplan and 8 Garrick and the distributions indicated in Eq. 1.4-7. This distinction has also been made by 9 other authors including Vesely and Rasmuson (1984), Paté-Cornell (1986), and Parry (1988). 10

11 12

1.4.4 Calculation of Scenario Consequences

14

The \mathbf{cS}_i in Eq. 1.4-2 are estimated for each sample element \mathbf{x}_k using computer codes that comprise the consequence model. This model is deterministic and predicts an EPA normalized release to the accessible environment for each scenario S_i . The consequence model is actually composed of many individual models C_ℓ , $\ell = 1, ..., nM$. The collective operation of these models can be represented by the relationship

 $\mathbf{cS}_{i} = C_{nM}\{...;C_{2}[\mathbf{x}_{k};C_{1}(\mathbf{x}_{k}, S_{i})]\}$ (1.4-10)

23 where

Cr

 $C_{\ell}(\mathbf{x}_{\mathbf{k}}, S_{\mathbf{i}})$

24

25 26

27 28 = vector containing consequence results predicted by model ℓ for sample element \mathbf{x}_k and scenario S_i ,

- 29 30
- 31

and

32 33 nM = number of consequence models.

consequence model ℓ ,

As indicated in the preceding relationship, the individual models predict results that depend on the \mathbf{x}_k and S_i and also generate input to the next model in the computational sequence.

The consequence models C_{ℓ} are separate computational models (usually computer models) that 37 are selected from several categories that represent physical processes and phenomena such as 38 groundwater flow, dissolution of radionuclides in repository brine, and groundwater transport. 39 As part of the 1991 WIPP performance assessment system, about 75 FORTRAN codes are 40 grouped into 10 model categories, which are called modules. CAMCON is the software 41 package designed and used by the PA Division to assemble the computational models from 42 the various modules into the structure indicated in Eq. 1.4-10 (Rechard, 1989; Rechard et al., 43 1989). Chapter 4 (Volume 2) describes the C_{ℓ} and their application to undisturbed 44 conditions. Chapters 5, 6, and 7 (Volume 2) describe the application of the C_{ℓ} to disturbed 45 conditions for the S_i defined in Chapter 2 (Volume 2). 46

2

1.4.5 Uncertainty and Sensitivity Analyses

In the context of this report, uncertainty analysis involves determining the uncertainty in 4 model predictions that results from imprecisely known input variables, and sensitivity analysis 5 involves determining the contribution of individual input variables to the uncertainty in 6 model predictions. Specifically, uncertainty and sensitivity analyses involve the study of the 7 effects of subjective, or type B, uncertainty. As previously discussed, the effects of 8 stochastic, or type A, uncertainty is incorporated into the WIPP performance assessment 9 through the scenario probabilities pS_i appearing in Eq. 1.4-2. Sensitivity and uncertainty 10 analyses for the results from the 1991 preliminary performance assessment are reported in 11 Volume 4. 12

13

14 16 1.5 Background on WIPP

18

29 1.5.1 Purpose

21

The DOE was authorized by Congress in 1979 to build the WIPP as a research and development facility to demonstrate the safe management, storage, and eventual disposal of transuranic (TRU) waste generated by DOE defense programs (WIPP Act, 1979). Only after demonstrating compliance with 40 CFR 191 and other laws and regulations (e.g., RCRA [1976] and NEPA [1969]) will the DOE permanently dispose of TRU waste at the WIPP repository.

29

30 1.5.2 Location

32

The WIPP is located within a large sedimentary basin, the Delaware Basin, in southeastern New Mexico, an area of low population density approximately 38 km (24 mi) east of Carlsbad (Figure 1.5-1). Topographically, the WIPP is between the high plains of West Texas and the Guadalupe and Sacramento Mountains of southeastern New Mexico.

38

Four prominent surface features are found in the area--Los Medanos ("The Dunes"), Nash 39 Draw, Laguna Grande de la Sal, and the Pecos River. Los Medanos is a region of gently 40 rolling hills that slopes upward to the northeast from the eastern boundary of Nash Draw to a 41 low ridge called "The Divide." The WIPP is in Los Medanos. Nash Draw, 8 km (5 mi) west 42 of the WIPP, is a broad shallow topographic depression with no external surface drainage. 43 Laguna Grande de la Sal, about 9.5 km (6 mi) west-southwest of the WIPP, is a large playa 44 about 3.2 km (2 mi) wide and 4.8 km (3 mi) long formed by coalesced collapse sinks that 45 were created by dissolution of evaporate deposits. The Pecos River, the principal surface-46 water feature in southeastern New Mexico, flows southeastward, draining into the Rio 47 Grande in western Texas. 48

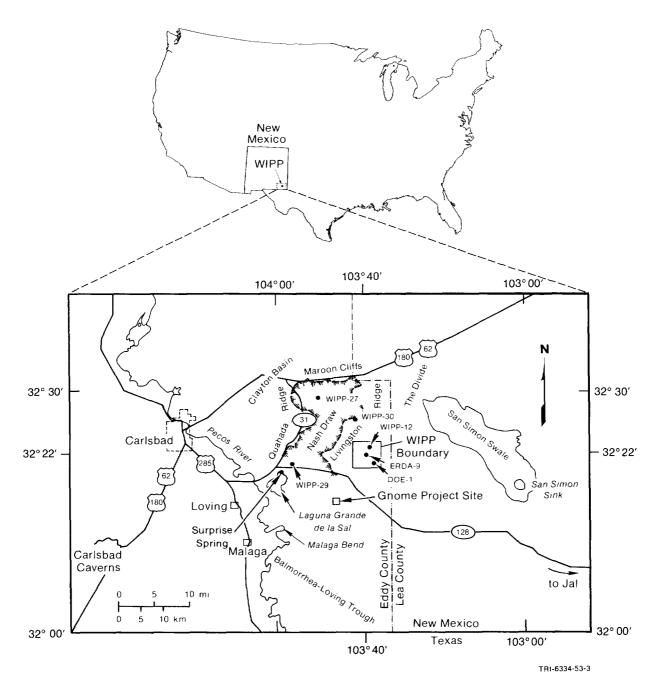


Figure 1.5-1. WIPP Location in Southeastern New Mexico (after Rechard, 1989, Figure 1.2).

2 1.5.3 Geologic History of the Delaware Basin

3

The Delaware Basin, an elongated, geologically confined depression, extends from just north 6 of Carlsbad, New Mexico, into Texas west of Fort Stockton (Figure 1.5-2). The basin covers 6 33,000 km² (12,750 mi²) and is filled with sedimentary rocks to depths as great as 7,300 m 7 (24,000 ft) (Hills, 1984). Geologic history of the Delaware Basin began about 450 to 500 8 million years ago when a broad, low depression formed during the Ordovician Period as 9 transgressing seas deposited clastic and carbonate sediments (Powers et al., 1978; Cheeseman, 10 1978; Williamson, 1978; Hiss, 1975; Hills, 1984; Harms and Williamson, 1988; Ward et al., 11 1986). After a long period of accumulation and subsidence, the depression separated into the 12 Delaware and Midland Basins when the area now called the Central Basin Platform uplifted 13 during the Pennsylvanian Period, about 300 million years ago. 14

15

During the Early and Middle Permian Period, the Delaware Basin subsided rapidly, resulting 16 17 in a sequence of clastic rocks rimmed by reef limestone. The thickest of the reef deposits, the Capitan Limestone, is buried north and east of the WIPP but is exposed at the surface in 18 the Guadalupe Mountains to the west (Figure 1.5-2). Evaporite deposits (marine bedded 19 salts) of the Castile Formation and the Salado Formation, which hosts the WIPP, filled the 20 basin during the late Permian Period and extended over the reef margins. Evaporites, 21 carbonates, and clastic rocks of the Rustler Formation and the Dewey Lake Red Beds were 22 23 deposited above the Salado Formation before the end of the Permian Period.

24

26 **1.5.4 Repository**

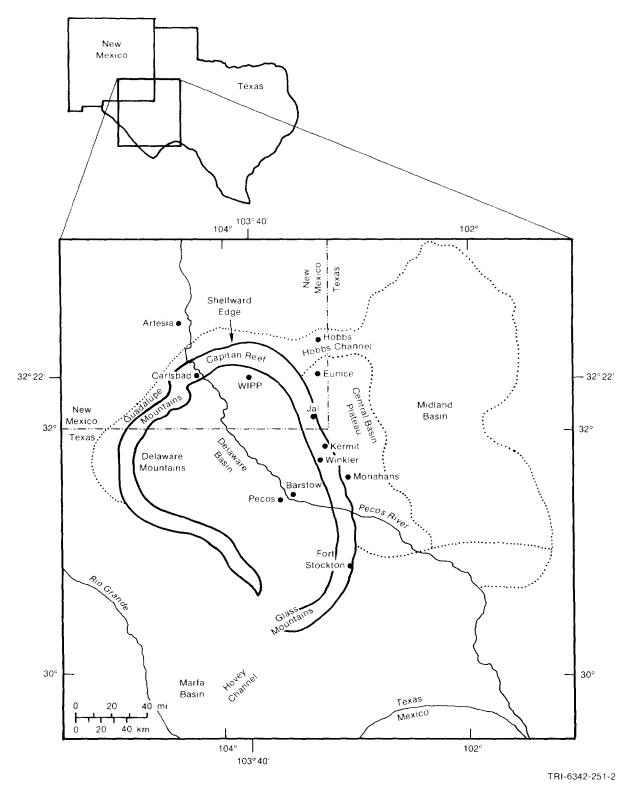
27

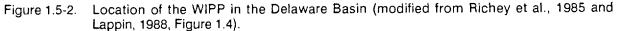
The repository is located in the Delaware Basin because the 600-m (2,000-ft)-thick Salado Formation of marine bedded salts (Late Permian Period) eventually encapsulates the nuclear waste through salt creep. The bedded salts, consisting of thick halite and interbeds of minerals such as clay and anhydrites, do not contain flowing water.

33

The repository level is located within these bedded salts 655 m (2,150 ft) below the surface and 384 m (1,260 ft) above sea level. The WIPP repository is composed of a single underground disposal level connected to the surface by four shafts (Figure 1.5-3). The repository level consists of an experimental area at the north end and a disposal area at the south end.

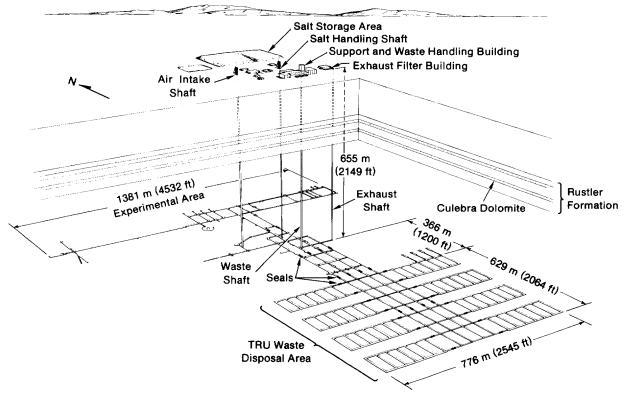
40 1.5.5 WIPP Waste Disposal System


42


39

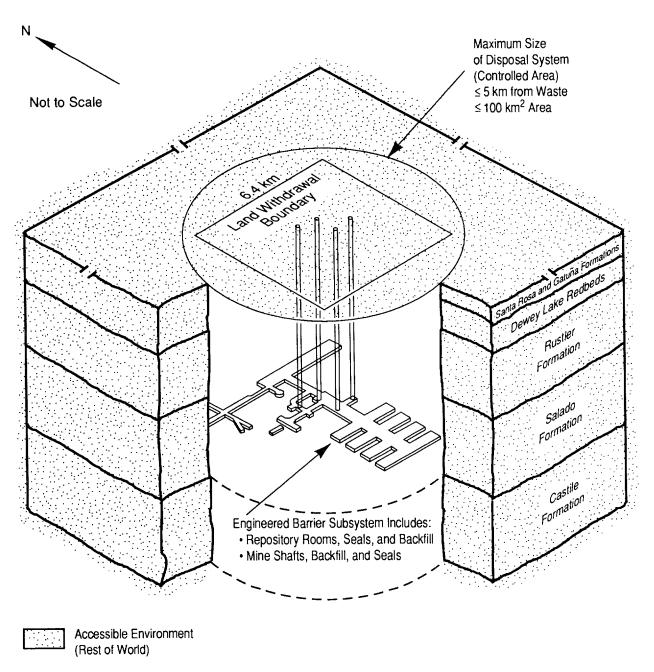
The WIPP relies on three approaches to contain waste: geologic barriers, engineered barriers, and institutional controls. The third approach, institutional controls, consists of many parts, e.g., the legal ownership and regulations of the land and resources by the U.S. Government, the fencing and signs around the property, permanent markers, public records and archives, and other methods of preserving knowledge about the disposal system.

49


The WIPP disposal system, as defined by 40 CFR 191, includes the geologic and engineered barriers. The physical features of the repository (e.g., stratigraphy, design of repository, waste form) are components of these barriers.

(page date: 15-NOV-91)

(database version: X-2.19PR)



TRI-6346-59-1

Figure 1.5-3. WIPP Repository, Showing Surface Facilities, Proposed TRU Disposal Areas, and Experimental Areas (after Nowak et al., 1990, Figure 2).

The geologic barriers are limited to the lithosphere up to the surface and no more than 5 km (3 mi) from the outer boundary of the WIPP waste-emplacement panels (Figure 1.5-4). The boundary of this maximum-allowable geologic subsystem is greater than the currently proposed boundary of the WIPP land withdrawal. The extent of the WIPP controlled area will be defined during performance assessment but will not be less than the area withdrawn, which will be under U.S. DOE administrative control (Bertram-Howery and Hunter, 1989).

- 8 Data for components of the geologic and engineered barriers are the subject of this volume.
- 9 No data on institutional controls are contained in this volume.

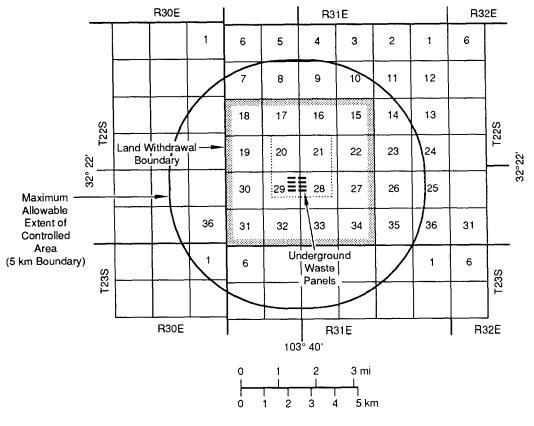
TRI-6330-7-1

Figure 1.5-4 Geologic and Engineered Barriers of the WIPP Disposal System.

2. GEOLOGIC BARRIERS

The geologic barriers consist of the physical features of the repository, such as stratigraphy
and geologic components.

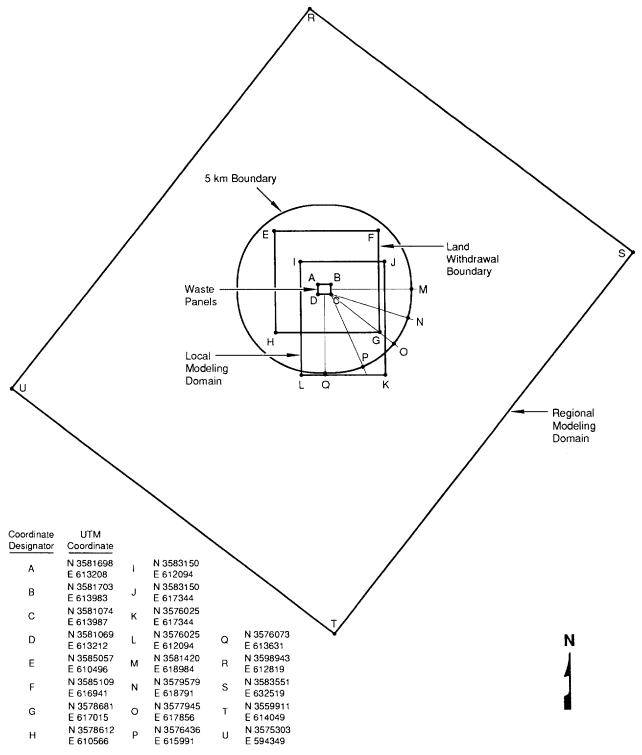
9 10


13

3 4 5

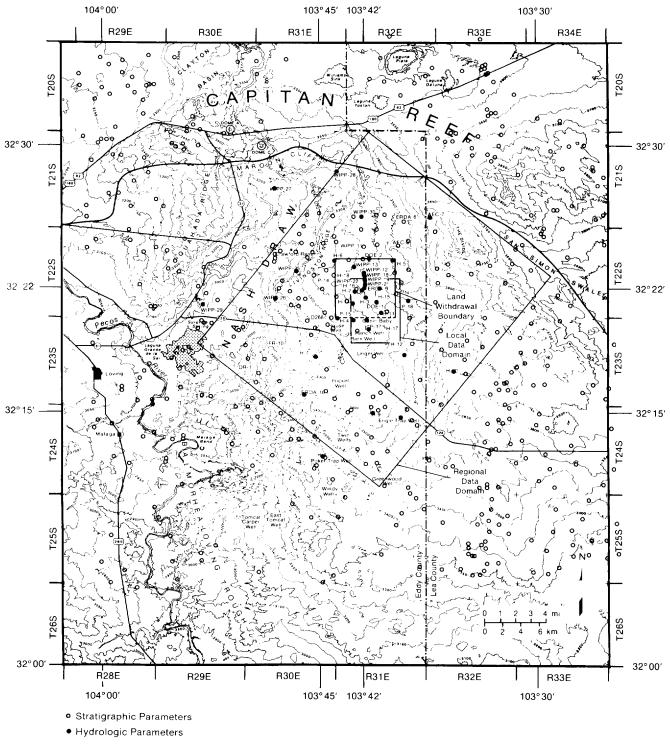
12 2.1 Areal Extent of Geologic Barriers

Figure 2.1-1 shows the maximum areal extent of the geologic barriers. Figure 2.1-2 shows the UTM coordinates of the modeling domains. The UTM coordinates for the northeast and southeast corners of the land-withdrawal boundary were derived from values reported in Gonzales (1989). Because the township ranges shift at the land-withdrawal border, the UTM coordinates for the northwest and southwest corners were derived from information on the wells nearest the corners (i.e., Well H-6A for the northwest corner and Well D-15 for the southwest corner).


22

TRI-6342-230-1

Figure 2.1-1. Position of the WIPP Waste Panels Relative to Land Withdrawal Boundary (16 Contiguous Sections), 5-km Boundary (40 CFR 191.12y), and Surveyed Section Lines (after U.S. DOE, 1989a, Figure 2.2).


(page date: 15-NOV-91)

TRI-6342-1406-0

Figure 2.1-2. UTM Coordinates of the Modeling Domains.

Figure 2.1-3 shows the topography, the locations of wells used for defining the general stratigraphy, and the modeling domains near the WIPP typically plotted in the report. The well locations by universal transverse mercator (UTM), state plan coordinates, and survey sections are provided in Table B.1 (Appendix B). The elevations of the stratigraphic layers in each of the wells are tabulated in Table B.2 (Appendix B).

TRI-6342-612-1

Figure 2.1-3. Locations of Wells for Defining General Stratigraphy and Regional and Local Data Domains Typically Plotted in Report.

(page date: 15-NOV-91)

(database version: X-2.19PR)

2 2.2 Stratigraphy at the WIPP

4

15

The level of the WIPP repository is located within bedded salts 655 m (2,150 ft) below the 6 surface and 384 m (1,260 ft) above sea level (Figures 2.2-1 and 2.2.2). The bedded salts 7 consist of thick halite and interbeds of minerals such as clay and anhydrites of the late 8 Permian period (Ochoan series) (approximately 255 million yr old)* (Figure 2.2-3). An 9 interbed that forms a potential transport pathway, Marker Bed 139 (MB139), located about 1 10 m (3 ft) below the repository interval (Figure 2.2-3), is about 1 m (3 ft) thick, and is one of 11 about 45 siliceous or sulfatic units within the Salado Formation consisting of polyhalitic 12 anhydrite (Figure 2.2-4) (Lappin, 1988; Tyler et al., 1988). Figure 2.2-5 shows the lithostatic 13 and hydrostatic pressure with depth. 14

16	r	
10	Parameter:	Anhydrite III elevation @ ERDA-9
20	Median:	105
21	Range:	70
22		140
23	Units:	m
24	Distribution:	Uniform
25	Source(s):	See text.
26		
27	ſ <u> </u>	
20	Parameter:	Bell Canyon elevation @ ERDA-9
31	Median:	-200
32	Range:	-170
33		-230
34	Units:	m
35	Distribution:	Uniform
36	Source(s):	See text.
07	L	

37 38

For most strata above the repository, the elevations (though varying) are well known because 39 of numerous wells; however, the elevations of the Anhydrite III in the Castile Formation and 40 the Bell Canyon directly below the repository can only be inferred from a geologic cross 41 section (Figure 2.2-1). The geologic structure is uncomplicated, thus the uncertainty is likely 42 43 small on the regional geologic scale. Yet the information is important to evaluating the potential and the corresponding size of any brine reservoirs under the repository. Hence, 44 uncertainty bounds have been placed on these two elevations inferred from the geologic cross 45 section. For the 1991 PA calculations, a uniform distributon with a mean of the elevation of 46 the strata was inferred from using WIPP-12, and Cabin Baby-1, ERDA-10, or DOE-1 for the 47 Anhydrite III strata and DOE, and Cabin Baby-1 or ERDA-10 for the Bell Canyon. The 48 48 endpoints were estimated at $\overline{x} + \sqrt{3}s$.

51

52

53

55 * This age reflects the revised 1983 geologic timetable (Palmer, 1983).

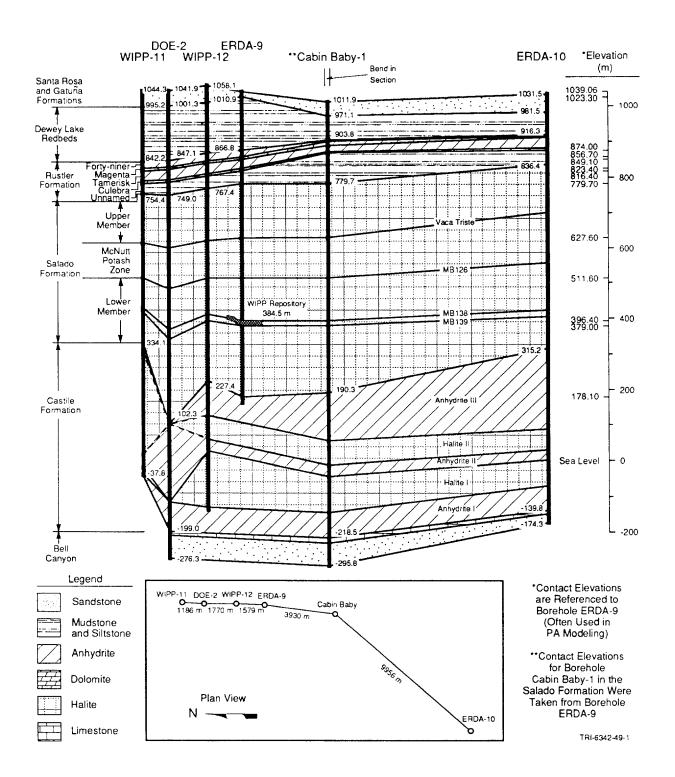
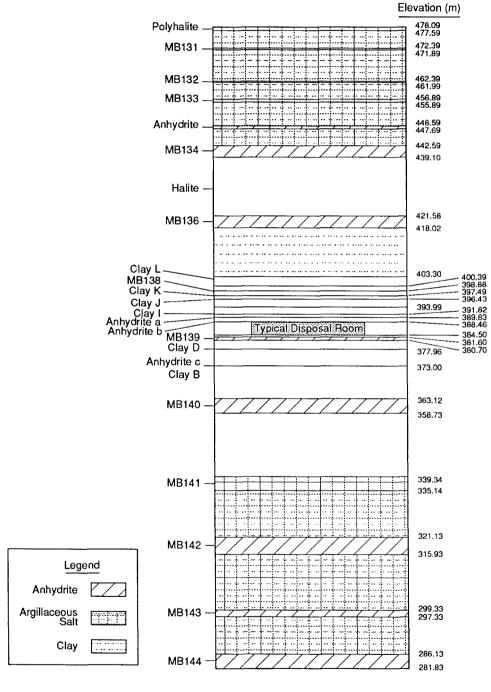
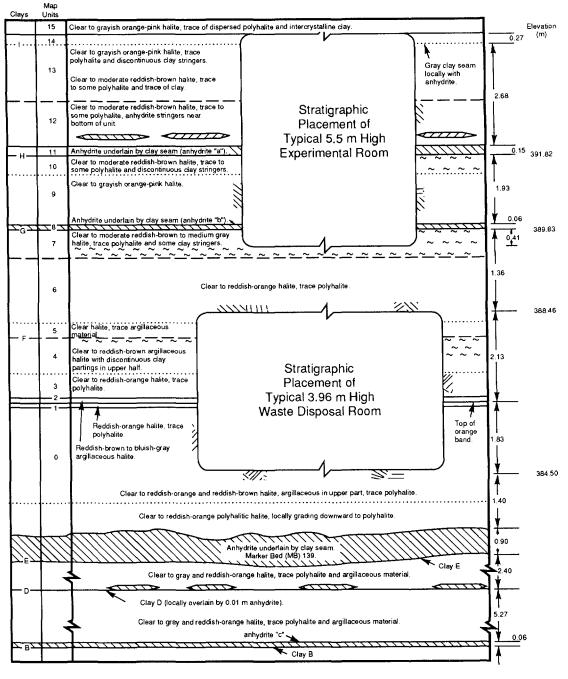
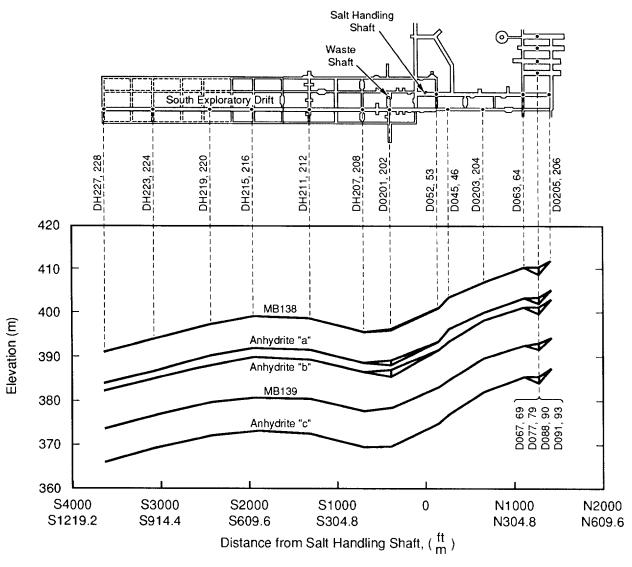



Figure 2.2-1. Level of WIPP Repository, Located in the Salado Formation. The Salado Formation is composed of thick halite with thin interbeds of clay and anhydrite deposited as marine evaporites about 255 million years ago (Permian period) (after Lappin, 1988, Figure 3.1).


(page date: 15-NOV-91)

TRI-6342-1070-0


Figure 2.2-2. Reference Local Stratigraphy near Repository (after Munson et al., 1989, Figure 3-3).

(page date: 15-NOV-91)

TRI-6334-257-2

Figure 2.2-3. Stratigraphy at the Repository Horizon (after Bechtel, 1986, Figures 6-2, 6-3 and Lappin et al., 1989, Figure 4-12). Units in the disposal area dip slightly to the south, but disposal excavations are always centered about the orange marked band (reddish-orange halite).

TRI-6342-1073-0

Figure 2.2-4. Marker Bed 139, One of Many Anhydrite Interbeds near the WIPP Repository Horizon (after Krieg, 1984, Figure 2).

GEOLOGIC BARRIERS Stratigraphy at the WIPP

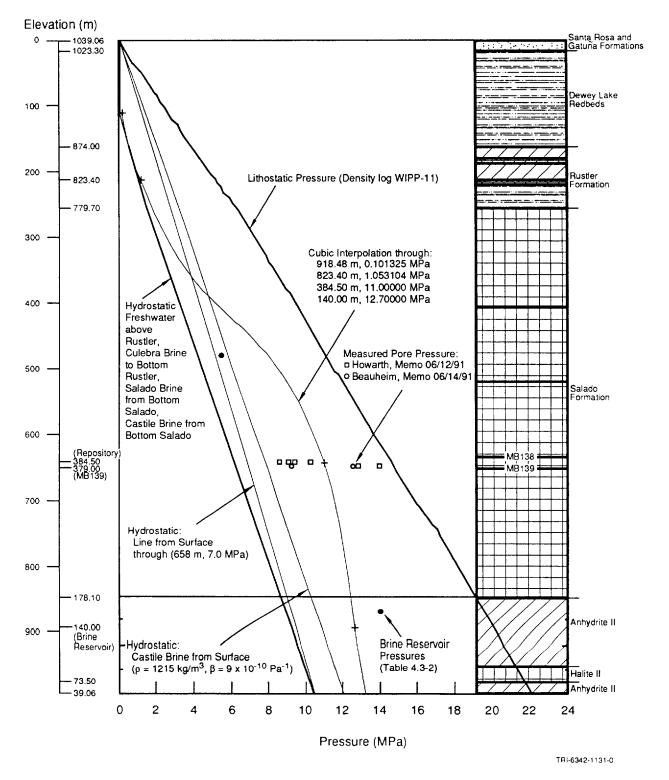


Figure 2.2-5. Lithostatic and Hydrostatic Pressure with Depth.

2.3 Hydrologic Parameters for Halite and Polyhalite within Salado Formation

4

6 The WIPP repository is located in the Salado Formation. The Salado Formation is composed 7 of thick halite with thin interbeds of clay and anhydrite deposited as marine evaporites about 8 255 million years ago (Permian period). The parameters for the Salado Formation near the 9 repository are given in Table 2.3-1.

10 11

12

Table 2.3-1. Parameter Values for Halite and Polyhalite within Salado Formation Near Repository

					Distribution	
Parameter	Median	Ra	ange	Units	Туре	Source
Capillary pressure (p _c) an		meability (k _{rw}	,)			
Threshold displaceme pressure (p _t)	2.3 x 10 ⁷	2.3 x 10 ⁵	2.3 x 10 ⁹	Pa	Lognormal	Davies, June 2, 1991, Memo (see Appendix A); Brooks and Corey 1964
Residual Saturations						1904
Wetting phase (S _{ℓr})	2 x 10 ⁻¹	1 x 10 ⁻¹	4 x 10 ⁻¹	none	Cumulative	Davies and LaVenue, 1990b
Gas phase (S _{gr})	2 x 10 ⁻¹	1 x 10 ⁻¹	4 x 10 ⁻¹	none	Cumulative	Davies and LaVenue, 1990b
Brooks-Corey Exponent (η)	7 x 10 ⁻¹	3.5 x 10 ⁻¹	1.4	none	Cumulative	Davies and LaVenue, 1990b
Density Grain (ρ _g) Halite	2.163 x 10 ³			kg∕m ³	Constant	Carmichael, 1984, Table 2; Krie 1984, p. 14; Clark, 1966, p. 44
Grain (øg) Polyhalite	2.78 x 10 ³			kg∕m ³	Constant	Shakoor and Hume, 1981 (103-203)
Bulk (ø _{bulk})	2.14 x 10 ³			kg/m ³	Constant	Holcomb and Shields, 1987, p.17
Average (p _{ave})	2.3 x 10 ³			kg/m ³	Constant	Krieg, 1984, Table 4
Dispersivity						
Longitudinal (aL)	1.5 x 10 ¹	1	4 x 10 ¹	m	Cumulative	Pickens and Grisak, 1981; Lapp et al., 1989, Table D-2
Transverse (α_{T})	1.5	1 x 10 ⁻¹	4	m	Cumulative	Pickens and Grisak, 1981; Free and Cherry, 1979, Figure 9.6
Partition Coefficient						
All species	0			m ³ /kg	Constant	Lappin et al., 1989, p. D-17
Permeability (k)				0		
Undisturbed	5.7 x 10 ⁻²¹	_	5.4 x 10 ⁻²⁰	m ²	Data	Beauheim, June 14, 1991, Mer (see Appendix A)
Disturbed	1 x 10 ⁻¹⁹ _	1 x 10 ⁻²⁰	1 x 10 ⁻¹⁸ _	m²	Lognormal	Beauheim, 1990
Pore pressure (p)	1.28 x 10 ⁷	9.3 x 10 ⁶	1.39 x 10 ⁷	Pa	Data	Beauheim, June 14, 1991, Me (see Appendix A); Howarth, Ju 12, 1991, Memo (see Appendix A
Porosity (ø)						
Undisturbed	1 x 10 ⁻²	1 x 10 ⁻³	3 x 10 ⁻²	none	Cumulative	Skokan et al.,1988; Powers al.,1978; Black et al., 1983
Disturbed	6 x 10 ⁻²			none	Constant	See text.
Specific storage	9.5 x 10 ⁻⁸	2.8 x 10 ⁻⁸	1.4 x 10 ⁻⁶	m-1	Cumulative	
Tortuosity	1.4 x 10 ⁻¹	1 x 10 ⁻²	6.67 x 10 ⁻¹	none	Cumulative	

(page date: 15-NOV-91)

2.3.1 Capillary Pressure and Relative Permeability

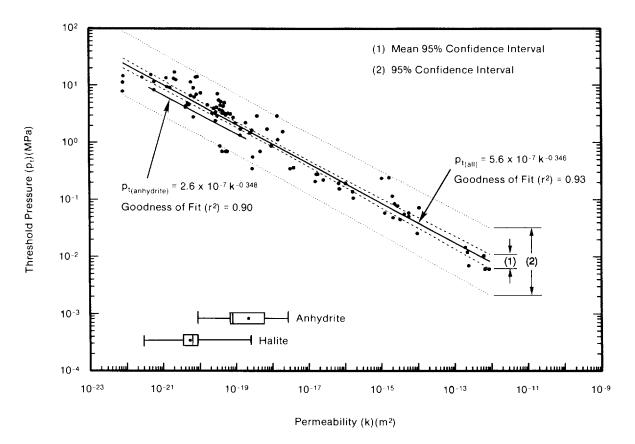
e

Threshold Displacement Pressure, pt

6		
8	Parameter:	Threshold displacement pressure (p _t)
10	Median:	2.3×10^7
11	Range:	2.3×10^5
12		2.3×10^9
13	Units:	Pa
14	Distribution:	Lognormal
15	Source(s):	Davies, P. B. 1991. Evaluation of the Role of Threshold Pressure in
16		Controlling Flow of Waste-Generated Gas into Bedded Salt at the
17		Waste Isolation Pilot Plant. SAND90-3246. Albuquerque, NM:
18		Sandia National Laboratories.
19		Davies, P. B. 1991. "Uncertainty Estimates for Threshold Pressure
20		for 1991 Performance Assessment Calculations Involving Waste-
21		Generated Gas." Internal memo to D. R. Anderson (6342), June 2,
22		1991. Albuquerque, NM: Sandia National Laboratories. (In
23	1	Appendix A of this volume)
24		

26 Discussion:

27


25

28 Threshold pressure plays an important role in controlling which Salado lithologies are accessible to gas and at what pressure gas will flow. The Salado Formation's thick halite beds 29 30 with anhydrite and clay interbeds are similar in many respects to the consolidated lithologies presented in Figure 2.3-1. Similarities in pore structure exist between halite, anhydrite, and 31 32 low-permeability carbonates; low-permeability sandstones and crystalline cements; and clay interbeds and shales. Given the general similarities, a best-fit power curve through the 33 combined data set for consolidated lithologies was judged to provide the best available 34 correlation for estimates of threshold pressure for the Salado Formation (Figure 2.3-1). 35 Threshold pressure is also a key parameter in the Brooks and Corey (1964) model used to 36 characterize the 2-phase properties of analogue materials for preliminary gas calculations 37 (Davies and LaVenue, 1990). Because threshold pressure is strongly related to intrinsic 38 permeability, an empirical estimate is used as follows: 39

40 41

$$p_t (MPa) = 5.6 \times 10^{-7} [k (m^2)]^{-0.346}$$

42 43 p_t is commonly referred to as the threshold displacement pressure. Hence, the capillary 44 pressure can be evaluated given p_t , λ , $s_{\ell r}$, and s_{gr} . Some investigators define threshold 45 pressure as the capillary pressure associated with first penetration of a nonwetting phase into 46 the largest pores near the surface of the medium, which means that threshold pressure is 47 equal to the capillary pressure at a water saturation of 1.0 (Davies, 1991, p. 9). Others define 48 threshold pressure as the capillary pressure associated with the incipient development of a

TRI-6344-730-1

Figure 2.3-1. Correlation of Threshold Pressure with Permeability for a Composite of Data from All Consolidated Rock Lithologies. Data from Ibrahim et al., 1970; Rose and Bruce, 1949; Thomas et al., 1968; and Wyllie and Rose, 1950. (after Davies, 1991, Figures 5 and 8)

continuum of the nonwetting phase through a pore network, providing gas pathways not only through relatively large pores, but also through necks between pores. This latter definition means that threshold pressure is equal to the capillary pressure at a saturation equal to the residual gas saturation (dashed lines in Figure 2.3-2).

Because flow of waste-generated gas outward from the WIPP repository will require that outward flowing gas penetrate and establish a gas-filled network of flow paths in the surrounding bedded salt, the latter definition has been adopted here.

18

14

2 Capillary Pressure and Relative Permeability

3

6 Figure 2.3-2a shows the values estimated for relative permeability for Salado salt. Figure

6 2.3-2b shows the estimated capillary pressure curve for Salado salt. Figure 2.3-3 is an

7 example of variation in relative permeability and capillary pressure when Brooks and Corey

8 parameters are varied.

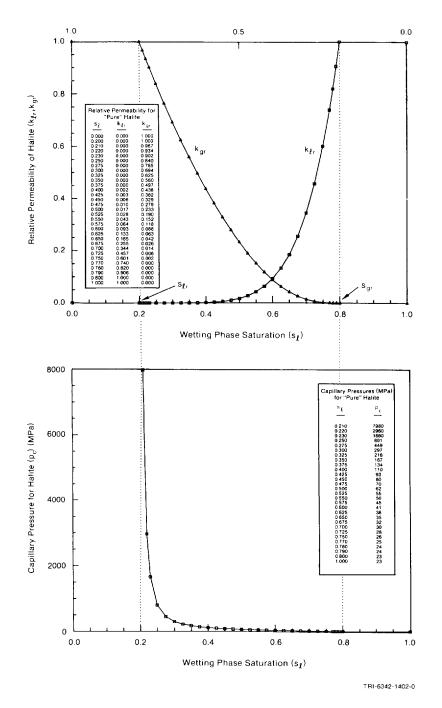


Figure 2.3-2. Estimated Capillary Pressure and Relative Permeability Curves.

(page date: 15-NOV-91)

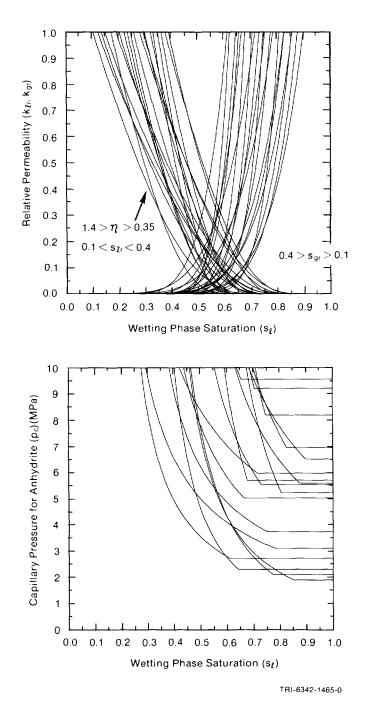


Figure 2.3-3. Example of Variation in Relative Permeability and Capillary Pressure When Brooks and Corey Parameters are Varied.

2 Residual Saturations

Parameter:	Residual wetting phase (liquid) saturation $(S_{\ell r})$
Median:	2 x 10 ⁻¹
Range:	1 x 10 ⁻¹
TT • .	4 x 10 ⁻¹
Units:	Dimensionless
Distribution:	Cumulative
Source(s):	 Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data for Characterizing 2-Phase Flow Behavior in Waste-Generated Gassimulations and Pilot Point Information for Final Culebra 2-Model." Memo 11 in Appendix A of Rechard et al. 1990. Data Used in Preliminary Performance Assessment of the Wass Isolation Pilot Plant. SAND89-2408. Albuquerque, NM: Sanda National Laboratories.
Parameter: Median:	Residual gas saturation (S _{gr}) 2×10^{-1}
Meuran:	2 X 10 -
Range:	1×10^{-1}
	$ \begin{array}{c} 1 x 10^{-1} \\ 4 x 10^{-1} \end{array} $
Range: Units:	1×10^{-1}
Range: Units: Distribution:	1 x 10 ⁻¹ 4 x 10 ⁻¹ Dimensionless Cumulative
Range: Units:	 1 x 10⁻¹ 4 x 10⁻¹ Dimensionless Cumulative Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data for
Range: Units: Distribution:	 1 x 10⁻¹ 4 x 10⁻¹ Dimensionless Cumulative Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data for Characterizing 2-Phase Flow Behavior in Waste-Generated G
Range: Units: Distribution:	 1 x 10⁻¹ 4 x 10⁻¹ Dimensionless Cumulative Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data for Characterizing 2-Phase Flow Behavior in Waste-Generated G Simulations and Pilot Point Information for Final Culebra 2-
Range: Units: Distribution:	 1 x 10⁻¹ 4 x 10⁻¹ Dimensionless Cumulative Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data for Characterizing 2-Phase Flow Behavior in Waste-Generated G Simulations and Pilot Point Information for Final Culebra 2-Model." Memo 11 in Appendix A of Rechard et al. 1990. Data
Range: Units: Distribution:	 1 x 10⁻¹ 4 x 10⁻¹ Dimensionless Cumulative Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data for Characterizing 2-Phase Flow Behavior in Waste-Generated G Simulations and Pilot Point Information for Final Culebra 2-Model." Memo 11 in Appendix A of Rechard et al. 1990. Date Used in Preliminary Performance Assessment of the Waster
Range: Units: Distribution:	1×10^{-1} 4×10^{-1} Dimensionless

Parameter:	Brooks and Corey exponent (η)
Median:	7 x 10 ⁻¹
Range:	3.5×10^{-1}
	1.4
Units:	Dimensionless
Distribution:	Cumulative
Source(s):	Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data fo
	Characterizing 2-Phase Flow Behavior in Waste-Generated Ga
	Simulations and Pilot Point Information for Final Culebra 2-I
	Model." Memo 11 in Appendix A of Rechard et al. 1990. Date
	Used in Preliminary Performance Assessment of the Wast
	Isolation Pilot Plant. SAND89-2408. Albuquerque, NM: Sandi
	National Laboratories.

2 Discussion:

3

8

Capillary pressures and relative permeabilities for the Salado halite, the anhydrite layers, and
waste have not been measured. As presented and discussed in Davies (1991), natural analogs
were used to provide capillary pressure and relative permeability curves for these lithologies
as follows:

Brooks and Corey defined se as

 $s_{e} = \frac{s_{\ell} - s_{\ell r}}{1 - s_{\ell r}}$ (2.3-1)

where s_{ℓ} is the wetting phase saturation (brine) and $s_{\ell r}$ is the residual wetting phase saturation, below which the wetting phase no longer forms a continuous network through the pore network and therefore does not flow, regardless of the pressure gradient. This has been modified to account for residual (or critical) gas saturation, s_{gr} :

$$s_{e} = \frac{s_{l} - s_{lr}}{1 - s_{gr} - s_{lr}}$$
 (2.3-2)

Brooks and Corey observed that the effective saturation of a porous material, s_e , can be related to the capillary pressure, p_c , by

$$s_e = \left(\frac{p_t}{p_c}\right)^{\lambda} \text{ or } p_c = \frac{p_t}{\frac{1}{s_e}}$$
 (2.3-3)

46 where

47

48 49

51

53 54

55

 λ and p_t = characteristic constants of the material.

50 $p_c = p_g - p_\ell$

52 p_g = pressure of the gas

 p_{ℓ} = pressure of the wetting phase

In addition, after obtaining the effective saturation from Eq. 2.3-1 the relative permeability of the wetting phase $(k_{r\ell})$ is obtained from

$$k_{r\ell} = s_e^{\frac{2+3\lambda}{\lambda}}$$
(2.3-4)

For the gas phase, the relative permeability (k_{rg}) is

$$k_{rg} = \left(1 - s_{e}\right)^{2} \left(1 - s_{e}\right)^{2} \left(1 - s_{e}\right)$$
(2.3-5)

Although none of the four parameters that are used in Eqs. 2.3-2, 2.3-3, 2.3-4 and 2.3-5 has been measured for either the Salado halite, anhdyrites, or waste room, they were estimated from values that were obtained from the natural analogs (Davies, 1991; Davies and LaVenue, 1990b). The natural analogs consist of alternate materials that possess some of the same characteristics (i.e., permeability and porosity) as the anhydrite, halite, and waste room. The natural analogs applicable to the very low permeability of the halite and anhydrite were sands that were investigated during the Multiwell Tight Gas Sands Project (Ward and Morrow, 1985). The permeability for these sands typically ranges from 1 x 10⁻¹⁶ to 1 x 10⁻¹⁹ m² (1 x 10⁻¹ to 1 x 10⁻⁴ mD). Although these permeabilities are higher than those of the anhdyrites and halites, no other material was found with a lower permeability for which capillary pressure and relative permeability curves had been measured. The following values have been selected for Salado halite: $\lambda = 0.7$, $s_{\ell r} = 0.2$, $s_{gr} = 0.2$. The values selected for the anhydrites and waste room are discussed in later sections.

The resulting curves for capillary pressure and relative permeability were shown in Figure 2.3-2.

42

The uncertainty surrounding these parameters is unknown. An initial range was selected for the purpose of being able to run sensitivity parameter studies. The ranges shown for the parameters are arbitrary, corresponding to a simple doubling and halving of the median values. The range of curves produced by sampling 20 times from the assigned distribution using LHS (Volume 2) is shown in Figure 2.3-3.

1 2.3.2 Density

3 4

2

Grain Density of Halite in Salado Formation

5
6

Parameter:	Density, grain (ρ_g)
Median:	2.163 x 10 ³
Range:	None
Units:	kg/m ³
Distribution:	Constant
Source(s):	Carmichael, R. S., ed. 1984. CRC Handbook of Physical Properties.
	of Rocks, Vol III. Boca Raton, FL: CRC Press, Inc. (Table 2)
	Krieg, R. D. 1984. Reference Stratigraphy and Rock Properties fo
	the Waste Isolation Pilot Plant (WIPP) Project. SAND83-1908
	Albuquerque, NM: Sandia National Laboratories. (p. 14)
	Clark, S. P. 1966. Handbook of Physical Constants. New York, NY
	The Geological Society of America, Inc. (p. 44)

24

The published grain density of halite (NaCl) is $2,163 \text{ kg/m}^3$ (135 lb/ft³) (Carmichael, 1984, Table 2; Krieg, 1984, p. 14; Clark, 1966, p. 44).

Grain Density of Polyhalite in Salado Formation 1

Parameter:	Density, grain (ρ_g)
Median:	2.78×10^3
Range:	None
Units:	kg/m ³
Distribution:	Constant
Source(s):	Shakoor, A. and H. R. Hume. 1981. "Chapter 3: Mechanical Properties," in Physical Properties Data for Rock Salt. NBS Monograph 167. Washington, DC: National Bureau of Standards. (p. 103-203)

19

Hume, 1981). 20

Median:2.14 x 103Range:NoneUnits:kg/m3Distribution:ConstantSource(s):Holcomb, D. J. and M. Shields. 1987. Hydrostatic Creep Consolidation of Crushed Salt with Added Water. SAND87-1990. Albuquerque, NM: Sandia National Laboratories. (p. 17)	Parameter:	Density, bulk (ρ_{bulk})
Units:kg/m³Distribution:ConstantSource(s):Holcomb, D. J. and M. Shields. 1987. Hydrostatic Creep Consolidation of Crushed Salt with Added Water. SAND87-1990. Albuquerque, NM: Sandia National Laboratories. (p. 17)	Median:	2.14×10^3
Distribution: Source(s): Constant Holcomb, D. J. and M. Shields. 1987. Hydrostatic Creep Consolidation of Crushed Salt with Added Water. SAND87-1990. Albuquerque, NM: Sandia National Laboratories. (p. 17)	Range:	None
Source(s): Holcomb, D. J. and M. Shields. 1987. Hydrostatic Creep Consolidation of Crushed Salt with Added Water. SAND87-1990. Albuquerque, NM: Sandia National Laboratories. (p. 17)	Units:	kg/m ³
Consolidation of Crushed Salt with Added Water. SAND87-1990. Albuquerque, NM: Sandia National Laboratories. (p. 17)	Distribution:	Constant
iscussion:	Source(s):	Consolidation of Crushed Salt with Added Water. SAND87-1990. Albuquerque, NM: Sandia National
	iscussion:	Laboratories. (p. 17)
		wass a built density of bality many the new site of 0.140 b
The PA Division uses a bulk density of halite near the repository of 2.140 kg	The PA Division	uses a dulk density of name near the repository of 2.140 Ky
The PA Division uses a bulk density of halite near the repository of $2,140 \text{ k}$ [33.6 lb/ft ³) as reported by Holcomb and Shields (1987, p. 17). This value correspond		

2 Bulk Density of Halite in Salado (Halite)

2 Average Density near Repository

Parameter:	Density, average (ρ_{ave})
Median:	2.3×10^3
Range:	None
Units:	kg/m ³
Distribution:	Constant
Source(s):	 Krieg, R. D. 1984. Reference Stratigraphy and Rock Properties for the Waste Isolation Pilot Plant (WIPP) Project. SAND83-1908. Albuquerque, NM: Sandia National Laboratories. (Table 4)

15

16 **Discussion**:

17 The average density of the Salado Formation in a 107.06-m (351.25-ft) interval straddling the 18 repository is 2,300 kg/m³ (143.6 lb/ft³). The interval includes anhydrite marker beds 134, 19 20 136, and 138 (above the repository) and anhydrite marker beds 139, 140, and polyhalite marker bed 141 (below the repository) (see Figure 2.2-4). (Marker beds 135 and 137 are very 21 thin and not found in every borehole; therefore these marker beds are not included.) The 22 sum of the thicknesses of all layers of halite and argillaceous halite is 90.92 m (298.29 ft). 23 Assuming that 83.5% of this thickness is pure halite (89.12 m [292.39 ft]) with a grain density 24 of 2,163 kg/m³ (135 lb/ft³) (see Table 2.4-1) and that the remaining thickness (17.94 m 25 [58.86 ft]) (16.5% of total thickness) is anhydrite with a density of 2,963 kg/m³ (185 lb/ft³) 26 (see Table 2.4-1) yields a weighted average density of 2,300 kg/m³ (144 lb/ft³) (Krieg, 1984, 27 p. 14). 28

2-23

2.3.3 Dispersivity

1 2 З

З г		
6	Parameter:	Dispersivity, longitudinal $(\alpha_{\rm L})$
7	Median:	1.5 x 10 ¹
8	Range:	1
9		4×10^{1}
10	Units:	m
11	Distribution:	Cumulative
12 13	Source(s):	Pickens, J. F., and G. E. Grisak. 1981. Modeling of Scale-Dependent Dispersion in Hydrogeologic Systems. Water Resources Research,
14		vol. 17, no. 6, pp. 1701-11.
15		Lappin, A. R., R. L. Hunter, D. P. Garber, and P. B. Davies, eds.
16		1989. Systems Analysis Long-Term Radionuclide Transport, and
17		Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern
18		New Mexico; March 1989. SAND 89-0462. Albuquerque, NM:
19		Sandia National Laboratories. (Table D-2)
20 [
21 23	Parameter:	Dispersivity, transverse $(\alpha_{\rm T})$
25	Median:	1.5
26	Range:	1 x 10-1
27		4
28	Units:	m
29	Distribution:	Cumulative
30	Source(s):	Pickens, J. F., and G. E. Grisak. 1981. Modeling of Scale-Dependent
31		Dispersion in Hydrogeologic Systems. Water Resources Research,
32		vol. 17, no. 6, pp. 1701-11.
33		Freeze, R. A. and J. C. Cherry. 1979. Groundwater. Englewood
34		Cliffs, NJ: Prentice-Hall, Inc.
35		· · ·

36

38

Discussion: 37

No solute transport tests have been run in the Salado Formation, and no relevant solute 39 40 transport data exist for very low permeability media from which to estimate dispersivity (α). However, current models show limited fluid movement away from the disposal area (Rechard 41 et al., 1989); hence, the rule of thumb applied in standard porous media (Pickens and Grisak, 42 1981) is assumed to apply, that is, the longitudinal dispersivity $\alpha_{\rm L} \simeq 0.1 d_{\rm s}$ where $d_{\rm s}$ is the 43 distance traveled by the solute. For typical distances traveled, α_L is between 1 and 40 m (3 44 45 and 130 ft). The distribution for α_L is shown in Figure 2.3-4.

46

Transverse dispersivity (α_T) is usually linearly related to α_L . The ratio of α_L to α_T typically 47 varies between 5 and 20 (see, for example, Bear and Verruijt, 1987; Freeze and Cherry, 1979, 48 Figure 9.6; Dullien, Figure 7.13). However, at very low velocities the ratio can approach 1, 49 while in some strata the ratio has been reported to approach 100 (de Marsily, 1986). 50 Transverse dispersivity was assumed to be ten times smaller than α_L ($\alpha_T \sim 0.1 \alpha_L$) for PA 51 transport calculations. The current range for sensitivity studies is 1 to 25 (Figure 2.3-5). 52

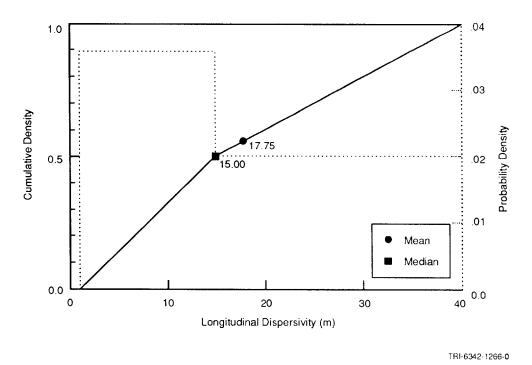


Figure 2.3-4. Estimated Distribution (pdf and cdf) for Longitudinal Dispersivity in Halite, Salado

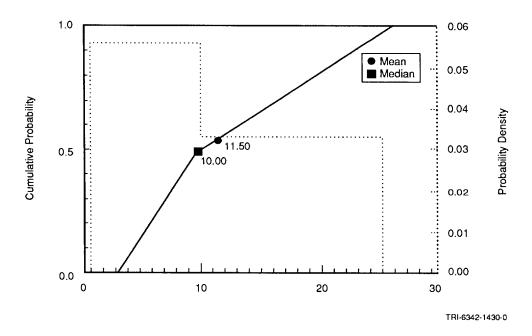


Figure 2.3-5. Estimated Distribution (pdf and cdf) for Transverse Dispersivity in Halite, Salado Formation.

Formation.

1 2.3.4 Partition Coefficients and Retardation

Parameter:	Partition coefficient for halite and polyhalite
Median:	0
Range:	None
Units:	m ³ /kg
Distribution:	Constant
Source(s):	Lappin, A. R., R. L. Hunter, D. P. Garber, and P. B. Davies, eds.
	1989. Systems Analysis Long-Term Radionuclide Transport, and
	Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern
	New Mexico; March 1989. SAND89-0462. Albuquerque, NM:
	Sandia National Laboratories. (p. D-17)
• • • • • • •	
Discussion:	
The halite and	polyhalite in the Salado Formation are assumed to not adsorb any
	nly clay layers in the Salado Formation are assumed to have this capability
(see Sections 2.4	.4 and 3.2.4).

23

2.3.5 Permeability

5 Undisturbed Permeability

Parameter:	Permeability, undisturbed (k)
Median:	5.7×10^{-21}
Range:	8.6×10^{-22}
	5.4×10^{-20}
Units:	m²
Distribution:	Data
Source(s):	Beauheim, R. 1991. "Review of Salado Parameter Values To Be Used
	in 1991 Performance Assessment Calculations," Internal memo to
	Rob Rechard (6342), June 14, 1991. Albuquerque, NM: Sandia
	National Laboratories. (In Appendix A of this volume)

20

1 2 3

Figure 2.3-6 shows the values for permeability assuming no correlation with distance from excavation. Figure 2.3-7 shows a non-linear fit of halite permeability with distance from the excavation.

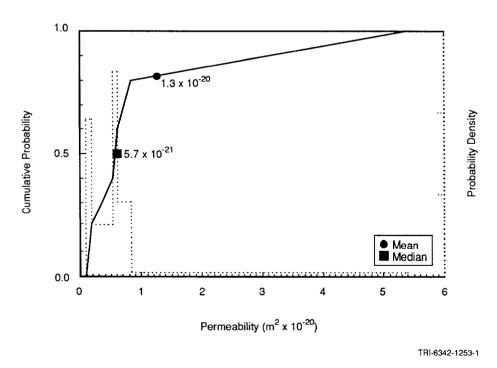
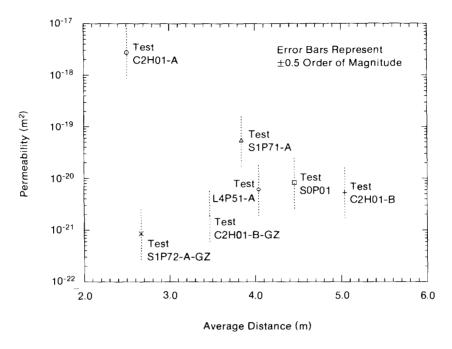



Figure 2.3-6. Estimated Distribution (pdf and cdf) for Salado Undisturbed Permeability.

TRI-6342-1247-0

Figure 2.3-7. Logarithm of Halite Permeability Fitted to Distance from the Excavation.

7

8 Discussion:

9

Three experimental programs (Room Q, Small-Scale Brine Inflow, and Permeability Tests, described in the draft of the "Sandia National Laboratories Waste Isolation Pilot Plant Program Plan for Fiscal Year 1992") are evaluating permeability (and storativity and pore pressure) in the halite and anhydrite layers of the Salado Formation. In both 1990 and 1991 PA calculations (Rechard et al., 1990a, p II-13), we used values from the Permeability Test program (Beauheim et al., 1990; Beauheim, June 14, 1991, Memo [Appendix A]) until the Fluid Flow and Transport Division standardizes the interpretation of permeability tests.

17

Interestingly, over the past several years, the distribution of permeability in the halite has remained generally similar to a lognormal distribution with a range between 10^{-23} and 10^{-18} and a median of 3 x 10^{-21} m² (e.g., McTigue, 1988 in Lappin et al., 1989, p. A-97).

21

A fit of Beauheim's data to distance from excavation (Figure 2.3-6) shows that the \log_{10} of the asymptotic value of undisturbed halite permeability is -20.83 \pm 1.64. The probable error in this estimate can be construed as a one-sigma confidence limit on the asymptotic value. Rank Correlation Between Halite and Anhydrite Permeability in Salado Formation.
 Available data are recorded in Table 2.3-2 (from Gorham, July 2, 1991, Memo, and
 Beauheim, June 14, 1991, Memo [Appendix A]):

- 4
- Table 2.3-2. Data for Calculating a Rank Correlation between Halite and Anhydrite Permeability In
 Salado Formation.

_	Interval ^a		Permeability (m ²) ^b	
Test ^a	(m)	Lithology ^a	Halite	Anhydrite
 C2H01-A	2.09 - 2.92	halite	2.7 x 10 ⁻¹⁸	
C2H01-A-GZ	0.50 - 1.64	halite		
C2H01-B	4.50 - 5.58	halite	5.3 x 10 ⁻²¹	
C2H01-B-GZ	2.92 - 4.02	halite	1.9 x 10 ⁻²¹	
C2H01-C	6.80 - 7.76	MB139		9.5 x 10 ⁻¹⁹
C2H02	9.47 - 10.86	MB139		7.8 x 10 ⁻²⁰
L4P51-A	3.33 - 4.75	halite	6.1 x 10 ⁻²¹	
L4P51-A-GZ	1.50 - 2.36	MB139		
S0P01	3.74 - 5.17	halite	8.3 x 10 ⁻²¹	
S0P01-GZ	1.80 - 2.76	MB139		<5.7 x 10 ⁻¹⁸
S1P71-A	3.12 - 4.56	halite	5.4 x 10 ⁻²⁰	
S1P71-A-GZ	1.40 - 2.25	MB139		
S1P71-B	9.48 - 9.80	Anhydrite "c"		
S1P72	4.40 - 6.00	MB139		6.8 x 10 ⁻²⁰
S1P72-GZ	2.15 - 3.18	halite	8.6 x 10 ⁻²²	
SCP01	10.50 - 14.78	MB139		
L4P51-B	9.62 - 9.72	Anhydrite "c"		6.8 x 10 ⁻²⁰
S1P73-B	10.86 - 11.03	MB138		
	2, 1991, Memo, Append ne 14, 1991, Memo, App			
intervals:	ere are only <i>two</i> (ha x 10 ⁻¹⁸ m ² (2.09-2.92			
intervals:				
intervals: halite, 2.7 and		2 m) + anhydrite, <5.7	7 x 10 ⁻¹⁸ m ² (1.80	-2.76 m)

	(Halite)		Anhydrite	
i	x _i	R(x _i)	<u></u> Уі	R(yi
1	2.7 x 10 ⁻¹⁸	2	5.7 x 10 ⁻¹⁸	2
2	5.3 x 10 ⁻²¹	1	6.8 x 10 ⁻²⁰	1

Table 2.3-3. Ranks Halite and Anhydrite Data

18 where

19 20

21

22 23 24

> 25 26

.

 $R(x_i)$ is the <u>rank</u> of x_i in the data set x_i , x_2 , ..., x_n , and

 $R(y_i)$ is the <u>rank</u> of y_i in the data set $y_1, y_2, ..., y_n$.

Conover (1980, p. 252, Eq. 6) suggests using the following formula for computing rank correlation (r_{rank}) when there are many "ties" in the paired data:

$$r_{rank} = \frac{\sum_{i=1}^{n} R(x_i) R(y_i) - n\left(\frac{n+1}{2}\right)^2}{\left[\sum_{i=1}^{n} R(x_i)^2 - n\left(\frac{n+1}{2}\right)^2\right]^{1/2} \cdot \left[\sum_{i=1}^{n} R(y_i)^2 - n\left(\frac{n+1}{2}\right)^2\right]^{1/2}}$$

39 40

42

Using the data for $R(x_i)$, $R(y_i)$ given in the table above, it can be seen that $r_{rank}=1$. (This result is expected since limited data are all tied.)

The most important information from the above result is that the correlation coefficient is positive. The actual value is most likely less than one. For current PA calculations, the rank correlation coefficient is assumed to be 0.80 (Figure 2.3-6). This value is high enough to greatly limit the probability that the anhydrite will have a lower permeability than the halite and thereby change the current conceptual model of brine flow within the Salado Formation.

Disturbed Permeability 1

2		
8	Parameter:	Permeability, disturbed (k)
6	Median:	1×10^{-19}
7	Range:	1×10^{-20}
8	0	1×10^{-18}
9	Units:	m ²
10	Distribution:	Lognormal
11	Source(s):	Beauheim, R. L. 1990. "Review of Parameter Values to be Used in
12		Performance Assessment," Memo 3c in Appendix A of Rechard et
13		al. 1990. Data Used in Preliminary Performance Assessment of
14		the Waste Isolation Pilot Plant (1990). SAND89-2408.

14 15 16

17 **Discussion:** 18

19

20 The disturbed permeability and porosity of the Salado Formation and interbeds vary from the intact properties to large, open fractures. These two disturbed properties also change as the 21 stress field around the excavations change with time. Furthermore, the halite will likely heal 22 to intact conditions over time (Lappin et al., 1989, p. 4-45; Sutherland and Cave, 1978). 23 Often the PA Division does not model the disturbed zone when it is conservative to do so; 24 25 however, when necessary the following values are typically used.

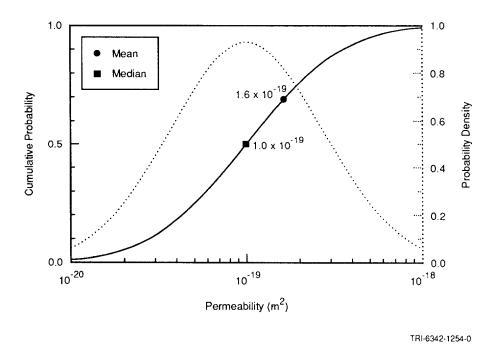
Albuquerque, NM: Sandia National Laboratories.

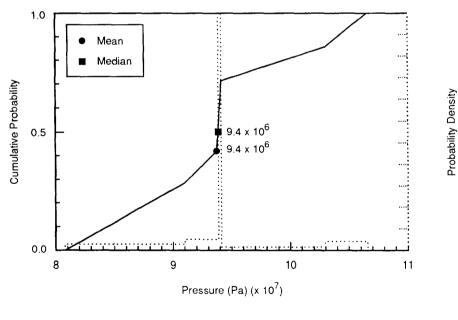
26

The disturbed permeability after consolidation and healing is assumed to vary between 1×10^{-1} 27 10^{-20} m² (1 x 10^{-5} mD) (permeability at 0.95 of intact density [see Figure 3.2-3]) and the 28 highest value measured. Beauheim et al. (1990, Table 7-1) reports one measurement from the 29 disturbed rock zone in the Salado Formation of about 1 x 10^{-18} m² (1 x 10^{-3} mD). The 30 median value was set about one and one-half orders of magnitude higher than the 31 corresponding median value for the intact Salado Formation. 32

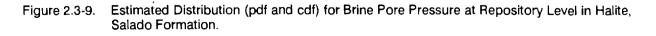
33

Figure 2.3-8 shows the estimated distribution for the disturbed permeability of the Salado. 34




Figure 2.3-8. Estimated Distribution (pdf and cdf) for Disturbed Permeability in Halite, Salado Formation.

Parameter:	Pore pressure (p)
Median:	1.28×10^7
Range:	9.3 x 10 ⁶
	1.39×10^7
Units:	Pa
Distribution:	Data
Source(s):	Beauheim, R. L. 1991. "Review of Salado Parameter Values to b
	Used in 1991 Performance Assessment Calculations," Interna
	memo to Rob Rechard (6342), June 14, 1991. Albuquerque, NM
	Sandia National Laboratories. (In Appendix A of this volume)
	Howarth, S. 1991. "Pore Pressure Distributions for 1991 Performanc
	Assessment Calculations," Internal memo to Elaine Gorhan
	(6344), June 12, 1991. Albuquerque, NM: Sandia Nationa
	Laboratories. (In Appendix A of this volume).


2.3.6 Pore Pressure at Repository Level in Halite

1 2

Figure 2.3-9 shows the estimated distribution for brine pore pressure in halite. Figure 2.3-10 shows two non-linear fits of brine pore pressure to distance from the excavation.

TRI-6342-1255-0

(page date: 15-NOV-91)

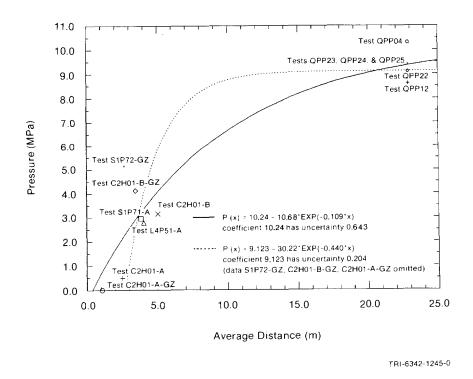


Figure 2.3-10. Non-Linear Fit of Halite Pore Pressure to Distance from Excavation.

9 Discussion:

10

In 1991, seven pore pressure measurements from borehole tests taken prior to excavation and 11 located 22.9 m (75 ft) from any existing excavation were available from Room Q (Howarth, 12 June 12, 1991, Memo [Appendix A]). (Beauheim [June 14, 1991, Memo, Appendix A] 13 suggested that none of his pore pressure measurements in the halite be considered to 14 represent far-field conditions.) One Room Q measurement (1 MPa) clearly showed the 15 effects of depressurization. Although all remaining Room Q values are at or above 16 17 hydrostatic pressure (~6 MPa [$z \cdot \rho_{brine} \cdot g \rho_{Culebra}$] pore pressures, assuming 1 MPa at the Culebra), they are distinctly lower than measurements taken at the same time in the anhydrite 18 layer, suggesting some depressurization. Consequently, the 1991 PA calculations use the pore 19 20 pressure measured in the anhydrite where data suggest less depressurization.

21

Non-linear fits of pore pressure to distance (Figure 2.3-10) show that the asymptotic value of pore pressure is about 10 MPa with a probable error of about 0.6 MPa. The probable error can be construed as a one-sigma confidence limit.

2.3.7 Porosity

1 2 3

s Undisturbed Porosity

6		
8	Parameter:	Porosity, undisturbed (ϕ)
10	Median:	1×10^{-2}
11	Range:	1 x 10 ⁻³
12		3×10^{-2}
13	Units:	Dimensionless
14	Distribution:	Cumulative
15	Source(s):	Skokan, C., J. Starrett, and H. T. Andersen. 1988. Final Report:
16		Feasibility Study of Seismic Tomography to Monitor Underground
17		Pillar Integrity at the WIPP Site. SAND88-7096. Albuquerque,
18		NM: Sandia National Laboratories.
19		Powers, D. W., S. J. Lambert, S. E. Shaffer, L. R. Hill, and W. D.
20		Weart, ed. 1978. Geological Characterization Report, Waste
21		Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico.
22		SAND78-1596, vol. 1 and 2. Albuquerque, NM: Sandia National
23		Laboratories.
24		Black, S. R., R. S. Newton, and D. K. Shukla, eds. 1983. "Brine
25		Content of the Facility Interval Strata" in Results of the Site
26		Validation Experiments, Vol. II, Supporting Document 10. Waste
27		Isolation Pilot Plant, U.S. Department of Energy.
28		

30 Discussion:

31

29

The median porosity is assumed to be 0.01 based on electromagnetic and DC resistivity measurements (Skokan et al., 1989). This median value is identical to that calculated from a grain density of 2,163 kg/m³ (135 lb/ft³) for halite (see Table 2.7-1) and a bulk density of 2,140 kg/m³ (133.6 lb/ft³) ($\rho_b = (1-\phi)\rho_g$) (see Table 2.2-1). Although not varied in current PA calculations, the low of 0.001 is based on drying experiments (Powers et al., 1978), while the high of 0.03 is based on the low end of the DC resistivity measurements (Skokan et al., 1988).

39

40 Figure 2.3-11 shows the estimated distribution for the undisturbed porosity.

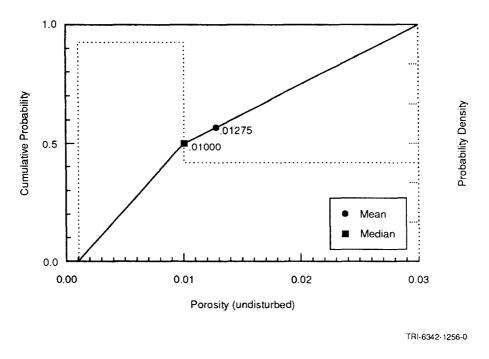


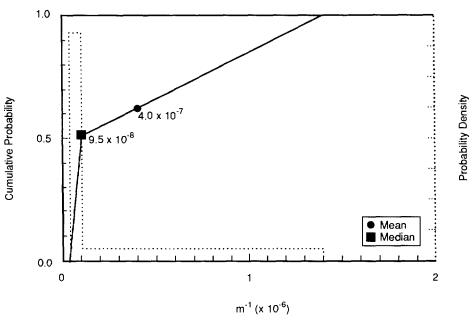
Figure 2.3-11. Estimated Distribution (pdf and cdf) for Undisturbed Porosity in Halite, Salado Formation.

2 Disturbed Porosity

arameter:	Porosity, disturbed (ϕ)
ledian:	6 x 10 ⁻²
ange:	None
Inits:	Dimensionless
istribution:	Constant
ource(s):	See text below.
	ange: nits: istribution:

The disturbed porosity of 0.06 (after consolidation and healing [Lappin et al., 1989, p. 4-45; Sutherland and Cave, 1978]) is calculated assuming that the final density is 0.95 of the intact

19 density $(0.95\rho_{\rm b} = (1-\phi)\rho_{\rm g})$ (refer to Figure 3.2-3).


2.3.8 Specific Storage

Parameter:	Specific storage
Median:	9.5 x 10 ⁻⁸
Range:	2.8×10^{-8}
	1.4×10^{-6}
Units:	m ⁻¹
Distribution:	Cumulative
Source(s):	Beauheim, R. 1991. "Review of Salado Parameter Values To Be Use
	in 1991 Performance Assessment Calculations," Internal memo t
	Rob Rechard (6342), June 14, 1991. Albuquerque, NM: Sandi
	National Laboratories. (In Appendix A of this volume).

17

1 2

19 Figure 2.3-12 shows the estimated distribution for specific storage.

TRI-6342-1284-1

Figure 2.3-12. Estimated Distribution (pdf and cdf) for Specific Storage of Halite, Salado Formation.

The median and range on specific storage are based on laboratory measurements of rock and fluid properties (ϕ , ρ_f , β_f reported herein) and the theoretical definition of specific storage, which is the current procedure for interpreting permeability tests (Beauheim et al., 1991, p. 38).

Beauheim has combined constant-pressure flow tests with pulse tests. This combination 1 allows him to identify the particular values of specific storage that best fit our data. As yet, 2 however, he does not have many of these combined interpretations. Significantly, all of our 3 preliminary values fall within the range established from laboratory experiments, though at 4 the high end. Next year, Beauheim may be able to refine the range somewhat. For the 1991 5 PA calculations, we used the high end of the laboratory range. 6

7

The PA modeling codes all use a slightly different definition of specific storage. To clarify 8 9 these differences, a detailed discussion of the specific storage term follows.

10

Derivation of Specific Storage Including Effects of Fluid, Matrix, and Solid Compressibility. 12 Biot (1941) presented a theory for the combined effects of matrix deformation and fluid 13 movement in a porous medium. Rice and Cleary (1976) reformulated Biot's equations in 14 terms of physically identifiable parameters. In this section, we use the notation of Rice and 15 Cleary to derive a general expression for specific storage allowing for fluid, matrix, and solid 16 compressibilities. Direct notation is used with a single underline to identify vectors and 17 18 double underline to identify 2nd order tensors. Assuming isotropic, linear elastic behavior, Biot's equations for strain, E, written in terms of total stress, σ and fluid pressure p were 18 given in Rice and Cleary as 21 22 345678

$$2G\underline{\underline{E}} = \underline{\underline{\sigma}} + \underline{\underline{PI}} - \frac{\nu}{1+\nu} (tr (\underline{\underline{\sigma}}) + 3p) \underline{\underline{I}} - \frac{2G}{3K_s} \underline{p\underline{I}}$$
(2.3-6)

where

29

30

31

32

33 34 35

36

37 39

40

41

= drained shear modulus of elasticity G = drained Poisson's ratio = bulk modulus of elasticity of solid particles K. = identity tensor with components $\delta i j$ Ī where $\delta i j = 1$ if i = j= 0 if $i \neq j$ tr() = trace operator such that tr ($\underline{\sigma}$) = $\sigma_{11} + \sigma_{22} + \sigma_{33}$

Equation (2.3-6) can be rewritten using the drained bulk modulus of elasticity, K, for the porous matrix as

$$2G\underline{E} = \underline{\sigma} - \frac{1}{3} \left(1 - \frac{2G}{3K} \right) \operatorname{tr} \left(\underline{\sigma} \right) \underline{I} + \frac{2G}{3} \left(\frac{1}{K} - \frac{1}{K_{s}} \right) p\underline{I} \underline{I}$$
(2.3-7)

This expression can be further simplified by defining the "effective stress" tensor \overline{g}

$$2G\underline{E} = \underline{\overline{\sigma}} - \frac{1}{3} \left(1 - \frac{2G}{3K} \right) \operatorname{tr} \left(\underline{\overline{\sigma}} \right) \underline{I} \qquad (2.3-8)$$

(page date: 15-NOV-91)

where

1234567890112

$$\overline{\underline{\sigma}} = \underline{\sigma} + \alpha p \underline{I}$$
(2.3-9)

$$\alpha = 1 - K/K_{s}$$
 (2.3-10)

This illustrates the fact that the deformation of the porous material is governed by the "effective stresses." It should be noted that σ and p are increments of stress and fluid pressure from an unstressed state and it has also been assumed in Eqs. 2.3-7 and 2.3-8 that fluid pressure affects only the normal strain components and not the shear strain components.

19 Introducing the porosity, ϕ of a porous material where

20

21 22

25

22222333

33

34

35 36 37

38

45 46

47

48 49

55555555555556666

63

64

65

 ϕ = volume of voids in a unit volume of porous material

Rice and Cleary give an expression for porosity change in terms of total stress and fluid pressure

$$\phi - \phi_{o} = \frac{1}{3} \left(\frac{1}{K} - \frac{1}{K_{s}} \right) \left(\operatorname{tr} \left(\frac{\sigma}{z} \right) + 3p \right) - \frac{\phi_{o}}{K_{s}} p \qquad (2.3-11)$$

where, in this work, it is assumed that the compressibility of the solids making up the matrix can be described by a single bulk elastic modulus K_s . Biot however did not make this assumption. ϕ_o is the porosity in the unstressed state.

The mass of fluid, m_f, in a unit volume of the porous medium is given by

$$\mathbf{m}_{\mathbf{f}} = \boldsymbol{\rho}_{\mathbf{f}} \boldsymbol{\phi} \tag{2.3-12}$$

44 where

 $\rho_{\rm f}$ = mass density of the fluid.

The continuity equation for fluid mass balance can be expressed by

$$\nabla \cdot \left(\rho_{f} q\right) + \frac{\partial m_{f}}{\partial t} = 0$$
 (2.3-13)

where

 \mathbf{q} = specific discharge \mathbf{t} = time $\nabla \cdot$ = divergence operator

The specific discharge q is defined in terms of the average velocity of the fluid

$$\mathbf{q} = \boldsymbol{\phi} \quad \mathbf{v}_{\mathbf{f}} \tag{2.3-14}$$

Darcy's law may be stated as follows

$$\mathbf{v}_{\mathbf{f}} - \mathbf{v}_{\mathbf{s}} = -\frac{K}{\phi\mu_{\mathbf{f}}} \cdot \left(\nabla \mathbf{p} + \rho_{\mathbf{f}} \mathbf{g} \nabla \mathbf{z}\right)$$
(2.3-15)

where

 \underline{v}_s = the average solid phase velocity \underline{K} = permeability tensor ∇ = gradient operator g = gravitation constant z = elevation

The specific discharge *relative* to the deforming solid is given by

Specific storage is defined as the volume of fluid released from storage in a unit volume due to expansion of the fluid and compression of the porous matrix due to a decrease in hydraulic head.

In a non-deforming porous medium $\underline{V}_s = 0$ and $\underline{q}_r = \underline{q}$. This assumption is made in all PA code, however the effects of matrix compressibility are accounted for in the definition of specific storage. This assumption greatly simplifies the problem. Thus with $\underline{V}_s \approx \underline{0}$ the continuity equation becomes

$$- \nabla \cdot \left(\frac{\rho_{f}}{\mu_{f}}^{K} \quad (\nabla p + pg \nabla z) \right) + \frac{\partial m_{f}}{\partial t} = 0 \qquad (2.3-17)$$

Since $m_f = \rho_f \phi$, we may express the second term in 2.3-17

$$\frac{\partial m_{f}}{\partial t} = \rho_{f} \frac{\partial \phi}{\partial t} + \phi_{o} \frac{\partial \rho_{f}}{\partial t}$$
(2.3-18)

(page date: 15-NOV-91)

Introducing the fluid bulk modulus K_f which is the inverse of fluid compressibility β_f where

$$K_{f} = \rho_{f} \frac{\partial P}{\partial \rho_{f}} = \frac{1}{\beta}$$

$$\frac{\partial \rho_{f}}{\partial t} = \frac{\partial \rho_{f}}{\partial p} \frac{\partial p}{\partial t} = \frac{\rho_{f}}{K_{f}} \frac{\partial p}{\partial t}$$
(2.3-19)

or
$$\frac{\partial \mathbf{m}_{f}}{\partial t} = \rho_{f} \frac{\partial \phi}{\partial t} + \rho_{f} \frac{\phi_{o}}{\kappa_{f}} \frac{\partial \mathbf{p}}{\partial t}$$
 (2.3-20)

From Eq. 2.3-11 get an expression for $\partial \phi / \partial t$ such that

$$\frac{\partial m_{f}}{\partial t} = \rho_{f} \left[\frac{1}{3} \left(\frac{1}{K} - \frac{1}{K_{s}} \right) \left[tr \left(\frac{\partial \sigma}{\partial t} \right) + 3 \frac{\partial p}{\partial t} \right] - \frac{\phi_{o}}{K_{s}} \frac{\partial p}{\partial t} + \frac{\phi}{K_{f}} \frac{\partial p}{\partial t} \right]$$
(2.3-21)

From this expression, it can be concluded that in general fluid mass changes are influenced by the stress changes as well as the fluid pressure changes.

If only vertical deformation is allowed, $(E_{11} = E_{22} = 0)$, along with constant vertical total stress, $\sigma_{33} = 0$ with $\sigma_{11} = \sigma_{22}$, using Eq. 2.3-7, it is possible to derive an expression relating the horizontal σ_{11} (or σ_{22}) components of total stress with the fluid pressure. This relationship is given by

$$\sigma_{11} = \sigma_{22} = \frac{-2G \left(\frac{1}{K} - \frac{1}{Ks}\right)}{1 + (4G/3K)}$$

Also we may now compute tr $\left(\frac{\partial \sigma_{11}}{\partial t}\right)$

$$\operatorname{tr} \left(\frac{\partial \sigma}{\partial t}\right) = \frac{2}{2} \frac{\partial \sigma_{11}}{\partial t} = \frac{-4G \left(\frac{1}{K} - \frac{1}{K_{s}}\right)}{1 + (4G/3K)} \frac{\partial p}{\partial t}$$

Substitution of this result into Eq. 2.3-21 gives

$$\frac{\partial m_{f}}{\partial t} = \rho_{f} \left[\left[\frac{1}{K} - \frac{1}{K_{s}} \right] \left[1 - \frac{4G}{3} \left[\frac{1 - \binom{K}{K_{s}}}{K + (4G/3K)} \right] + \phi \left[\frac{1}{K_{f}} - \frac{1}{K_{s}} \right] \right] \frac{\partial p}{\partial t}$$
(2.3-22)

or

84

$$\frac{\partial^{m} f}{\partial t} = \rho_{f} c \frac{\partial p}{\partial t}$$

83 where c is the capacitance (specific pressure storativity).

(page date: 15-NOV-91)

Under the conditions specified above, the specific storage (S_s) is defined as

$$\frac{\partial m_{f}}{\partial t} = \rho_{f} S_{s} \frac{\partial h}{\partial t}$$
(2.3-23)

where

1 2

345678

9

10

11 12

13

14 15

111120012034567880012034567

38

39 40

41 42

44444445555

53 54

h = hydraulic head.

Our result is written in terms of fluid pressure, p, instead of hydraulic head; however, the two are related by

 $\frac{\partial h}{\partial t} = \frac{1}{\rho_{f}g} \frac{\partial p}{\partial t}$ $\frac{\partial m_{f}}{\partial t} = \frac{1}{g} S_{s} \frac{\partial p}{\partial t} \text{ and } S_{s} = \rho_{f}gc$ $\therefore S_{s} = \rho_{f}g\left[\left(\frac{1}{K} - \frac{1}{K_{s}}\right)\left(\frac{1 - \frac{4G}{3}(1 - K/Ks)}{K + (4G/3)}\right) + \phi\left(\frac{1}{K_{f}} - \frac{1}{K_{s}}\right)\right] \qquad (2.3-24)$

This is the equation for specific storage including the effects of pore fluid compressibility $(1/K_f)$, matrix compressibility (1/K), and solid compressibility $(1/K_g)$.

Typically, K_{s} >>K and K_{s} >>K_f and Eq. 2.3-24 may be simplified to

$$S_{s} = \rho_{f}g\left(\frac{1}{K + (4G/3)} + \frac{\phi}{K_{f}}\right)$$
(2.3-25)

The term $\frac{1}{K + (4G/3)}$ is the inverse of the drained constrained modulus of elasticity porous media and is often denoted by $\beta_{\rm g}$, the vertical compressibility. Letting $1/K_{\rm f} = \beta_{\rm f}$ gives the familiar result for specific storage.

$$S_{s} = \rho_{f} g(\beta_{s} + \phi \beta_{f}).$$

Some confusion may result because groundwater models often employ different definitions for the matrix compressibility β_{s} . For example SUTRA (Voss, 1984) defines β_{s}

GEOLOGIC BARRIERS Hydrologic Parameters for Halite and Polyhalite within Salado Formation

 $\beta_{\rm s} = \frac{1}{1 - \phi} \frac{\partial \phi}{\partial p}$

but defines capacitance (specific pressure storativity) as

$$c = (1 - \phi)\beta_{s} + \phi\beta_{f}$$

11 thus

$$c = \frac{\partial \phi}{\partial p} + \phi \beta$$

18 STAFF 2D (Huyakorn et al., 1989) and HST3D (Kipp, 1987) defines β_{s} as

 $\beta_{\rm s} = \frac{\partial \phi}{\partial {\rm p}}$

while BOAST II (Fanchi et al., 1987) and BRAGFLO (Volume 2 of this report) use

$$\beta_{\rm s} = \frac{1}{\phi} \, \frac{\partial \phi}{\partial {\rm p}}$$

It is important to recognize that each code uses a different definition of matrix compressibility and all ignore solid compressibility. Beauheim et al. (1991) note that the assumption that $K_s >> K$ may not be valid for halite (due to low porosity and compressibility).

2.3.9 Tortuosity

1

3	F *** ****	
6	Parameter:	Tortuosity (τ)
7	Median:	1.4 x 10 ⁻¹
8	Range:	1×10^{-2}
9		6.67×10^{-1}
10	Units:	Dimensionless
11	Distribution:	Cumulative
12	Source(s):	See text (Culebra, Section 2.6.7)
13		Freeze, R. A. and J. C. Cherry. 1979. Groundwater. Englewood
14		Cliffs, NJ: Prentice-Hall, Inc.

1 15 16

Discussion: 17

18

No direct measurements of tortuosity are available in the anhydrite (or halite) layers of 19 the Salado Formation. The range reported is the maximum typical theoretical value of 20 0.667 for uniform-sized grains at low Peclet numbers (N_p) (Dullien, 1979, Figure 7.12) 21 down to 0.01 observed in laboratory experiments of nonadsorbing solutes in porous 22 materials (Freeze and Cherry, 1979, p. 104). The PA Division selected a median value 23 equal to that of the Culebra Dolomite Member. This parameter primarily influences 24 diffusion-dominated transport, a condition occurring only when the repository is 25 undisturbed. The influence of the tortuosity on results was explored in a few 1991 PA 26 calculations of the undisturbed summary scenario class (Volume 2 of this report). 27

2.4 Hydrologic Parameters for Anhydrite Layers within 3 Salado Formation

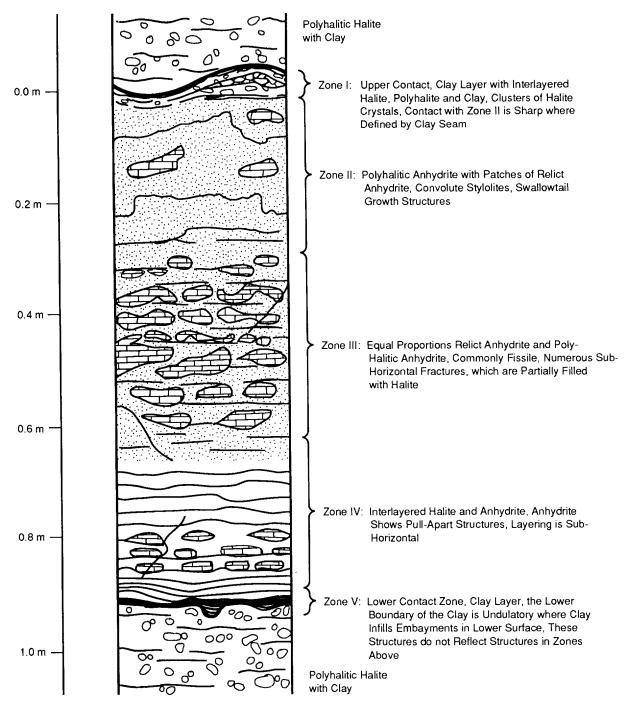

4

Table 2.4-1 provides the parameter values for anhydrite layers near the repository within the
Salado Formation. Marker Bed 139 (MB139), a potential transport pathway, is an interbed
located about 1 m (3.3 ft) below the repository interval and thus is an anhydrite layer of
particular interest. Figure 2.4-1 shows a cross section of MB139.

10 1**2**

Table 2.4-1. Hydrologic Parameter Values for Anhydrite Layers within Salado Formation

Parameter	Median	R	ange	Units	Distribution Type	Source
Capillary pressure (p _c) a Threshold displacement		meability (k _{rw}	<i>(</i>)			
pressure (p _t)	3 x 10 ⁵	3 x 10 ³	3 × 10 ⁷	Ра	Lognormal	Davies, 1991; Davies, June 2, 199 Memo (see Appendix A)
Residual Saturations						······· (· + + -······)
Wetting phase (S _{fr})	2 x 10 ⁻¹	1 x 10 ⁻¹	4 x 10 ⁻¹	none	Cumulative	Davies and LaVenue, 1990b
Gas phase (S _{gr}) Brooks-Corey	2 x 10 ⁻¹	1 x 10 ⁻¹	4 x 10 ⁻¹	none	Cumulative	Davies and LaVenue, 1990b
Exponent (n)	7 x 10 ⁻¹	3.5 x 10 ⁻¹	1.4	none	Cumulative	Davies and LaVenue, 1990b
Density, grain (ρg) Dispersivity	2.963 x 10 ³			kg/m ³	Constant	See text (anhydrite).
Longitudinal (aL)	1.5 x 10 ¹	1	4 x 10 ¹	m	Cumulative	Pickens and Grisak, 1981; Lappin et al., 1989, Table D-2
Transverse (_{QT}) Partition coefficient	1.5	1 x 10 ⁻¹	4	m	Cumulative	• •
Am	2.5 x 10 ⁻²			m3/kg	Constant	Lappin et al., 1989, Table D-4
Np	1 x 10-3			m3/kg	Constant	Lappin et al., 1989, Table D-4
Pb	1 x 10 ⁻³			m3/kg	Constant	Lappin et al., 1989, Table D-4
Pu	1 x 10 ⁻¹			m3/kg	Constant	Lappin et al., 1989, Table D-4
Ra	1 x 10 ⁻³			m3/kg	Constant	Lappin et al., 1989, Table D-4
Th	1 x 10 ⁻¹			m3/kg	Constant	Lappin et al., 1989, Table D-4
U	1 x 10 ⁻³			m3/kg	Constant	Lappin et al., 1989, Table D-4
Permeability (k)						
Undisturbed	7.8 x 10-20	6.8 x 10 ⁻²⁰	9.5 x 10-19	m²	Cumulative	Beauheim, June 14, 1991, Men (see Appendix A)
Disturbed	1 x 10 ⁻¹⁷	1 x 10 ⁻¹⁹	1 x 10 ⁻¹³	m²	Cumulative	Beauheim, 1990
Pore pressure	1.28 x 10 ⁷	9.3 x 10 ⁶	1.39 x 10 ⁷	Pa	Data	Beauheim, June 14, 1991, Merr Howarth, June 12, 1991, Men (see Appendix A)
Porosity (ø)						(see Appendix A)
Undisturbed	1 x 10 ⁻²	1 x 10 ⁻³	3 x 10 ⁻²	none	Cumulative	See text.
Disturbed	5.5 x 10 ⁻²	1 x 10 ⁻²	1 x 10 ⁻¹	none	Normal	See text.
Specific storage	1.4 x 10 ⁻⁷	9.7 x 10 ⁻⁸	1 x 10 ⁻⁶	m ⁻¹	Cumulative	
Thickness (Δz)	9 x 10 ⁻¹	4 x 10 ⁻¹	1.25	m	Cumulative	,
Tortuosity	1.4 x 10 ⁻¹	1 x 10 ⁻²	6.67 x 10 ⁻¹	none	Cumulative	•

TRI-6334-220-0

Figure 2.4-1. Generalized Cross Section of Marker Bed 139. The figure shows the internal variability of the unit and the character of both the upper and lower contacts (after Borns, 1985). The thickness varies spatially between 0.4 and 1.25 m with a reference thickness of 0.99 (WEC, 1989b; Krieg, 1984, Table I).

GEOLOGIC BARRIERS Hydrologic Parameters for Anhydrite Layers within Salado Formation

2.4.1 Capillary Pressure and Relative Permeability 1 2 3 Threshold Displacement Pressure, pt 6 6 Parameter: Threshold displacement pressure (p_t) ۵ Median: 3 x 10⁵ 10 Range: 3 x 10³ 11 3 x 10⁷ 12 Units: Pa 13 **Distribution:** Lognormal 14 Source(s): Davies, P. B. 1991. Evaluation of the Role of Threshold Pressure in 15 Controlling Flow of Waste-Generated Gas into Bedded Salt at the 16 Waste Isolation Pilot Plant. SAND90-3246. Albuquerque, NM: 17 Sandia National Laboratories. 18 Davies, P. B. 1991. "Uncertainty Estimates for Threshold Pressure 19 for 1991 Performance Assessment Calculations Involving Waste-20 Generated Gas." Internal memo to D. R. Anderson (6342), June 2, 21

Appendix A of this volume)

1991. Albuquerque, NM: Sandia National Laboratories. (In

22

2 Residual Saturations

Parameter:	Residual wetting phase (liquid) saturation $(S_{\ell r})$
Median:	2×10^{-1}
Range:	1×10^{-1}
	4×10^{-1}
Units:	Dimensionless
Distribution:	Cumulative
Source(s):	Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data fo
	Characterizing 2-Phase Flow Behavior in Waste-Generated Ga
	Simulations and Pilot Point Information for Final Culebra 2-1
	Model." Memo 11 in Appendix A of Rechard et al. 1990. Dat
	Used in Preliminary Performance Assessment of the Wast
	Isolation Pilot Plant. SAND89-2408. Albuquerque, NM: Sandi
	National Laboratories.
Parameter:	Residual gas saturation (S _{gr})
	Residual gas saturation (S _{gr}) 2 x 10 ⁻¹
Parameter: Median: Range:	
Median:	2 x 10 ⁻¹
Median:	2×10^{-1} 1 x 10 ⁻¹
Median: Range:	$ \begin{array}{c} 2 \times 10^{-1} \\ 1 \times 10^{-1} \\ 4 \times 10^{-1} \end{array} $
Median: Range: Units: Distribution:	2×10^{-1} 1×10^{-1} 4×10^{-1} Dimensionless Cumulative
Median: Range: Units:	 2 x 10⁻¹ 1 x 10⁻¹ 4 x 10⁻¹ Dimensionless Cumulative Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data for Characterizing 2-Phase Flow Behavior in Waste-Generated Gamma
Median: Range: Units: Distribution:	 2 x 10⁻¹ 1 x 10⁻¹ 4 x 10⁻¹ Dimensionless Cumulative Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data for Characterizing 2-Phase Flow Behavior in Waste-Generated Ga Simulations and Pilot Point Information for Final Culebra 2-1
Median: Range: Units: Distribution:	 2 x 10⁻¹ 1 x 10⁻¹ 4 x 10⁻¹ Dimensionless Cumulative Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data for Characterizing 2-Phase Flow Behavior in Waste-Generated Gas Simulations and Pilot Point Information for Final Culebra 2-1 Model." Memo 11 in Appendix A of Rechard et al. 1990. Data
Median: Range: Units: Distribution:	 2 x 10⁻¹ 1 x 10⁻¹ 4 x 10⁻¹ Dimensionless Cumulative Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data for Characterizing 2-Phase Flow Behavior in Waste-Generated Ga Simulations and Pilot Point Information for Final Culebra 2-1 Model." Memo 11 in Appendix A of Rechard et al. 1990. Date Used in Preliminary Performance Assessment of the Waste
Median: Range: Units: Distribution:	 2 x 10⁻¹ 1 x 10⁻¹ 4 x 10⁻¹ Dimensionless Cumulative Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data for Characterizing 2-Phase Flow Behavior in Waste-Generated Gas Simulations and Pilot Point Information for Final Culebra 2-1 Model." Memo 11 in Appendix A of Rechard et al. 1990. Data

GEOLOGIC BARRIERS Hydrologic Parameters for Anhydrite Layers within Salado Formation

Parameter:	Brooks and Corey exponent (η)
Median:	7×10^{-1}
Range:	3.5×10^{-1}
	1.4
Units:	Dimensionless
Distribution:	Cumulative
Source(s):	Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data fo
	Characterizing 2-Phase Flow Behavior in Waste-Generated Ga
	Simulations and Pilot Point Information for Final Culebra 2-I
	Model." Memo 11 in Appendix A of Rechard et al. 1990. Dat
	Used in Preliminary Performance Assessment of the Wast
	Isolation Pilot Plant. SAND89-2408. Albuquerque, NM: Sandi
	National Laboratories.

2 Capillary Pressure and Relative Permeability

3

5 Figure 2.4-2a shows the estimated relative permeability for anhydrite layers. Figure

6 2.4-2b shows the estimated capillary pressure for anhydrite layers. Figure 2.4-3 is an 7 example of variation of relative permeability and capillary pressure when Brooks and

8 Corey parameters are varied.

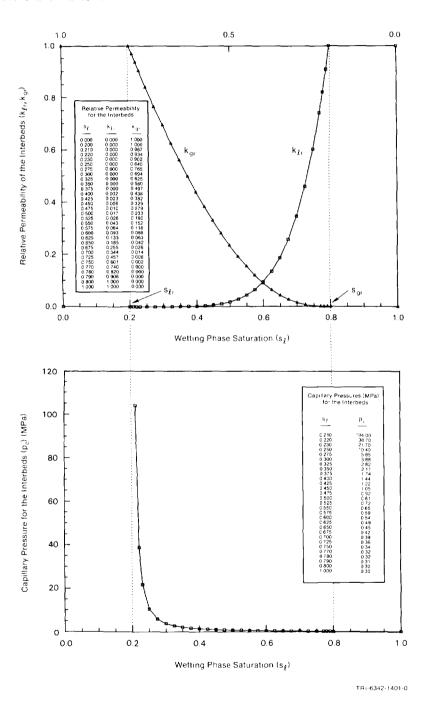
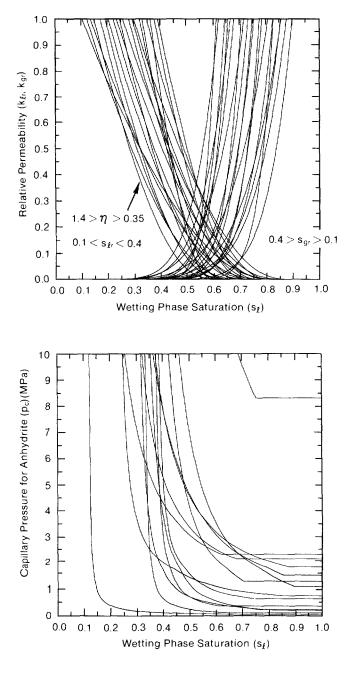



Figure 2.4-2. Estimated Capillary Pressure and Relative Permeability Curves for Anhydrite Layers.

TRI-6342-1466-0

Figure 2.4-3. Example of Variation of Relative Permeability and Capillary Pressure for Anhydrite Layers in Salado Formation When Brooks and Corey Parameters Are Varied.

1 Discussion:

2

8 The correlations for these values were developed as discussed in the section, "Hydrologic 5 Parameters for Halite and Polyhalite within the Salado Formation." Preliminary parameter 6 values selected for MB139 and other anhydrite beds are the same as for Salado halite, except 7 for a lower threshold displacement pressure (p_t) , and were taken from experimental data 8 measured for the tight gas sands (Davies and LaVenue, 1990; Ward and Morrow, 1985).

9

An initial range was selected for the purpose of being able to run sensitivity parameter studies. The ranges shown for the parameters are quite arbitrary, corresponding to a simple doubling and halving of the median values as discussed in Section 2.3.1, "Hydrologic Parameters for Halite in the Salado Formation." The relative permeability curves are identical to those of halite. Only the capillary curves differ because of the different range assumed for the threshold displacement pressure (Figure 2.4-3).

GEOLOGIC BARRIERS Hydrologic Parameters for Anhydrite Layers within Salado Formation

2.4.2 Anhydrite Density

2

1

Parameter:	Density, grain (p _g)
Median:	2.963 x 10 ³
Range:	None
Units:	kg/m ³
Distribution:	Constant
Source(s):	Clark, S. P. 1966. Handbook of Physical Constants. New York, NY
	The Geological Society of America, Inc. (p. 46)
	Krieg, R. D. 1987. Reference Stratigraphy and Rock Properties for
	the Waste Isolation Pilot Plant (WIPP) Project. SAND83-1908
	Albuquerque, NM: Sandia National Laboratories. (p. 14)

19

The published grain density of anhydrite (CaSO₄) is 2,963 kg/m³ (185 lb/ft³) (Clark, 20

1966, p.46; Krieg, 1987, p. 14). 21

2.4.3 Dispersivity

1 2

Parameter:	Dispersivity, longitudinal (α_L)
Median:	1.5×10^{1}
Range:	1
-	4×10^{1}
Units:	m
Distribution:	Cumulative
Source(s):	Pickens, J. F., and G. E. Grisak. 1981. Modeling of Scale-Dependen Dispersion in Hydrogeologic Systems. Water Resources Research vol. 17, no. 6, pp. 1701-11.
	Lappin, A. R., R. L. Hunter, D. P. Garber, and P. B. Davies, eds 1989. Systems Analysis Long-Term Radionuclide Transport, and
	Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern New Mexico; March 1989. SAND 89-0462. Albuquerque, NM
	Sandia National Laboratories. (Table D-2)
Parameter:	Dispersivity, transverse ($\alpha_{\rm T}$)
Median:	1.5
Range:	1 x 10 ⁻¹
	4
Units:	m
Distribution:	Cumulative
Source(s):	Pickens, J. F., and G. E. Grisak. 1981. Modeling of Scale-Dependen
	Dispersion in Hydrogeologic Systems. <i>Water Resources Research</i> vol. 17, no. 6, pp. 1701-11.

34 35

36 The dispersivity values are discussed in Section 2.3.3.

1 2 3

4 5 6

8

2.4.4 Partition Coefficients and Retardations

Table 2.4-2 provides the partition coefficients for anhydrite layers.

Table 2.4-2. Partition Coefficients for Anhydrite Layers (after Lappin et al., 1989, Table D-4)

Radionuclide	(m ³ /kg)
Am	2.5 x 10 ⁻²
Np	1 × 10 ⁻³
Pb	1 × 10 ⁻³
Pu	1 x 10 ⁻¹
Ra	1 x 10 ⁻³
Th	1 x 10 ⁻¹
U	1 x 10 ⁻³

- 29 Discussion:
- 30

The sorption of trace radionuclides onto salt-like minerals such as anhydrite is poorly understood; thus, current PA calculations assume partition coefficients of zero (the lower limit). However, because sensitivity studies require ranges of values, the upper limit was arbitrarily chosen to keep the calculated retardation below 10. The rough estimates on median values are those reported by Lappin et al. (1989). Generally, the reported experimental K_d data was reduced by several orders of magnitude as explained below.

37

Americium. K_d values for americium are decreased by factors of 3 to 1000 from values in Paine (1977), Dosch (1979), and Tien et al. (1983), because of the potential effects of organic complexation. (As a conservative measure, the likely degradation of the organic compounds was neglected.) For example, Swanson (1986) found that moderate concentrations (4 x 10⁻⁶ to 10⁻⁴ M) of EDTA significantly decreased americium sorption onto kaolinite and montmorillonite. The magnitude of this effect was a function of the pH and concentration of EDTA, calcium, magnesium, and iron in solution.

45

Uranium and Neptunium. In general, low K_ds for uranium and thorium have been measured in waters relevant to the WIPP repository. The K_d of uranium depends strongly on the pH, concentration of competing ions, and the extent of complexation by carbonate and organic ligands (Lappin et al., 1989). A low value ($K_d = 1$) has been assumed to account for these effects. Theoretical calculations (Leckie, 1989) and arguments based on similarities in speciation, ionic radii, and valence (Chapman and Smellie, 1986) suggest that the behavior of neptunium will be similar to that of uranium.

1 **Plutonium**. K_d values for plutonium are decreased by two to three orders of magnitude from 2 the values in Paine (1977), Dosch (1979), and Tien et al. (1983), because of the potential 3 effect of carbonate complexation.

4

5 Thorium. There are very few data for thorium under conditions relevant to the WIPP. 6 Thorium K_d values were estimated from data for plutonium, a reasonable homolog element 7 (Krauskopf, 1986). Data describing sorption of thorium onto kaolinite (Riese, 1982) suggest 8 that high concentrations of calcium and magnesium will prevent significant amounts of 9 sorption onto clays in the repository. Stability constants for organo-thorium complexes 10 suggest that organic complexation could be important in the repository and may inhibit 11 sorption (Langmuir and Herman, 1980).

12

Radium and Lead. There are very few sorption data for radium and lead under conditions relevant to the WIPP. K_d values were estimated by assuming homologous radium-palladium behavior (cf. Tien et al., 1983). Data from Riese (1982) suggest that radium will sorb onto clays but that high concentrations of calcium and magnesium will inhibit sorption. Langmuir and Riese (1985) presented theoretical and empirical arguments that suggest that radium will be coprecipitated in calcite, gypsum, and anhydrite in solutions close to saturation with respect to these minerals.

- 20
- 21 Retardation. See Section 2.6.10 for the discussion of retardation.
- 22

GEOLOGIC BARRIERS Hydrologic Parameters for Anhydrite Layers within Salado Formation

2.4.5 Permeability 1 2 з **Undisturbed Permeability** 5 6 Permeability, undisturbed (k) **Parameter:** Â Median: 7.8 x 10⁻²⁰ 10 6.8 x 10-20 Range: 11 9.5 x 10⁻¹⁹ 12 m^2 13 Units: **Distribution:** Data 14 Beauheim, R. 1991. "Review of Salado Parameter Values To Be Used Source(s): 15 in 1991 Performance Assessment Calculations," Internal memo to 16 Rob Rechard (6342), June 14, 1991. Albuquerque, NM: Sandia 17 National Laboratories. (In Appendix A of this volume) 18 19

Discussion:

The distribution of anhydrite permeability in the far field is based on five measurements from the Permeability Testing Program (Beauheim, June 14, 1991, Memo [Appendix A]). In the past, the general consensus for the permeability of anhydrite layers in general, and MB139 in particular, has been a median value of 1 x 10⁻¹⁹ (Rechard et al., 1990, p. II-16). The current data show an insignificant but somewhat smaller median value of 7.8 x 10⁻²⁰.

Figure 2.4-4 shows the distribution for undisturbed permeability in the anhydrite assuming no correlation with distance from excavation. However, a non-linear fit of permeability to distance shows an asymtoptic value near 8 x 10^{-20} m² (Figure 2.4-5). More specifically, the asymptotic value of \log_{10} of anhydrite permeability is about -19, with a probable error of ± 0.6 . The probable error can be interpreted as a one-sigma confidence interval.

33

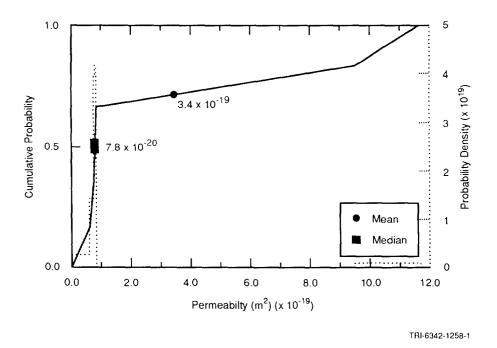
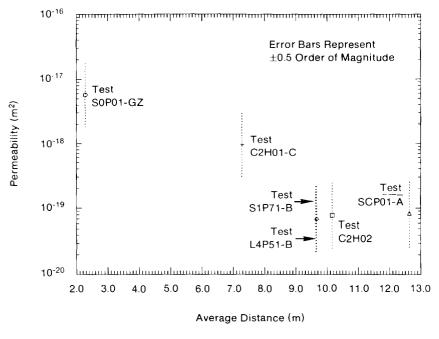



Figure 2.4-4. Estimated Distribution (pdf and cdf) for Undisturbed Permeability, Anhydrite Layers in Salado Formation.

TRI-6342-1405-0

Figure 2.4-5. Non-Linear Fit of Anhydrite Permeability to Distance from Excavation.

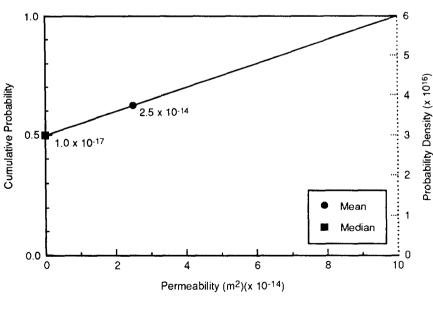
GEOLOGIC BARRIERS Hydrologic Parameters for Anhydrite Layers within Salado Formation

1 Distu	rbed P	ermeability
---------	--------	-------------

Parameter:	Permeability, disturbed (k)
Median:	1×10^{-17}
Range:	1×10^{-19}
	1×10^{-13}
Units:	m²
Distribution:	Cumulative
Source(s):	Beauheim, R. L. 1990. "Review of Parameter Values to be Used in
	Performance Assessment," Memo 3c in Appendix A of Rechard et
	al. 1990. Data Used in Preliminary Performance Assessment of
	the Waste Isolation Pilot Plant (1990). SAND89-2408.
	Albuquerque, NM: Sandia National Laboratories.

17

18 **Discussion**:


19

Following the logic described for permeability for the Salado halite, the disturbed 20 permeability is assumed to vary between the median intact value and the highest measured 21 value; the median value is set about two orders of magnitude below the undisturbed median 22 value. The highest permeability measured to date in MB139 is $3.2 \times 10^{-13} \text{ m}^2$ (3.2 x 10^2 mD) 23 (from draft report by M. E. Crawley, "Hydraulic Testing of Marker Bed 139 at the Waste 24 Isolation Pilot Plant, Southeastern New Mexico," Westinghouse Electric Co., Carlsbad, NM), 25 but was rounded down to 1 x 10⁻¹³ m² (1 x 10² mD), the value used for unmodified TRU 26 waste. 27

28

Figure 2.4-6 shows the estimated distribution for disturbed permeability for the anhydrite layers.

3**2**

TRI-6342-1259-0

Figure 2.4-6. Estimated Distribution (pdf and cdf) for Disturbed Permeability, Anhydrite Layers in Salado Formation.

2.4.6 Pore Pressure at Repository Level in Anhydrite

Parameter:	Pore pressure at repository level (p)
Median:	1.28 x 10 ⁷
Range:	9.3 x 10 ⁶
	1.39×10^{7}
Units:	Pa
Distribution:	Data
Source(s):	Beauheim, R. L. 1991. "Review of Parameter Values to be Used in
	1991 Performance Assessment." Internal memo to R. Rechard
	June 14, 1991. Albuquerque, NM: Sandia National Laboratories
	(In Appendix A of this volume)
	Howarth, S. 1991. "Pore Pressure Distributions for 1991 Performance
	Assessment Calculations," Internal memo to Elaine Gorham
	(6344), June 12, 1991. Albuquerque, NM: Sandia Nationa
	Laboratories. (In Appendix A of this volume).

21

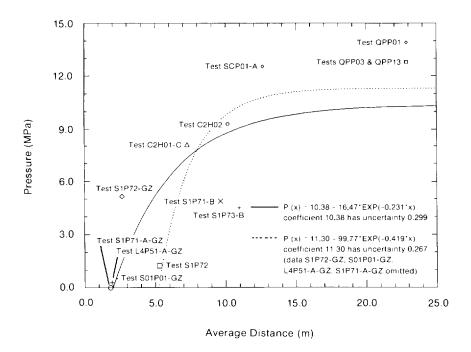

1 2

Figure 2.4-7 shows the distribution for brine pore pressure. Figure 2.4-8 shows the variation of pore pressure with distance from the excavation.

26

Figure 2.4-7. Estimated Distribution (pdf and cdf) for Brine Pore Pressure in Anhydrite MB139 at Repository Level.

TRI-6342-1246-0

Figure 2.4-8. Non-Linear Fits of Pore Pressure in Anhydrite to Distance from Excavation. (Data from Beauheim, June 14, 1991, Memo and Howarth, June 12, 1991, Memo [Appendix A]).

8 Discussion:

9

For the 1991 PA calculations, the pore pressure measurements of investigator Beauheim (June 14, 1991, Memo [Appendix A]) and Howarth (June 12, 1991, Memo [Appendix A]) were combined to form a data distribution with a median of 12.8 MPa (128 atm) and a data range of 9.3 and 13.9 MPa (93 and 139 atm). (The sample range was 8.21 to 15 MPa [Figure 2.4-7].)

15

In comparison, for the 1990 PA calculations, two pore pressure measurements were reported
 for Anhydrite MB139: 9.3 MPa (93 atm) (Beauheim et al., 1990) and 12.6 MPa (126 atm).

18 Assuming a uniform distribution, the mean and median were 11.0 MPa, and the range was

 $\bar{x} + \sqrt{3}s$ or 7 MPa (70 atm) and 15 MPa (150 atm) (Figure 2.4-6). The maximum corresponded to lithostatic pressure based on hydraulic fracturing experiments (Wawersik and Stone, 1985) and density log for WIPP-11 (Figure 2.2-5). The minimum of 7.0 MPa was the average of a pure water hydrostatic of 6.4 MPa and a Salado brine hydrostatic of 7.9 (Figure 2.2-5) or equivalently, the hydrostatic pressure of a column of fluid that linearly varied between pure water at the surface and Salado brine at 655 m (2,142 ft).

26

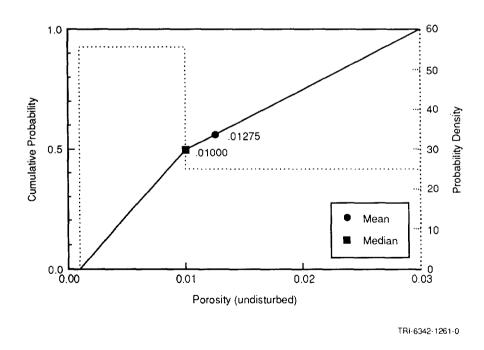
The non-linear fits of pore pressure (in anhydrite) to distance (Figure 2.4-8) indicate an asymptotic value of about 10 MPa with probable error of the order of 0.3 MPa. The probable error can be construed as a one-sigma confidence level.

2.4.7 Porosity

Undisturbed Porosity

Parameter:	Porosity, undisturbed (ϕ)
Median:	1 x 10 ⁻²
Range:	1×10^{-3}
-	3×10^{-2}
Units:	Dimensionless
Distribution:	Cumulative
Source(s):	See text.

15 16 17


Discussion: 18

19 PA calculations have assumed an undisturbed porosity similar to the undisturbed porosity of 20 21 the Salado Formation as a whole.

23 Figure 2.4-9 shows the estimated distribution for undisturbed porosity for the anhydrite layers. 24

26

22

Figure 2.4-9. Estimated Distribution (pdf and cdf) for Undisturbed Porosity for Anhydrite Layers in Salado Formation.

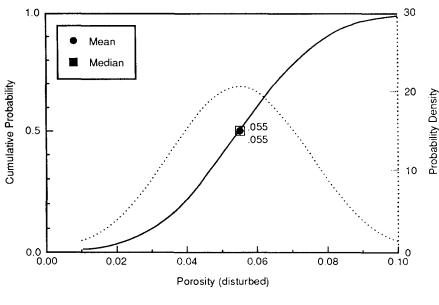
GEOLOGIC BARRIERS Hydrologic Parameters for Anhydrite Layers within Salado Formation

Parameter:	Porosity, disturbed (ϕ)	
Median:	5.5×10^{-2}	
Range:	1×10^{-2}	
	1×10^{-1}	
Units:	Dimensionless	
Distribution:	Normal	
Source(s):	See text.	

Disturbed Porosity 2

13 14

Discussion: 15


16

The lower range for disturbed porosity of the anhydrite layers after reconsolidation was set at 17 0.1. This value is an order of magnitude increase above the undisturbed porosity lower range 18 and equal to the undisturbed median value. The reason for the increase is that the fractures 19 that form within the brittle anhydrite beds during excavations will not heal completely. 20 Shear displacement will likely cause abutment of asperities in the fractures which, in turn, 21 will prop them open (Lappin et al., 1989, p. 4-62). The upper value of the range was set an 22 order of magnitude above the lower value. Finally, the porosity was assumed to be normally 23 distributed as in many materials (Harr, 1987, Table 1.8.1). 24

25

Figure 2.4-10 shows the distribution for the disturbed porosity for the anhydrite layers. 26

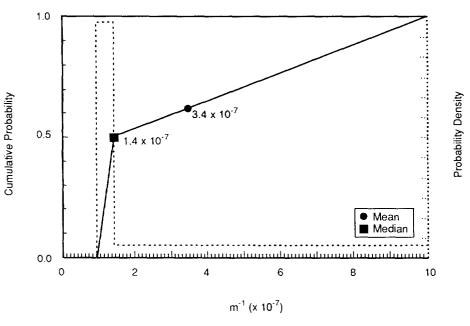
28

TRI-6342-1262-0

Figure 2.4-10. Estimated Distribution (pdf and cdf) for Disturbed Porosity for Anhydrite Layers in Salado Formation.

(page date: 15-NOV-91)

(database version: X-2.19PR)


2.4.8 Specific Storage

Parameter:	Specific storage
Median:	1.4×10^{-7}
Range:	9.7 x 10 ⁻⁸
	1×10^{-6}
Units:	m-1
Distribution:	Cumulative
Source(s):	Beauheim, R. 1991. "Review of Salado Parameter Values To Be Used in 1991 Performance Assessment Calculations," Internal memo to Rob Rechard (6342), June 14, 1991. Albuquerque, NM: Sandia National Laboratories. (In Appendix A of this volume).

19 Figure 2.4-11 shows the estimated distribution for specific storage.

211

1 2

TRI-6342-1285-1

Figure 2.4-11. Estimated Distribution (pdf and cdf) for Anhydrite Specific Storage.

28 Discussion: 29

30 See Section 2.3.8 for complete discussion of specific storage.

2.4.9 Thickness of MB139 Interbed

3		
6	Parameter:	MB139 thickness (Δz)
7	Median:	9 x 10 ⁻¹
8	Range:	4×10^{-1}
9		1.25
10	Units:	m
11	Distribution:	Cumulative
12	Source(s):	Borns, D. J. 1985. Marker Bed 139: A Study of Drillcore From a
13		Systematic Array. SAND85-0023. Albuquerque, NM: Sandia
14		National Laboratories. (Figure 3)
15		WEC (Westinghouse Electric Corporation). 1989b. Geotechnical Field
16		Data and Analysis Report, July 1987 through June 1988, vols. 1
17		and 2. DOE/WIPP-89-009. Prepared for U.S. Department of
18		Energy. Carlsbad, NM: Westinghouse Electric Corporation.
19		Krieg, R. D. 1984. Reference Stratigraphy and Rock Properties for
20		the Waste Isolation Pilot Plant (WIPP) Project. SAND83-1908.
21		Albuquerque, NM: Sandia National Laboratories.
22		

2324 Discussion:

25

1 2

The thickness for MB139 in the generalized stratigraphy of the site is about 0.9 m (3 ft) (WEC, 1989b) and is used as the median value. Because the upper contact is irregular and undulates (caused from reworking of the interbed prior to further halite deposition), the thickness varies between 0.40 and 1.25 m (1.3 and 4.1 ft) (Borns, 1985, Figure 3; Krieg, 1984, Table I). Figure 2.4-12 shows the distribution for the thickness of the anhydrite layers in the Salado.

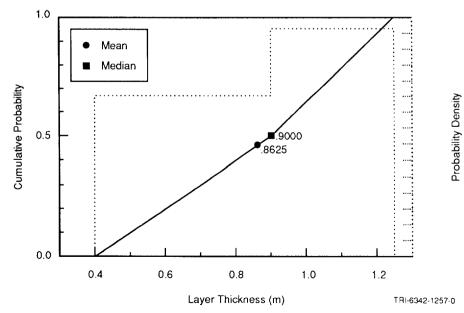


Figure 2.4-12. Estimated Distribution (pdf and cdf) for Thickness of Interbed.

(page date: 15-NOV-91)

2-66

(database version: X-2.19PR)

2.4.10 Tortuosity

3	
6	
7	
8	
9	

1 2

3	r				
6	Parameter:	Tortuosity (τ)			
7	Median:	1.4 x 10 ⁻¹			
8	Range:	1×10^{-2}			
9		6.67 x 10 ⁻¹			
10	Units:	Dimensionless			
11	Distribution:	Cumulative			
12	Source(s):	See text (Culebra, Section 2.6.7)			
13		Freeze, R. A. and J. C. Cherry.	1979.	Ground water.	Englewood
14		Cliffs, NJ: Prentice-Hall, Inc.			

14 15 16

17

Discussion: 18 19

No direct measurements of tortuosity are available in the anhydrite (or halite) layers of 20 the Salado Formation. The range reported is the maximum typical theoretical value of 21 22 0.667 for uniform-sized grains at low Peclet numbers (N_p) (Dullien, 1979, Figure 7.12) down to 0.01 observed in laboratory experiments of nonadsorbing solutes in porous 23 materials (Freeze and Cherry, 1979, p. 104). The PA Division selected a median value 24 equal to that of the Culebra Dolomite Member. This parameter primarily influences 25 diffusion-dominated transport, a condition occurring only when the repository is 26 undisturbed. The influence of the tortuosity on results was explored in a few 1991 PA 27 calculations of the undisturbed summary scenario class (Volume 2 of this report). 28

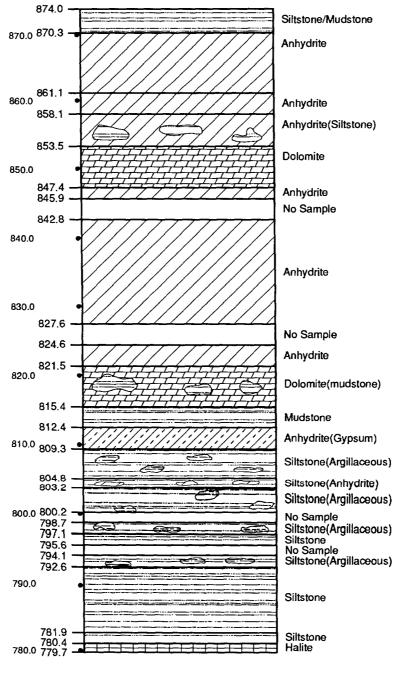
GEOLOGIC BARRIERS Mechanical Parameters for Materials in Salado Formation

2.5 Mechanical Parameters for Materials in Salado Formation 3

- ⁴
 5 2.5.1 Halite and Argillaceous Halite
- 6
- 8 Elastic Constants
- 9 10 Salt Creep Constitutive Model Constants
- 11
- 12 Polyhalite Elastic Constants
- 1314 Anhydrite Elastic Constants

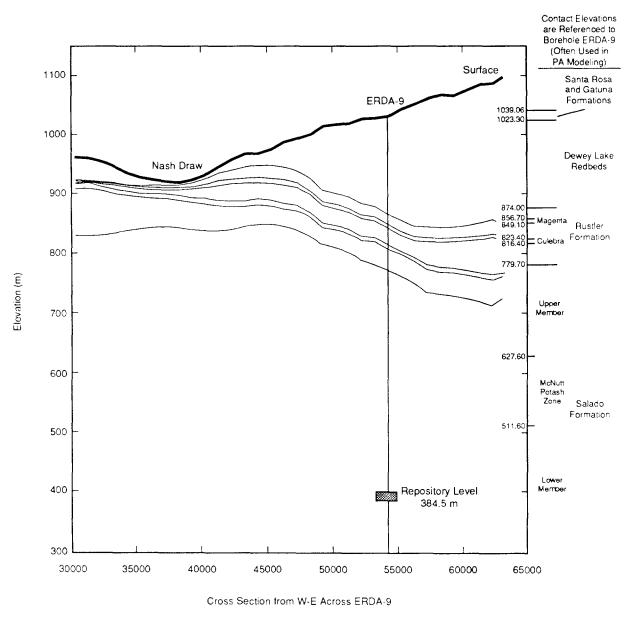
2 2.6 Parameters for Culebra Dolomite Member of Rustler Formation

3


The Culebra Dolomite Member of the Rustler Formation is a finely crystalline, locally 5 argillaceous (containing clay) and arenaceous (containing sand), vuggy dolomite ranging in 6 thickness near the WIPP from about 7 m (23 ft) (at DOE-1 and other locations) to 14 m (46 7 ft) (at H-7). Figure 2.6-1 shows a detailed lithology of the Rustler Formation. Figure 2.6-2 8 is a cross-section across the WIPP disposal system. The Culebra Dolomite is generally 9 considered to provide the most important potential groundwater-transport pathway for 10 radionuclides that may be released to the accessible environment provided human intrusion 11 occurs. Accordingly, the WIPP Project has devoted much attention to understanding the 12 hydrogeology and hydraulic properties of the Culebra. Figure 2.6-3 shows the locations of 13 wells used to define the hydrologic parameters for the Culebra Dolomite. Detailed 14 hydrogeologic information is available in reports by Brinster (1991) and Holt and Powers 15 (1988). The Culebra Dolomite has been tested at 41 locations in the vicinity of the WIPP. 16 Results of these tests and interpretations have been reported by Beauheim (1987a,b,c; 1989), 17 Saulnier (1987), and Avis and Saulnier (1990). 18

19

One early observation (Mercer and Orr, 1979) was that the transmissivity of the Culebra 20 Dolomite varies by six orders of magnitude in the vicinity of the WIPP. This variation in 21 transmissivity appears to be the result of differing degrees of fracturing within the Culebra 22 Dolomite. The cause of the fracturing, however, is unresolved. Culebra transmissivities of 23 about 1 x 10^{-6} m²/s (0.93 ft²/d) or greater appear to be related to fracturing. Where the 24 transmissivity of the Culebra Dolomite is less than 1 x 10^{-6} m²/s (0.93 ft²/d), few or no open 25 fractures have been observed in core, and the Culebra's hydraulic behavior during pumping 26 or slug tests is that of a single-porosity medium. Where transmissivities are between 1 x 10^{-6} 27 m^2/s (0.93 ft²/d) and at least 1 x 10⁻⁴ m²/s (93 ft²/d), open fractures are observed in core, 28 and the hydraulic behavior of the Culebra Dolomite during pumping tests is that of a dual-29 porosity medium (Beauheim, 1987a, b, c; Saulnier, 1987). 30


31

Parameter values for the Culebra Dolomite Member are given in Table 2.6-1.

TRI-6342-527-1

Figure 2.6-1. Detailed Lithology of Rustler Formation at ERDA-9 (after SNL and USGS, 1982b).

TRI-6342-1241-0

 Figure 2.6-2. Interpolated Geologic West-East Cross Section across the WIPP Disposal System (after Mercer, 1983; Davies, 1989, Figure 53).

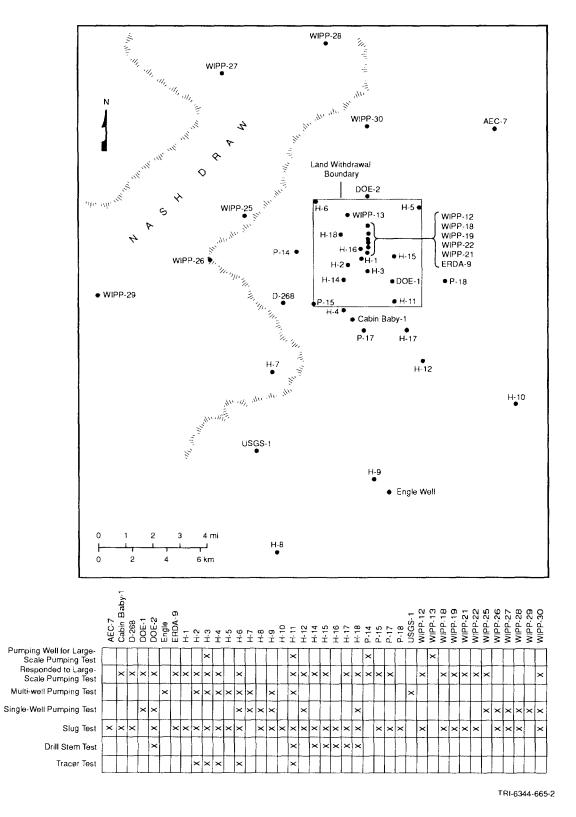


Figure 2.6-3. Location of Wells Used to Define Hydrologic Parameters for Culebra Dolomite.

2

Parameter	Median	Ran	ige	Units	Distribution Type	Source
Density Dolomite, grain (ρ _g)	2.82 x 10 ³	2.78 x 10 ³	2.86 x 10 ³	kg/m ³	Normal	Kelley and Saulnier, 1990, Tables
Clay, bulk (ρ _b)	2.5 x 10 ³			kg/m ³	Constant	4.1, 4.2, 4.3 Siegel, 1990
Dispersivity,						
longitudinal (α)	1 x 10 ²	5 x 10 ¹	3 x 10 ²	m	Cumulative	Lappin et al.,1989, Table E-6
transverse (α_{T})	1 x 10 ¹	5	3 x 10 ¹	m	Cumulative	Lappin et al., 1989, Table E-6
Fracture spacing (2B)	4 x 10 ⁻¹	6 x 10 ⁻²	8	m	Cumulative	Beauheim et al., June 10, 1991 Memo (see Appendix A)
Clay filling fraction (bc,	/b) 0.5	0.1	0.9	none	Normal	Siegel, 1990
Heads	9.32 x 10 ²	9 x 10 ²	9.4 x 10 ²	m	Spatial	See text.
Hydraulic Conductivity Avg. pathway - 5 k Partition Coefficients	1.4574 x 10 ⁻⁶	1.77 x 10 ⁻⁷	1.2 x 10 ⁻⁵	m/s	Lognormal	
Matrix	1.86 x 10 ⁻¹	0.0	1 x 10 ²	m ³ /kg	Cumulative	See text.
Am Cm	1.86 x 10 ⁻¹	0.0	1 x 10 ⁻	m ³ /kg	Cumulative	See text.
Cm	4.8 x 10 ⁻²	0.0	1 x 10 ²	m ³ /kg	Cumulative	
Np Pb	1 x 10 ⁻²	0.0	1 x 10 ¹	m ³ /kg	Cumulative	
Pu	2.61 x 10 ⁻¹	0.0	1 x 10 ²	m ³ /kg	Cumulative	
Ra	1 x 10 ⁻²	0.0	1 x 10 ¹	m ³ /kg	Cumulative	
Th	1 x 10 ⁻²	0.0	1	m ³ /kg	Cumulative	
U	2.58 × 10 ⁻²	0.0	1	m ³ /kg	Cumulative	See text.
Fracture						
Am	9.26 x 10 ¹	0.0	1 x 10 ³	m ³ /kg	Cumulative	See text.
Cm	9.26 x 10 ¹	0.0	1 x 10 ³	m ³ /kg	Cumulative	See text.
Np	1	0.0	1 x 10 ³	m ³ /kg	Cumulative	See text.
Pb	1 x 10 ⁻¹	0.0	1 x 10 ²	m ³ /kg	Cumulative	See text.
Pu	2.02 x 10 ²	0.0	1 x 10 ³	m ³ /kg	Cumulative	
Ra	3.41 x 10 ⁻²	0.0	1 x 10 ²	m ³ /kg	Cumulative	
Th	1 x 10 ⁻¹	0.0	1 x 10 ¹	m ³ /kg	Cumulative	
U	7.5 x 10 ⁻³	0.0	1	m ³ /kg	Cumulative	See text.
Porosity			0			
Fracture (ϕ_{f})	1 x 10 ⁻³	1 x 10 ⁻⁴	1 x 10 ⁻²	none	Lognormal	Lappin et al.,1989, Table 1- Table E-6
Matrix (ϕ_{m})	1.39 x 10 ⁻¹	9.6 x 10 ⁻²	2.08 x 10 ⁻¹	none	Data	Kelley and Saulnier, 1990, Tab 4.4
Storage coefficient (S	2 x 10 ⁻⁵	5 x 10 ⁻⁶	5 x 10 ⁻⁴	none	Cumulative	LaVenue et al.,1990, p. 2–1 Haug et al.,1987
Thickness (Δz) Tortuosity (τ)	7.7	5.5	1.13 x 10 ¹	m	Spatial	LaVenue et al., 1988, Table B-1
Dolomite	1.2 x 10 ⁻¹	3 x 10 ⁻²	3.3 x 10 ⁻¹	none	Data	Kelley and Saulnier, 1990, Tab 4.6; Lappin et al.,1989, Table E-9
Clay	1.2 x 10 ⁻²	3 x 10 ⁻³	3.3 x 10 ⁻²	none	Cumulative	Kelley and Saulnier, 1990, Tab 4.6; Lappin et al., 1989, Table E-S
Transmissivity	-4.9	-3.5	-8.9 l	og (m ² /s)	Spatial	See text.

Table 2.6-1. Parameter Values for Culebra Dolomite Member of Rustler Formation

2.6.1 Density

2 3 6

1

Parameter:	Density, grain (ρ_g) : Dolomite
Median:	2.82×10^3
Range:	2.78×10^3 2.86×10^3
TT	
Units:	kg/m ³
Distribution: Source(s):	Normal Kelley, V. A., and G. J. Saulnier, Jr. 1990. Core Analysis for
Source(s).	Selected Samples from the Culebra Dolomite at the Waste Isolation
	Pilot Plant Site. SAND90-7011. Albuquerque, NM: Sandia
	National Laboratories. (Tables 4.1, 4.2, and 4.3)
Parameter:	Density, bulk (p _b): Clay
Median:	2.5×10^3
Range:	None
Units:	kg/m ³
Distribution:	Constant
Source(s):	 Siegel, M. D. 1990. "Representation of Radionuclide Retardation in the Culebra Dolomite in Performance Assessment Calculations," Memo 3a in Appendix A of Rechard et al. 1990. Data Used in Preliminary Performance Assessment of the Waste Isolation Pilot Plant (1990). SAND89-2408. Albuquerque, NM: Sandia National Laboratories.
scussion:	
rom 20 borehol	y (ρ_g) of the Culebra Dolomite Member was evaluated for 73 core samples es. For the 20 boreholes, the average and median are 2,815 kg/m ³ (175.7) nge between 2,792 and 2,835 kg/m ³ (174.3 and 177.0 lb/ft ³). The 73 values
	2,780 and 2,840 kg/m ³ (173.5 and 177.3 lb/ft ³) with an average of 2,810
	(ft ³) and a median of 2,830 kg/m ³ (176.7 lb/ft ³) (Kelley and Saulnier, 1990
Tables 4.1, 4.2, a	and 4.3).
The bulk densit	y $(\rho_{\rm b})$ of the minerals (gypsum and corrensite) lining the fractures of th
Culebra Dolomite	e is 2500 kg/m ³ (156 lb/ft ³) (Siegel, 1990).
igure 2.6-4 sho	ows the spatial variation of density in Culebra based on averages from 24
1 1	

46 47

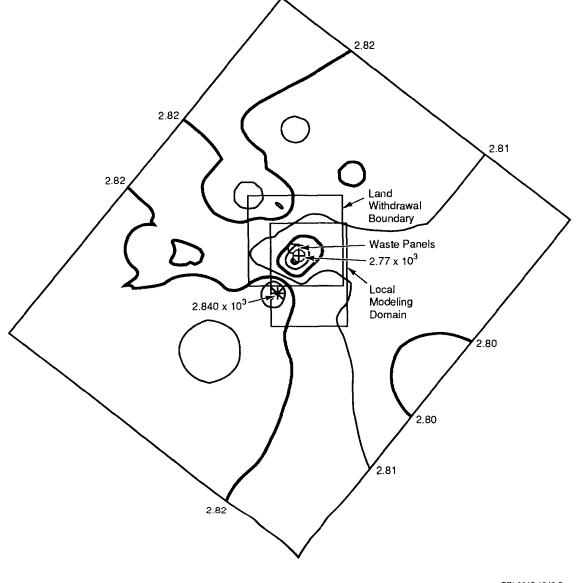

boreholes.

Table 2.6-2 provides the average grain density of intact dolomite at 20 wells in the Culebra 48 Dolomite Member. 49

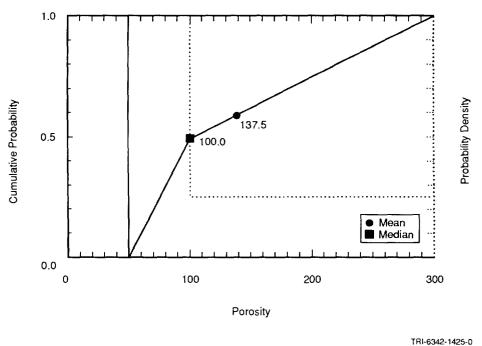
2 3	Table 2.6-2.	Average Grain Densi at 20 Wells in Culebr	-
4		Saulnier, 1990, Table	es 4.1 and 4.3)
5			
6			
8			Average
9			Grain
10			Density*
11		Well ID	(kg/m ³)
12	······		
14		H3B3	2.728 x 10 ³
15		H2B	2.7925 x 10 ³
16		H10B	2.7933 x 10 ³
17		H11	2.795 x 10 ³
18		WIPP30	2.8067 x 10 ³
19		H2A	2.81 x 10 ³
20		WIPP12	2.81 x 10 ³
21		H2B1	2.8125 x 10 ³
22		H3B2	2.815 x 10 ³
23		H5B	2.815 x 10 ³
24		WIPP26	2.8167 x 10 ³
25		AEC8	2.8233 x 10 ³
26		H7B2	2.83 x 10 ³
27		H7C	2.83 x 10 ³
28		WIPP28	2.83 x 10 ³
29		H11B3	2.835 x 10 ³
30		WIPP13	2.835 x 10 ³
31		H6B	2.8375 x 10 ³
32		H7B1	2.84 x 10 ³
33		H4B	2.845 x 10 ³
95			
36	*Average of	measurements from in	ndicated well
37			

GEOLOGIC BARRIERS

Parameters for Culebra Dolomite Member of Rustler Formation

TRI-6342-1242-0

Figure 2.6-4. Spatial Variation of Grain Density in Culebra Based on Averages from 20 Boreholes.


Parameter:	Dispersivity, longitudinal $(\alpha_{\rm L})$				
Median:	1×10^{2}				
Range:	5×10^{1}				
3×10^2					
Units:	m				
Distribution:	Cumulative				
 Source(s): Lappin, A. R., R. L. Hunter, D. P. Garber, and P. B. Davies, 1989. Systems Analysis Long-Term Radionuclide Transport, Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southea New Mexico; March 1989. SAND89-0462. Albuquerque, Sandia National Laboratories. (Table E-6) 					
Parameter:	Dispersivity, transverse ($\alpha_{\rm T}$)				
Median:	1×10^{1}				
Range:	5				
	3×10^{1}				
Units:	m				
Distribution:	Cumulative				
Source(s):	Lappin, A. R., R. L. Hunter, D. P. Garber, and P. B. Davies, eds. 1989. Systems Analysis Long-Term Radionuclide Transport, and Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern New Mexico; March 1989. SAND89-0462. Albuquerque, NM: Sandia National Laboratories. (Table E-6)				
iscussion:					
1504551011;					
or moderate tr	avel distances (on the order of kilometers), longitudinal dispersivity				
	etween 0.01 and 0.1 of the mean travel distance of the solute (Lallema				
	decerf, 1978; Pickens and Grisak, 1981). As first adopted by Lappin e				
	Division has assumed $\alpha_{\rm L}$ can vary between 50 and 300 m (164 and 984				

2.6.2 Dispersivity

1

41 Transverse dispersivity (α_T) is usually linearly related to α_L . The ratio of α_L to α_T typically 42 varies between 5 and 20 (see, for example, Bear and Verruijt, 1987; Freeze and Cherry, 1979, 43 Figure 9.6; Dullien, Figure 7.13). However, at very low velocities the ratio can approach 1, 44 while in some strata the ratio has been reported to approach 100 (de Marsily, 1986). 45 Transverse dispersivity was assumed to be ten times smaller than α_L ($\alpha_T \sim 0.1 \alpha_L$) for PA 46 transport calculations. The current range for sensitivity studies is 1 to 25 (Figure 2.6-6). 47 48

GEOLOGIC BARRIERS Parameters for Culebra Dolomite Member of Rustler Formation

111 0012 1120 0

Figure 2.6-5. Estimated Distribution (pdf and cdf) for Longitudinal Dispersivity, Culebra Dolomite Member.

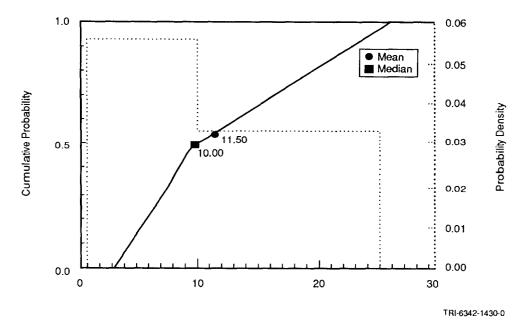


Figure 2.6-6. Estimated Distribution (pdf and cdf) for Transverse Dispersivity, Culebra Dolomite Member.

2.6.3 Fraction of Clay Filling in Fractures

Parameter:	Clay filling fraction (b_c/b)
Median:	0.5
Range:	0.1
	0.9
Units:	Dimensionless
Distribution:	Normal
Source(s):	Siegel, M. D. 1990. "Representation of Radionuclide Retardation in the Culebra Dolomite in Performance Assessment Calculations,
	Memo 3a in Appendix A of Rechard et al. 1990. Data Used in
	Preliminary Performance Assessment of the Waste Isolation Pilo
	Plant (1990). SAND89-2408. Albuquerque, NM: Sandia
	National Laboratories.

21 Discussion:

22

20

1 2

Within fractures of the Culebra Dolomite Member, gypsum and corrensite (alternating layers 23 of chlorite and smectite) are observed. To evaluate the retardation of radionuclides within 24 the fractures (caused by interaction with this material lining the fractures), the fraction of 25 lining material (b_c/b) is needed, where b_c is the total thickness of clays and b is fracture 26 aperture. At present, data are not available to estimate the true range or distribution of b_c/b 27 in the Culebra. Siegel (1990) recommended a normal distribution with a maximum of 0.9 and 28 29 a minimum of 0.1. Current PA calculations used a median of 0.5 to estimate the fracture 30 retardation.

31

32 Figure 2.6-7 shows the estimated distribution for the fraction of clay filling.

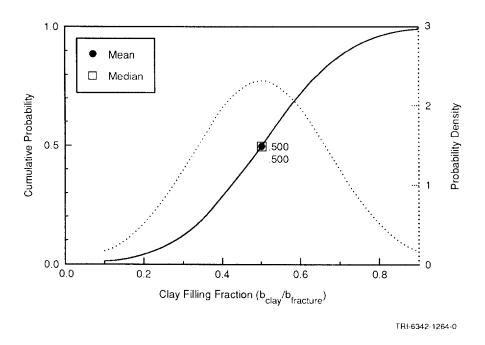


Figure 2.6-7. Estimated Distribution (pdf and cdf) for Clay Filling Fraction, Culebra Dolomite Member.

1 2.6.4 Porosity

2 3

Fracture Porosity

6 9	Parameter:	Fracture porosity ($\phi_{\rm f}$)
10	Median:	1×10^{-3}
11	Range:	1 x 10-4
12		1×10^{-2}
13	Units:	Dimensionless
14	Distribution:	Lognormal
15	Source(s):	Lappin, A. R., R. L. Hunter, D. P. Garber, and P. B. Davies, eds.
16		1989. Systems Analysis Long-Term Radionuclide Transport, and
17		Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern
18		New Mexico; March 1989. SAND89-0462. Albuquerque, NM:
19		Sandia National Laboratories. (Table 1-2; Table E-6)
20		

21

22 Discussion:

23

The fracture porosities interpreted from the tracer tests at the H-3 and H-11 hydropads are 2 x 10^{-3} (Kelley and Pickens, 1986) and 1 x 10^{-3} , respectively.

26

Both H-3 and H-11 lie near the expected transport pathway. The average value rounded to
one significant figure was selected as the median and used for PA calculations. Similar to
Lappin et al. (1989), the PA Division set the minimum and maximum one order of magnitude
to either side of this median.

31

32 Figure 2.6-8 shows the estimated distribution for the fracture porosity.

GEOLOGIC BARRIERS Parameters for Culebra Dolomite Member of Rustler Formation

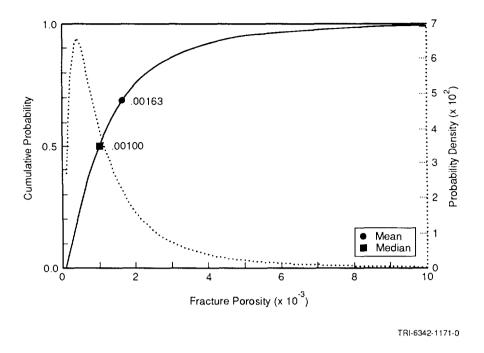


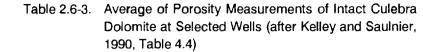
Figure 2.6-8. Estimated Distribution (pdf and cdf) for Fracture Porosity, Culebra Dolomite Member.

2 Matrix Porosity

Parameter:	Matrix porosity ($\phi_{\mathbf{m}}$)
Median:	1.39×10^{-1}
Range:	9.6×10^{-2}
	2.08×10^{-1}
Units:	Dimensionless
Distribution:	Data
Source(s):	Kelley, V. A., and G. J. Saulnier, Jr. 1990. Core Analysis for
	Selected Samples from the Culebra Dolomite at the Waste Isolation
	Pilot Plant Site. SAND90-7011. Albuquerque, NM: Sandia
	National Laboratories. (Table 4.4)
	Lappin, A. R., R. L. Hunter, D. P. Garber, and P. B. Davies, eds
	1989. Systems Analysis Long-Term Radionuclide Transport, and
	Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern
	New Mexico; March 1989. SAND89-0462. Albuquerque, NM
	Sandia National Laboratories. (Table E-8)

23 Discussion:

24


25 Matrix porosity has been evaluated by the Boyles' law technique using helium or air on 79 samples taken from the *intact* portion of core from 20 borehole or hydropad locations near 26 the WIPP and also by water-resaturation for 30 of the samples. The agreement between the 27 two techniques was excellent with an r^2 of 0.99 (Kelley and Saulnier, 1990, p. 4-7). From 28 the Boyles' law technique, an average porosity for the 20 wells of 0.139 was obtained, with a 29 range of 0.096 to 0.208 (Kelley and Saulnier, 1990, Table 4.4). (Lappin et al., [1989, Table 30 31 E-8] report an average of 0.153 with a range of 0.028 and 0.303 assuming each of the 79 measurements is independent.) For many of the wells, a large amount of core was lost in 32 33 highly porous (vuggy) and/or fractured portions of the Culebra Dolomite Member. Thus only intact matrix porosity, the porosity not contributing to fluid flow in dual porosity 34 35 computational models (e.g., STAFF2D or SWIFT [Rechard et al., 1989]) is reported here.

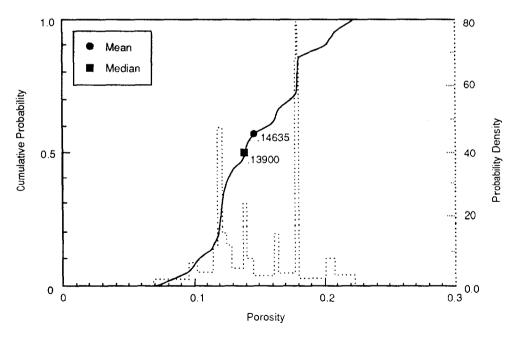
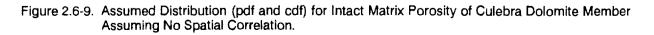
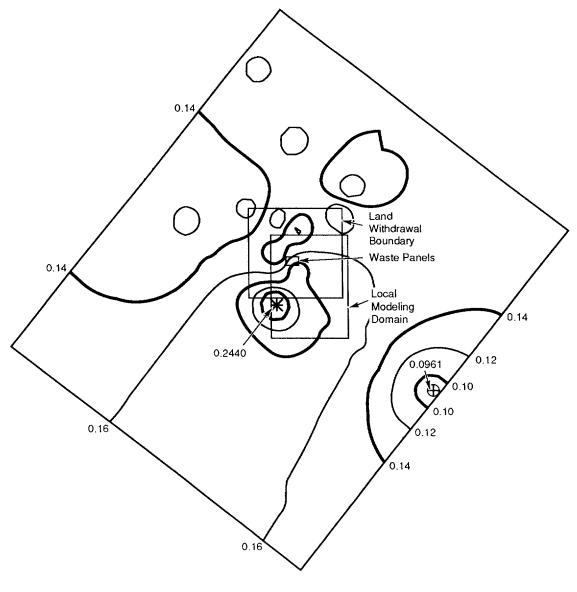

36

Table 2.6-3 provides a summary of porosity measurements of intact Culebra Dolomite at selected wells. Figure 2.6-9 shows the assumed density function for porosity of the Culebra Dolomite member. Figure 2.6-10 shows the spatial variation of the intact matrix porosity.


2

8	Well ID	Median	Low Range	High Range
9		(m)	(m)	(m)
)				
2	AEC8	0.10333	0.05195	0.15471
3	H10B	0.0955	0.04228	0.14872
4	H11B	0.1618	0.00506	0.31854
5	H2A	0.1235	0.10512	0.14188
6	H2B	0.129	0.07576	0.18224
7	H2B1	0.1205	0.04391	0.19709
3	H3B2	0.178	0.15351	0.20249
9	H3B3	0.20775	0.14575	0.26975
D	H4B	0.2525	0.1435	0.3615
1	H5B	0.1784	0.04839	0.30841
2	H6B	0.11033	0.09884	0.12182
3	H7B1	0.2025	0.0733	0.3317
4	H7B2	0.1385	0.08829	0.18871
5	H7C	0.14433	0.1016	0.18706
6	WIPP12	0.1074	0.00213	0.21267
7	WIPP13	0.1796	0.03141	0.32779
В	WIPP25	0.115	0.115	0.115
9	WIPP26	0.12225	0.10606	0.13844
0	WIPP28	0.1616	0.10451	0.21869
1	WIPP30	0.16517	0.07372	0.25662



TRI-6342-1265-0

(page date: 15-NOV-91)

(database version: X-2.19PR)

TRI-6342-1244-0

Figure 2.6-10. Variation of Intact Matrix Porosity of Culebra Dolomite Member as Estimated by 10 Nearest Neighbors Using Inverse-Distance-Squared Weighting.

GEOLOGIC BARRIERS Parameters for Culebra Dolomite Member of Rustler Formation

Pa	rameter:	Fracture spacing (2B)
Me	edian:	4×10^{-1}
Ra	nge:	6 x 10 ⁻²
		8
Un	iits:	m
Di	stribution:	Cumulative
So	urce(s):	Beauheim, R. L., T. F. Corbet, P. B. Davies, and J. F. Pickens. 199.
		"Recommendations for the 1991 Performance Assessmer
		Calculations on Parameter Uncertainty and Model Implementatio
		for Culebra Transport Under Undisturbed and Brine-Reservoir
		Breach Conditions." Internal memo to D. R. Anderson, June 10
		1991. Albuquerque, NM: Sandia National Laboratories. (I
		Appendix A of this volume).

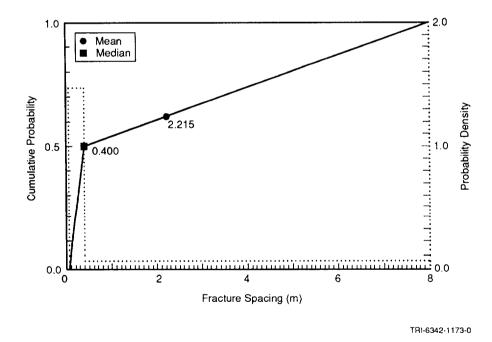


Figure 2.6-11. Estimated Distribution (pdf and cdf) for Culebra Fracture Spacing.

1 Discussion:

2

Both horizontal and vertical fracture sets have been observed in core samples, shaft 8 excavations, and outcrops. A fracture spacing varying between 0.23 and 1.2 m (0.75 and 3.9 5 ft) has been interpreted for two travel paths at the H-3 borehole (Kelley and Pickens, 1986). 6 7 Preliminary evaluation of the breakthrough curves for the H-6 borehole tracer test suggests a fracture spacing between 0.056 and 0.44 m (0.18 and 1.44 ft), and the H-11 borehole tracer 8 9 test suggests a fracture spacing between 0.11 and 0.32 m (0.36 and 1.05 ft) (Beauheim et al., June 10, 1991 Memo [Appendix A]). From these data, Beauheim et al. (June 10, 1991, Memo 10 [Appendix A]) suggested a minimum of 0.06 m (0.2 ft) and a maximum equivalent to the 11 assumed uniform thickness of the Culebra (8 m [26.2 ft]). Finally, the average fracture 12 spacing at the three wells (H-3, H-6, and H-11) is 0.4 m (1.3 ft). 13 14

2.6.5 Storage Coefficient

2
3
6
7

Parameter:	Storage coefficient (S)
Median:	2×10^{-5}
Range:	5 x 10 ⁻⁶
_	5 x 10 ⁻⁴
Units:	Dimensionless
Distribution:	Cumulative
Source(s):	 LaVenue, A. M., T. L. Cauffman, and J. F. Pickens. 1990. Ground water Flow Modeling of the Culebra Dolomite, Volume I: Mode Calibration. SAND89-7068/1. Albuquerque, NM: Sandi National Laboratories. (p. 2-18) Haug, A., V. A. Kelley, A. M. LaVenue, and J. F. Pickens. 1987 Modeling of Groundwater Flow in the Culebra Dolomite at th Waste Isolation Pilot Plant (WIPP) Site: Interim Report Contractor Report SAND86-7167. Albuquerque, NM: Sandi National Laboratories.

23 Discussion:

Model studies of the Culebra (LaVenue et al., 1990, 1988; Haug et al., 1987) have used a storage coefficient (S) of 2 x 10⁻⁵. The storage coefficient near the WIPP ranges over two orders of magnitude (5 x 10^{-6} to 5 x 10^{-4}) and is the basis for the range in Table 2.6-1. However, based on sparse well test data from 13 wells, the storage coefficient can range over four orders of magnitude (1 x 10⁻⁶ to 1 x 10⁻²) in the Culebra (LaVenue et al., 1990, p. 2-18). Table 2.6-4 provides the storage coefficients at wells within the Culebra Dolomite Member. Figure 2.6-12 gives the estimated distribution for the storage coefficient. Figure 2.6-13 shows the spatial variation of the storage coefficient.

33 3 6 37	Table 2.6-4. Storage Coefficients at Wells within Culebra Dolomite Member (Cauffman et al., 1990, Table D.1)		
38 40	Well ID	Storage Coefficients	
42			
48	H2	1.28 x 10 ⁻⁵	
45	H4	4.62 x 10 ⁻⁶	
46	H5	2.79 x 10 ⁻⁵	
47	H6	2.35 x 10 ⁻⁴	
48	H9	3.82 x 10 ⁻⁴	
49	H11	1.58 x 10 ⁻⁴	
50	H16	1 x 10 ⁻⁵	
51	P14	2 x 10 ⁻⁵	
52	USGS1	2 × 10 ⁻⁵	
53	WIPP25	1 x 10 ⁻²	
54	WIPP26	4.8 x 10 ⁻³	
55	WIPP27	1 x 10 ⁻⁶	
56	WIPP28	5 x 10 ⁻²	
58	······································	· · · · · · · · · · · · · · · · · · ·	

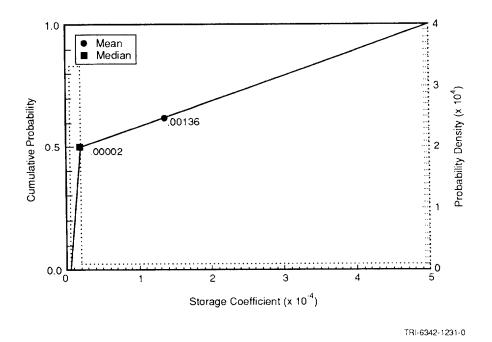
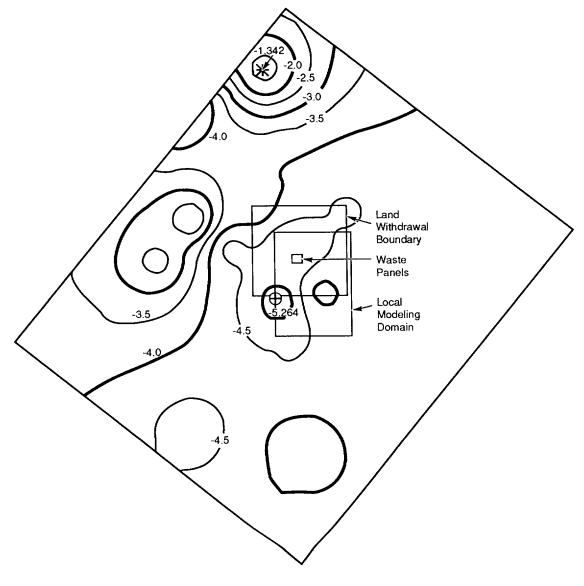
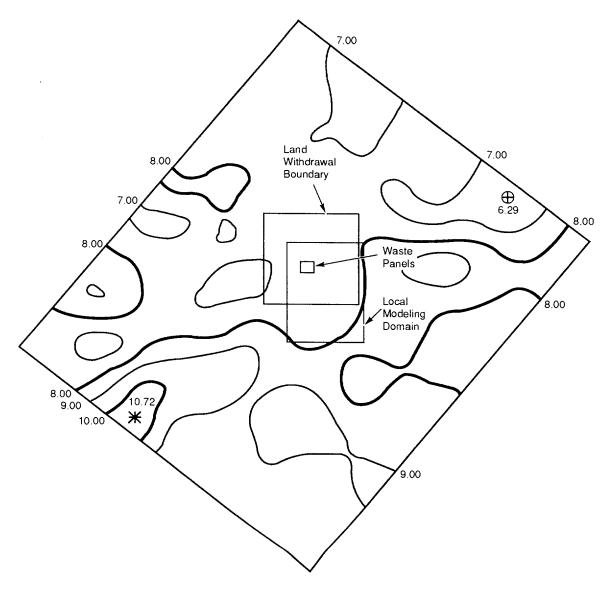



Figure 2.6-12. Estimated Distribution (pdf and cdf) for Storage Coefficient.

TRI-6342-1418-0

Figure 2.6-13. Spatial Variation of Logarithm of Storage Coefficients within Culebra.

2.6.6 Thickness


3	· · · ·	···· · · · · · · · · · · · · · · · · ·
6	Parameter:	Thickness (Δz)
7	Median:	7.7
8	Range:	5.5
9		11.3
10	Units:	m
11	Distribution:	Spatial
12	Source(s):	LaVenue, A. M., A. Haug, and V. A. Kelley. 1988. Numerical
13		Simulation of Ground-Water Flow in the Culebra Dolomite at the
14		Waste Isolation Pilot Plant (WIPP) Site: Second Interim Report.
15		SAND88-7002. Albuquerque, NM: Sandia National Laboratories.
16		(Table B-1)
17		

18

1 2

19 **Discussion:**

20 21 The Culebra thickness reported in Table 2.6-1 is the constant thickness used in modeling studies reported by LaVenue et al. (1988, 1990) and used in PA calculations. Figure 2.6-14 22 shows the spatial variation of thickness (Δz) in the Culebra Dolomite Member estimated by 23 24 kriging followed by two passes of a moving average of 15 nearest neighbors with a center 25 weight of zero on a 500-m (1,635-ft) grid.

TRI-6342-1243-0

Figure 2.6-14. Variation of Culebra Member Thickness in Regional Modeling Domain. Estimate used kriging followed by two passes of a moving average of 15 nearest neighbors with a center weight of zero on a 500-m grid.

2 2.6.7 Tortuosity

3

Parameter:	Matrix tortuosity (τ), Dolomite		
Median:	1.2×10^{-1}		
Range:	3×10^{-2}		
	3.3×10^{-1}		
Units:	Dimensionless		
Distribution:	Data		
Source(s):	 Kelley, V. A., and G. J. Saulnier, Jr. 1990. Core Analysis for Selected Samples from the Culebra Dolomite at the Waste Isolation Pilot Plant Site. SAND90-7011. Albuquerque, NM: Sandia National Laboratories. (Table 4.6) Lappin, A. R., R. L. Hunter, D. P. Garber, and P. B. Davies, eds 1989. Systems Analysis Long-Term Radionuclide Transport, and Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern New Mexico; March 1989. SAND89-0462 Albuquerque, NM Sandia National Laboratories. (Table E-9) 		
Parameter:	Tortuosity in clay lining (τ_{clay})		
Median:	1.2×10^{-2}		
Range:	3×10^{-3}		
~	3.3×10^{-2}		
Units:	Dimensionless		
	Cumulative		
Distribution:			
Distribution: Source(s):	See text.		

Figure 2.6-15 shows the measured distribution for Culebra Dolomite Member tortuosity. Figures 2.6-16 gives the variation of matrix tortuosity measured from intact core samples of the Culebra Dolomite Member.

40 Discussion:

42

38 39

Intact Matrix Tortuosity. Intact matrix tortuosity is used to evaluate the effective molecular diffusion coefficient (D_m) from the coefficient of molecular diffusion (D^n) in the pure saturating fluid $(D_m = \tau D^n)$, where τ equals $(\ell/\ell_{path})^2$, ℓ is the linear length, and ℓ_{path} is the length of the [tortuous] path that a fluid particle would take (Bear, 1972, p. 111).

47

Intact matrix tortuosity for the Culebra Dolomite Member was calculated from 15 core samples from 15 borehole locations using the helium porosity (ϕ_m) and a formation factor (R_{ℓ}/R_m) determined from electrical-resistivity measurements as follows: $\tau_m^2 =$ [($1/\phi_m$)(R_{ℓ}/R_m)], where R_m is the intact porous media saturated with a fluid of resistivity, R_{ℓ} . (For the Culebra core samples, a 100-g NaCl solution was used with an ambient pressure of 1.4 MPa.) Kelley and Saulnier (1990) state that "... the formation factor (R_{ℓ}/R_m)

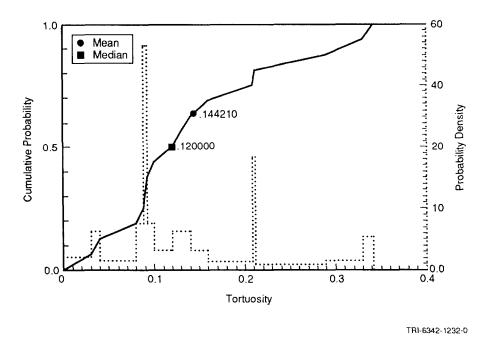
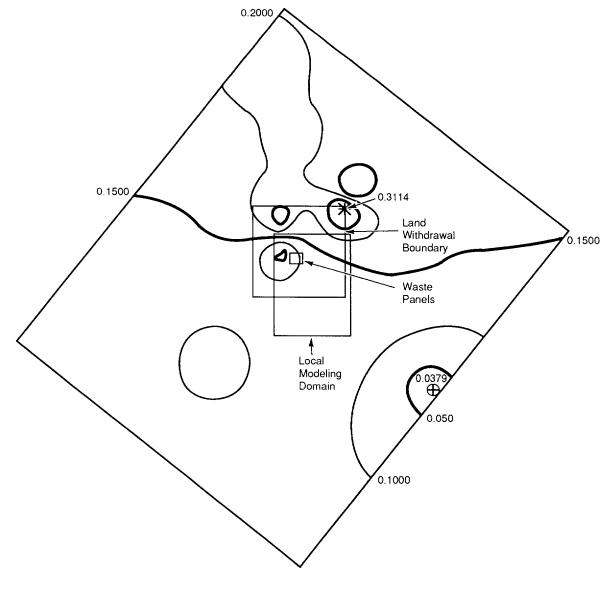


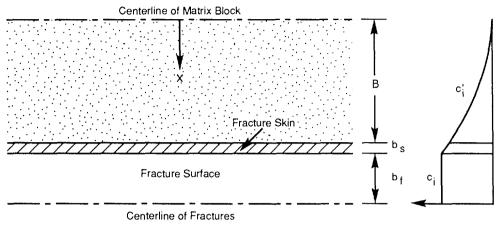
Figure 2.6-15. Measured Distribution (pdf and cdf) for Tortuosity of Culebra Matrix.

determined from electrical-resistivity measurements is usually smaller than that determined by 9 diffusion studies." The values range from 0.03 to 0.33 with a median of 0.12 and an average 10 of 0.14 (Kelley and Saulnier, 1990, Table 4.6; Lappin et al., 1989, Table E-9) (Figure 2.6-9). 11 The spatial variation of tortuosity is shown in Figure 2.6-16. Within the local transport 12 modeling domain, the tortuosity is near the median, 0.12. 13


14

Matrix Skin Resistance and Clay Tortuosity. In the dual porosity mathematical model 15 implemented by STAFF2D (Rechard et al., 1989), the boundary condition for the matrix at 16 the fracture matrix interface (Figure 2.6-17) is given by 17

$$C'_{i}(B,T) = C_{i} - \zeta D_{n}^{*} \frac{\partial C}{\partial x}$$


where

25 26 C_{i}^{\prime}, C_{i} = concentrations of the ith nuclide in the matrix and fracture, respectively 27 2B = the fracture spacing 28 D_n^* = diffusion coefficient in matrix 29 = a parameter characterizing the resistance of a thin skin (e.g., clay lining 30 ζ adjacent to the fracture). 31 32 ζ is defined by 33 34

TRI-6342-1460-0

Figure 2.6-16. Variation of Matrix Tortuosity Measured from Intact Core Samples of Culebra Dolomite Member by 10 Nearest Neighbors Using Inverse-Distance-Squared Weighting.

TRI-6342-1129-0

Figure 2.6-17. Boundary Condition for the Matrix at the Fracture Matrix Interface.

 $\varsigma = \frac{b_s}{b_s}$ where $b_s = \text{the skin thickness}$ $D_s = \text{skin diffusion coefficient}$ For the current PA calculations, the following estimate of the skin resistance is used because of the clay lining in the fractures: $\varsigma = \frac{f\phi_f(B + b_f)}{r_{clay} D^{T}}$ where $f = \text{clay lining, fracture aperature ratio (b_s/b_f)}$ $\phi_t = \text{fracture or secondary porosity (b_f/[B + b_f]) ~ b_f/B, B >> b_f}$ and as defined above, the diffusion coefficient D_s is skin (e.g., clay),

(database version: X-2.19PR)

101234

15

16 17

18 19

20

21 22

31

32 33

34 35 36

observed

diffusion

$$\begin{array}{l} \begin{array}{c} 1\\ \frac{3}{9}\\ \frac{3}{9}\\ \end{array} \qquad \begin{array}{l} D_{s} = \tau_{clay} D^{x}\\ \end{array} \\ \end{array} \\ \begin{array}{l} \text{where}\\ \end{array} \\ \begin{array}{l} \tau_{clay} = \text{tortuosity of clay lining}\\ p D^{x} = \text{full molecular diffusion coefficient in the pure saturating fluid.}\\ \end{array} \\ \begin{array}{l} 10\\ \end{array} \\ \end{array} \\ \begin{array}{l} \text{For 1991 PA calculations, the clay tortuosity is assumed to be one order of magnitude smaller than the Culebra Dolomite Member matrix tortuosity consistent with the generally observed apparent diffusion coefficients in clayey materials (i.e., 0.012). This conservative assumption reduces the amount of contaminants moving through the clay lining and ultimately being absorbed onto the matrix. Furthermore, only the median value of the molecular diffusion coefficient for the actinides was used (Section 3.3.6), rather than a value for each separate contaminant. \end{array}$$

2.6.8 Freshwater Heads at Wells

2 3 4

6 7

8

10

11

Table 2.6-5 provides the freshwater head measurements in the Culebra Dolomite Member.

Table 2.6-5.Summary of Selected Steady-State Freshwater Head
Measurements in Culebra Dolomite Member (after
Cauffman et al., 1990, Table 6.2)

15 16 1 8 19	Well ID	Median	Low Range	High Range
18		(m)	(m)	(m)
		(,	()	(,
10	AEC7	9.3200x10 ²	9.3014x10 ²	9.3386x10 ²
20	CABIN1	9.1120x10 ²	9.0980x10 ²	9.1260x10 ²
21	D268	9.1520x10 ²	9.1462x10 ²	9.1578x10 ²
22	DOE1	9.1390x10 ²	9.0831x10 ²	9.1949x10 ²
23	DOE2	9.3530x10 ²	9.3181x10 ²	9.3880x10 ²
24				
25	H1	9.2330x10 ²	9.1860x10 ²	9.2796x10 ²
26	H10B	9.2140x10 ²	9.1627x10 ²	9.2653x10 ²
27	H11B1	9.1280x10 ²	9.1000x10 ²	9.1560x10 ²
28	H12	9.1360x10 ²	9.1080x10 ²	9.1640x10 ²
29	H14	9.1550x10 ²	9.1457x10 ²	9.1643x10 ²
30				
31	H15	9.1560x10 ²	9.1234x10 ²	9.1886x10 ²
32	H17	9.1100x10 ²	9.0890x10 ²	9.1310x10 ²
33	H18	9.3190x10 ²	9.2887x10 ²	9.3493x10 ²
34	H2C	9.2400x10 ²	9.2167x10 ²	9.2633×10 ²
35	H3B1	9.1710x10 ²	9.1267x10 ²	9.2153x10 ²
36				
37	H4B	9.1280x10 ²	9.1140x10 ²	9.1420x10 ²
38	H5B	9.3400x10 ²	9.3074x10 ²	9.3726x10 ²
39	H6B	9.3260x10 ²	9.3027x10 ²	9.3493x10 ²
40	H7B1	9.1270x10 ²	9.1200x10 ²	9.1340x10 ²
41	H8B	9.1240x10 ²	9.1147x10 ²	9.1333x10 ²
42				
43	H9B	9.0820x10 ²	9.0680x10 ²	9.0960x10 ²
14	P14	9.2690x10 ²	9.2480x10 ²	9.2900x10 ²
45	P15	9.1680x10 ²	9.1494x10 ²	9.1866x10 ²
46	P17	9.1160x10 ²	9.0997x10 ²	9.1323x10 ²
47	USGS1	9.0980x10 ²	9.0922x10 ²	9.1038x10 ²
48				
49	USGS4	9.0970x10 ²	9.0947x10 ²	9.0993x10 ²
50	USGS8	9.1110x10 ²	9.1087x10 ²	9.1133x10 ²
51	WIPP12	9.3310x10 ²	9.3147x10 ²	9.3473x10 ²
52	WIPP13	9.3400x10 ²	9.3120x10 ²	9.3680x10 ²
53	WIPP18	9.3000x10 ²	9.2720x10 ²	9.3280x10 ²
54				
55	WIPP25	9.2870x10 ²	9.2637x10 ²	9.3103x10 ²
56	WIPP26	9.1940x10 ²	9.1882x10 ²	9.1998x10 ²
57	WIPP27	9.3810x10 ²	9.3647x10 ²	9.3973x10 ²
58	WIPP28	9.3700x10 ²	9.3467x10 ²	9.3933x10 ²
59				
60	WIPP29	9.0540x10 ²	9.0482x10 ²	9.0598x10 ²
51	WIPP30	9.3510x10 ²	9.3254x10 ²	9.3766x10 ²

2 2.6.9 Transmissivities for Wells

Table 2.6-6 provides the logarithms of selected transmissivity measurements in the Culebra
Dolomite Member (Cauffman et al., 1990, Table C.1). Table 2.6-7 provides the logarithms of
the calibrating points.

Table 2.6-6.Logarithms of Selected Transmissivity Measurements
in Culebra Dolomite Member (after Cauffman et al.,
1990, Table C.1)

Well ID	Median	Low Range	High Range
AEC7	-6.5535	-7.7185	-5.3885
CABIN1	-6.5213	-7.6863	-5.3563
D268	-5.6897	-6.8547	-4.5247
DOE1	-4.4271	-5.0096	-3.8466
DOE2	-4.0191	-4.6016	-3.4366
ENGLE	-4.3350	-4.9175	-3.7525
ERDA9	-6.2964	-7.4614	-5.1314
H1	-6.0290	-7.1940	-4.8640
H10B	-7.1234	-8.2884	-5.9584
H11B1	-4.5057	-5.0882	-3.9232
H12	-6.7132	-7.8782	-5.5482
H14	-6.4842	-7.6492	-5.3192
H15	-6.3804	-7.5454	-5.2154
H16	-6.1149	-7.2799	-4.9499
H17	-6.6361	-7.8011	-5.4471
H18	-5.7775	-6.3600	-5.1950
H2B1	-6.2005	-6.7830	-5.6180
НЗ	-5.6089	-6.1914	-5.0264
H4B	-5,9960	-6.5785	-5.4135
H5B	-7.0115	-7.5940	-6.4290
H6B	-4.4500	-5.0325	-3.8675
H7B1	-2.8125	-3.3950	-2.2300
H8B	-5.0547	-5.6372	-4.4722
H9B	-3.9019	-4.4844	-3.3194
USGS1	-3.2584	-3.8409	-2.6759
WIPP12	-6.9685	-8.1355	-5.8035
WIPP13	-4.1296	-5.2946	-2.9646
WIPP18	-6.4913	-7.6563	-5.3263
WIPP19	-6.1903	-7.3553	-5.0253
WIPP21	-6.5705	-7.7355	-5.4055
WIPP22	-6.4003	-7.5653	-5.2353
WIPP25	-3.5412	-4.1237	-2.9587
WIPP26			-2.3311

(page date: 15-NOV-91)

GEOLOGIC BARRIERS Parameters for Culebra Dolomite Member of Rustler Formation

2 3	Table 2.6-6.	Table 2.6-6.Logarithms of Selected Transmissivity Measurementsin Culebra Dolomite Member (after Cauffman et al.,1990, Table C.1) (Concluded)				
4						
6						
R	Well ID	Median	Low Range	High Range		
10						
11	WIPP27	-3.3692	-3.9517	-2.7867		
12	WIPP28	-4.6839	-5.2664	-4.1014		
13						
14	WIPP29	-2.9685	-3.5510	-2.3860		
15	WIPP30	-6.6023	-7.7673	-5.4373		
16	P14	-3.5571	-4.5124	-2.6018		
17	P15	-7.0354	-8.2004	-5.8704		
18	P17	-5.9685	-7.1335	-4.8035		
19						
20	P18	-1.0123x10 ¹	-1.1288x10 ¹	-8.9584		
21						
23	••• ••••••••••••••••••••••••••••••••••	1	······································			

2	
3	

4

Table 2.6-7.Logarithms of Transmissivity of Calibrating Points
(Pilot Points) for Culebra Dolomite Member (after
Davies and LaVenue, 1990)

) 2 }				
2				
	PP1	-2.0700	-4.4233	2.833x10 ⁻¹
ζ.	PP2	-2.2500	-4.5334	3.340x10 ⁻²
	PP3	-2.3200	-4.6267	-1.330x10 ⁻²
-	PP4	-3.6200	-5.3442	-1.8958
			5 0 0	
5	PP5	-3.5800	-5.2576	-1.9024
	PP6	-6.0200	-7.7675	-4.2725
	PP7	-6.4200	-8.0044	-4.5656
	PP8	-3.4100	-4.8779	-1.9421
	PP9	-2.7100	-3.8913	-1.5217
	PP11	-7.7200	-9.1413	-6.2987
	PP12	-8.0800	-9.0353	-7.1247
ļ	PP13	-5.6400	-6.5953	-4.6847
	PP14	-8.3400	-9.7846	-6.8954
	PP15	-6.4900	-7.7482	-5.2318
	PP16	-5.1300	-6.5280	-3.7320
	PP17	-6.6000	-8.1378	-5.0622
1	PP18	~2.6300	-4.5173	-7.427x10
	PP19	-2.8600	-4.7939	-9.261x10 ⁻¹
	PP20a	-2.9400	-4.8972	-9.828x10-
	PP21a	-3.0000	-4.8407	-1.1593
	PP23	-3.8500	-5.1548	-2.5452
i	PP24	-3.5000	-4.2689	-2.7311
	PP25	-6.0000	-7.0718	-4.9282
•	PP26	-5.5000	-6.3388	-4.6612
)				
)	PP27	-4.2500	-5.3684	-3.1316
	PP28	-3.5000	-4.7582	-2.2418
	PP29	-3.2500	-4.3451	-2.1549
L .	PP30	-6.1600	-7.3250	-4.9950
	PP31	-5.8700	-7.0350	-4.7050
5	-			
5	PP32	-5.0000	-5.7223	-4.2777
	PP34	-3.5900	-4.5453	-2.6347
1	PP35	-2.6700	-3.6253	-1.7147
	PP36	-5.1700	-6.0787	-4.2613
•	PP37	-4.3100	-6.0342	-2.5858
	11.07	-7.0100	-0.0042	-2.0000
	PP38	-3.9000	5 2446	0 4554
	PP39	-3.9000	-5.3446 -5.3446	-2.4554
			-5.3446	-2.4554
-	PP40	-5.9300	-6.8853	-4.9747
	PP41	-4.0000	-4.9553	-3.0447
) -	PP42	-3.5000	-4.5951	-2.4049
,			5 0550	
	PP43	-5.0000	-5.9553	-4.0447
)	PP44	-5.0000	-5.9553	-4.0447

(page date: 15-NOV-91)

2 2.6.10 Partition Coefficients and Retardations

3

s A partitioning or distribution coefficient (K_d) , which describes the intensity of sorption, is used to calculate the partitioning of species such as radionuclides between the groundwater and rock and, thereby, calculate the sorption capacity or retardation (R). A K_d value cannot be extrapolated with confidence to physiochemical conditions that differ from those under which the experimental data were obtained.

10

The recommended K_d cumulative distributions reported in Tables 2.6-8 and 2.6-9 are 11 considered to be realistic in light of available data, but require a number of subjective 12 13 assumptions that ongoing experiments may invalidate. The distributions were derived from an internal expert-judgment process regarding radionuclide retardation in the Culebra, which 14 convened in April and May, 1991. The three Sandia experts involved were Robert G. Dosch 15 (6212), Craig F. Novak (6344), and Malcolm D. Siegel (6315). The three experts participated 16 in individual elicitation sessions for the purpose of developing probability distributions for 17 the distribution coefficients for americium, curium, lead, neptunium, plutonium, radium, 18 thorium, and uranium, for two sets of conditions. The first is the nature of the transport 19 fluid: essentially Culebra or Salado brine. The second is whether the retardation takes place 20 21 in the dolomite matrix or in the clay lining the fractures.

22

The K_d cumulative distributions that resulted from this panel are provided in Tables 2.6-8 and 2.6-9. The distributions are derived from a combination of values from two of the participants; a decision was made to not use Siegel's values in the 1991 PA calculations, as explained in the discussion that follows the tables. The rationales behind Dosch' and Novak's values are briefly described below; a more thorough description of Novak's values is provided in Appendix A of this report (Novak, September 4, 1991, Memo).

29

Dosch reviewed data from several experiments on distribution coefficients for various 30 31 actinides in a variety of mediums. His own work (Lynch and Dosch, 1980) was included in his data set. He believed that even though some experiments were conducted using mediums 32 different from the Culebra matrix and the Culebra clay, most of the data could not be 33 discounted (personal communication from S. Hora, September 1991 regarding expert panel 34 elicitation on May 1991). His justification for this was that experimental data directly 35 applicable to the issue at hand was so scarce that no relevant data should be disregarded. In 36 general, Dosch remarked that most of the experimental data deserved equal weight in any 37 38 judgments about the behavior of actinides in the Culebra matrix and clay. Dosch declined to give any probability distributions for thorium and lead because he did not believe himself 39 qualified to make enlightened assessments for those elements (personal communication from S. 40 Hora, September 1991, regarding expert panel elicitation on May 1991). 41

42

Novak examined available research that detailed the experimental measurement of K_{ds} using substrates and water compositions pertinent to transport in the WIPP system (Novak, 1991). He showed that (1) data are not available for all elements of interest, (2) almost no data exist for clay substrates in the Culebra, and (3) existing data may not be applicable to current human-intrusion scenarios. In this study (Novak, 1991), Novak also questioned the use of the K_d model for estimating radionuclide retardation in the Culebra. Despite the limitations in existing data, Novak attempted to provide K_d values for use in the 1991 PA calculations.

Novak believes that the water composition called "Culebra H_2O " is the most representative 1 among available data for Case One, which assumed that water reaching the Culebra would not 2 change the composition of Culebra water significantly, except for the presence of 3 radionuclides. Brine A best represented Case Two, which assumed that water reaching the 4 Culebra would not be diluted and a concentrated brine contaminated with radionuclides 5 would flow through the Culebra. Within each case, K_d estimates were needed for 6 radionuclide sorption on the matrix (i.e., the dolomitic Culebra substrates), and in the 7 fractures (i.e., on clay materials lining fractures). Each type of water was used for both 8 matrix and fractures. Thus, for Case One, data from "Culebra H₂O" studies were used to 9 estimate K_d values where actual data were not available. Similarly, Brine A data were used 10 to estimate K_ds for Case Two. 11

12

Novak offered K_ds of 0 m³/kg for all cdfs because he thought it possible that any of the elements could be transported with the fluid velocity. Upper bounds represent Novak's opinions on maximum values for K_ds observable under human-intrusion scenarios (Novak, September 4, 1991, Memo [see Appendix A]). Novak chose different sets of fractiles for different radionuclides. These represent his best estimates resulting from his studies of existing data and literature.

19

Novak further states that values obtained through the expert elicitation process are subjective estimates only because of large uncertainties in water composition, mixing within the Culebra, and the questionable utility of the K_d model. Finally, Novak argues that these cdfs for K_ds do not substitute for actual data, and believes that additional study is needed to quantify the potential for radionuclide retardation in the Culebra (Novak, September 4, 1991, Memo [Appendix A]).

2 3

Table 2.6-8. Cumulative Density Function for Partition Coefficients for Culebra Dolomite Member within Matrix Dominated by Culebra Brine (average of Dosch and Novak estimates)

Element	Median		Range	Partition Coefficient	Probability	Units	Source
Am	1.86 x 10 ⁻¹	0.0	1 x 10 ²	0.0	0.0	m ³ /kg	See text.
				1 x 10 ⁻²	0.0139	, 0	
				9 x 10 ⁻²	0.236		
				1 x 10 ⁻¹	0.271		
				1.5 x 10 ⁻¹	0.437		
				2 x 10 ⁻¹	0.525		
				4 x 10 ⁻¹	0.627		
				1	0.71		
				1 x 10 ¹	0.829		
				1 x 10 ²	1		
Cm	1.86 x 10 ⁻¹	0.0	1 x 10 ²	0.0	0.0	m ³ /kg	See text.
				1 x 10 ⁻²	0.0139		
				9 x 10 ⁻²	0.236		
				1 x 10 ⁻¹	0.271		
				1.5 x 10 ⁻¹	0.437		
				2 x 10 ⁻¹	0.525		
				4 x 10 ⁻¹	0.627		
				1	0.71		
				1 x 10 ¹	0.829		
	_		_	1 x 10 ²	1		
Np	4.8 x 10 ⁻²	0.0	1 x 10 ²	0.0	0.0	m ³ /kg	See text.
				2.5 x 10 ⁻⁴	0.1		
				7.5 x 10 ⁻⁴	0.25		
				1.5 x 10 ⁻³	0.4		
				1 x 10 ⁻²	0.409		
				1 x 10 ⁻¹	0.625		
				2 x 10 ⁻¹	0.75		
				1 x 10 ¹	0.875		
	<u>^</u>			1 x 10 ²	1	•	
Pb	1 x 10 ⁻²	0.0	1 x 10 ¹	0.0	0.0	m ³ /kg	See text.
				1 x 10 ⁻³	0.25		
				1 x 10 ⁻²	0.5		
				1 x 10 ⁻¹	0.75		
				1	0.99		
D	0.04 - 40-1		4	1 x 10 ¹	1	o	•
Pu	2.61 x 10 ⁻¹	0.0	1 x 10 ²	0.0	0.0	m ³ /kg	See text.
				1 x 10 ⁻⁴	0.001		
				5 x 10-3	0.112		
				1 x 10 ⁻²	0.18		
				8 x 10 ⁻²	0.347		
				1 x 10 ⁻¹	0.386		
				3 × 10 ⁻¹	0.528		
				1	0.75		
				1 x 10 ²	1		

				Partition			
lement	Median		Range	Coefficient	Probability	Units	Source
Ra	1 x 10 ⁻²	0.0	1 x 10 ¹	0.0	0.0	m ³ /kg	See text.
				1 x 10 ⁻³	0.25	· -	
				1 x 10 ⁻²	0.5		
				2 x 10 ⁻²	0.639		
				1 x 10 ⁻¹	0.85		
				1	0.972		
				1 x 10 ¹	1	_	
Th	1 x 10 ⁻²	0.0	1	0.0	0.0	m ³ /kg	See text.
				5 x 10 ⁻³	0.25		
				1 x 10 ⁻²	0.5		
				1 x 10 ⁻¹	0.75		
				1	1		
U	2.58 x 10 ⁻²	0.0	1	0.0	0.0	m ³ /kg	See text.
				2.5 x 10 ⁻⁴	0.101		
				7.5 x 10 ⁻⁴	0.252		
				1.5 x 10 ⁻³ 5 x 10 ⁻²	0.404		
				5 x 10 - 1 1 x 10-1	0.574		
				2 x 10 ⁻¹	0.75 0.875		
				2 x 10 '	0.875		

Table 2.6-8. Cumulative Density Function for Partition Coefficients for Culebra Dolomite Member within
 Matrix Dominated by Culebra Brine (average of Dosch and Novak estimates) (Concluded)

GEOLOGIC BARRIERS Parameters for Culebra Dolomite Member of Rustler Formation

2Table 2.6-9.Cumulative Density Function for Partition Coefficients for Culebra Dolomite Member within3Fracture Dominated by Culebra Brine (average of Dosch and Novak estimates)

Element	Median		Range	Partition Coefficient	Probability	Units	Source
Am	9.26 x 10 ¹	0.0	1 x 10 ³	0.0	0.0	m ³ /kg	See text.
				9 x 10 ⁻¹	0.125		
				1	0.146		
				1.5	0.250		
				4	0.376		
				1 x 10 ¹	0.454		
				1 x 10 ³	1		
Cm	9.26 x 10 ¹	0.0	1 x 10 ³	0.0	0.0	m ³ /kg	See text.
				9 x 10 ⁻¹	0.125		
				1	0.146		
				1.5	0.250		
				4	0.376		
				1 x 10 ¹	0.454		
				1 x 10 ³	1		
Np	1	0.0	1 x 10 ³	0.0	0.0	m ³ /kg	See text.
				2.5 x 10 ⁻³	0.1		
				7.5 x 10 ⁻³	0.25		
				1.5 x 10 ⁻²	0.4		
				1	0.5		
-	() a 1			1 x 10 ³	1	o	_
Pb	1 x 10 ⁻¹	0.0	1 x 10 ²	0.0	0.0	m ³ /kg	See text.
				1 x 10 ⁻²	0.25		
				1 x 10 ⁻¹	0.5		
				1	0.75		
				1 x 10 ¹ 1 x 10 ²	0.99		
Pu	2.02 x 10 ²	0.0	1 x 10 ³	0.0	1 0.0	m ³ /kg	See tout
Fu	2.02 X 10-	0.0	1 X 100	5 x 10 ⁻²		me/kg	See text.
				8 x 10-1	0.05 0.125		
				1	0.125		
				3	0.130		
				1 x 10 ¹	0.231		
				1 x 10 ³	1		
Ra	3.41 x 10 ⁻²	0.0	1 x 10 ²	0.0	0.0	m ³ /kg	See text.
			-	1 x 10-2	0.225		2
				5 x 10 ⁻²	0.225		
				1 x 10 ⁻¹	0.75		
				1	0.875		
				' 1 x 10 ¹	0.875		
				1 x 10 ²	1		

				Partition			
Element	Median		Range	Coefficient	Probability	Units	Source
Th	1 x 10 ⁻¹	0.0	1 x 10 ¹	0.0	0.0	m ³ /kg	See text.
		0.0		5 x 10 ⁻²	0.25	, g	
				1 x 10 ⁻¹	0.5		
				1	0.75		
				1 x 10 ¹	1		
U	7.5 x 10 ⁻³	0.0	1	0.0	0.0	m ³ /kg	See text.
				2.5 x 10 ⁻³	0.2		
				7.5 x 10 ⁻³	0.5		
				1.5 x 10 ⁻²	0.8		
				1	1		

 Table 2.6-9.
 Cumulative Density Function for Partition Coefficients for Culebra Dolomite Member within

 Fracture Dominated by Culebra Brine (average of Dosch and Novak estimates)

 2

(page date: 15-NOV-91)

GEOLOGIC BARRIERS Parameters for Culebra Dolomite Member of Rustler Formation

2 Discussion (Siegel, 1991):

3

The estimates provided by Siegel are similar to those he provided for the 1990 PA calculations and are shown in Tables 2.6-10 and 2.6-11. The decision to not incorporate these numbers into the 1991 panel's distributions was based on discussions with Steve Hora (University of Hawaii at Hilo) who conducted Siegel's elicitation session and who has worked extensively in the area of expert-judgment elicitation (e.g., U.S. NRC, 1990). The decision to not combine Siegel's values with the other two participants' responses was based on Siegel's values being fundamentally different from those provided by the other experts.

11

For example, two of the experts, Dosch and Novak, provided points on probability 12 distributions that reflected their best judgments about the possible levels of retardation. 13 Siegel chose, instead, to provide upper bounds on the fractiles of a probability distribution. 14 Thus, the information obtained from Siegel is inherently different than the information 15 obtained from the other two experts. The strategy that Siegel employed was to examine 16 experimental evidence, determine a range of values for a specific quantile such as the median 17 of the uncertainty distribution, and select the most conservative value from this range. 18 Because experimental evidence is meager, Siegel did not believe that a sufficient scientific 19 basis was available to justify forming a complete uncertainty distribution. He thus chose to 20 bound the distribution. 21

22

Because the responses are fundamentally different, any attempt to aggregate Siegel's responses with the other participants would have led to an end product with no interpretable meaning. For this reason, Siegel's responses were not combined with those of the other experts and are not used in the 1991 performance assessment. The assessments provided by Siegel, however, are similar to those provided in 1990, which were used in the 1990 performance assessment.

2	Та
3	

Table 2.6-10. Cumulative Density Function for Partition Coefficients for Culebra Dolomite Member within Matrix Dominated by Culebra Brine (estimated by Siegel, 1991, 1990)

Element Median	Range		Partition Coefficient ^a		Probability	Units	Sourceb	
			1991	(1990)	-			
Am	1.2 x 10 ⁻¹	0.0	3.8 x 10 ⁻¹	0.0		0.0	m ³ /kg	Anderson et al., 1991;
				1 x 10 ⁻¹		0.25		Siegel, 1990; Lappin
				1.2 x 10 ⁻¹	(1.1 x 10 ⁻¹)	0.50		et al., 1989, Table
				2 x 10 ⁻¹		0.75		3-14, E-10, E-11, E-12
				3.80 x 10 ⁻¹		1.0		
Cm	8 x 10 ⁻¹	0.0	1.6	0.0			m ³ /kg	Anderson et al., 1991;
				4 x 10 ⁻¹	(1 x 10 ⁻¹)	0.25		Siegel, 1990; Lappin
				8 x 10 ⁻¹	ng	0.50		et al., 1989, Table
				1.2	(2 x 10 ⁻¹)	0.75		3-14, E-10, E-11, E-12
				1.6	(1.2 x 10 ¹)	1.0		
Np	6 × 10 ⁻⁴	0.0	7.4 x 10 ⁻³	0.0			m ³ /kg	Anderson et al., 1991;
				3 × 10 ⁻⁴	(5 x 10 ⁻⁵)	0.25		Siegel, 1990; Lappin
				6 x 10 ⁻⁴	(1 x 10 ⁻⁴)	0.50		et al., 1989, Table
				1.5 x 10 ⁻³	ng	0.75		3-14, E-10, E-11, E-12
	-			7.4 x 10 ⁻³	(1 x 10 ⁻²)	1.0	_	
Pu=Th	8 x 10 ⁻²	0.0	1	0.0			m ³ /kg	Anderson et al., 1991;
				2.5 x 10 ⁻²		0.25		Siegel, 1990; Lappin
				8 x 10 ⁻²		0.50		et al., 1989, Table
				2 x 10 ¹	(1 x 10 ⁻¹)	0.75		3-14, E-10, E-11, E-12
_			2	1	(1.05)	1.0	•	
Ra=Pb	5 x 10 ⁻⁴	0.0	1 x 10 ⁻³	0.0			m ³ /kg	Siegel, July 14, 1989
				2.5 x 10 ⁻⁴	ng	0.25		June 25, 1991, Memo
				5 x 10 ⁻⁴	(6 x 10 ⁻⁴)	0.50		(see Appendix A);
				7.5 x 10 ⁻⁴	(1 x 10 ⁻³)	0.75		Siegel, 1990; Lappin
	1			1 x 10 ⁻³	(7.5 x 10 ⁻³)) 1.0	2 //	et al., 1989, Table 3-1
U	6 x 10 ⁻⁴	0.0	7.4 x 10 ⁻³	0.0			m ³ /kg	Anderson et al., 1991;
				3 x 10 ⁻⁴	ng	0.25		Siegel, 1990; Lappin
				6 x 10 ⁻⁴	(1 1 2 3)	0.5		et al., 1989, Table
				1.5 x 10 ⁻³	(1 x 10 ⁻³)	0.75		3-14, E-10, E-11, E-12
				7.4 x 10 ⁻³	(7.5 x 10 ⁻³)) 1.0		

- 53
- 5**5**

2	I	a
3		

5

 Table 2.6-11.
 Cumulative Density Function for Partition Coefficients for Culebra Dolomite Member within Fracture Dominated by Culebra Brine (estimated by Siegel, 1991, 1990)

Element Median	Median Range			Partition Coefficient ^a		Units	Sourceb
			1991	(1990)		enne.	Course
2.3	0.0	4.1	0.0			m ³ /ka	Anderson et al., 1991;
-			5 x 10 ⁻¹	(2 x 10 ⁻¹)	0.25	,	Siegel, 1990; Lappin
			2.3		0.5		et al., 1989, Table
			3	• •	0.75		3-14, E-10, E-11, E-12
			4.1	, ,	1.0		- , - , - ,
2.7	0.0	1.6 x 10 ²	0.0			m ³ /ka	Anderson et al., 1991;
				(2 x 10 ⁻¹)	0.25	,	Siegel, 1990; Lappin
							et al., 1989, Table
			1.9 x 10 ¹				3-14, E-10, E-11, E-12
				()			0, 2 .0, 2 , 2 . 2
5 x 10 ⁻²	0.0	1.25				m ³ /ka	Anderson et al., 1991;
				(1 x 10 ⁻³)	0.25	/	Siegel, 1990; Lappin
			5 x 10 ⁻²				et al., 1989, Table
							3-14, E-10, E-11, E-12
			1.25				•••,=••,=••,=••
3 x 10 ⁻¹	0.0	4 x 10 ¹	0.0	()		m ³ /ka	Anderson et al., 1991;
			1.5 x 10 ⁻¹	(1 x 10 ⁻¹)	0.25	, 0	Siegel, 1990; Lappin
				, <i>,</i>			et al., 1989, Table
			2.3				3-14, E-10, E-11, E-12
			4 x 10 ¹		1 x 10		. , ,
5 x 10 ⁻²	0.0	1 x 10 ⁻¹	0.0			m ³ /kg	Seigel, July 14, 1989,
			2.5 x 10 ⁻²	(1 x 10 ⁻³)	0.25	, .	and June 25, 1991,
			5 x 10 ⁻²	(1 x 10 ⁻²)	0.50		Memos (see Appendix
			7.5 x 10 ⁻²	(2 x 10 ⁻²)	0.75		A); Siegel, 1990; Lappi
			1 x 10 ⁻¹	(5 x 10 ⁻²)	1.0		et al., 1989, Table 3-15
5 x 10 ⁻²	0.0	1.25	0.0			m ³ /kg	Anderson et al., 1991;
			2 x 10 ⁻²	(1 x 10 ⁻³)	0.25	, .	Siegel, 1990; Lappin
			5 x 10 ⁻²	(1 x 10 ⁻²)	0.5		et al., 1989, Table
			6.5 x 10 ⁻¹	(2 x 10 ⁻²)	0.75		3-14, E-10, E-11, E-12
			1.25	(5 x 10 ⁻²)	1.0		- , -, -,
	5 x 10 ⁻² 3 x 10 ⁻¹ 5 x 10 ⁻²	2.7 0.0 5×10^{-2} 0.0 3×10^{-1} 0.0 5×10^{-2} 0.0	2.7 0.0 1.6×10^2 5×10^{-2} 0.0 1.25 3×10^{-1} 0.0 4×10^1 5×10^{-2} 0.0 1×10^{-1}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

1 General Rationale for Values Recommended by Siegel (1990)

2

8 The general rationale for selecting the K_d value in each percentile of the cdf follows (Tables 5 2.6-10 and 2.6-11). Separate K_d distributions are given for the dolomite matrix and the clays 6 lining the fractures in the Culebra Dolomite Member. In general, the recommended K_d 7 values were reduced by several orders of magnitude from experimental K_d data. Many of the 8 K_ds reported for the actinides are in the range of 10,000 to 100,000 mL/g (Lappin et al., 9 1989, Table 3-14). The following summarizes the discussion presented in Lappin et al. 10 (1989).

11

The uncertainties in the composition of water in the Culebra Dolomite that will be produced by mixing fluids from the repository and aquifer require that large ranges of pH, Eh, organic content, and carbonate content of the groundwaters be considered in choosing K_d values. These possible variations in solution chemistry could result in order-of-magnitude changes of the K_ds from the values obtained in the experimental studies. The K_d values chosen for each element are explained further below.

18

19 Culebra brine is assumed to dominate the groundwater chemistry. The Culebra brine is 20 represented by the average composition of a brine sample from well H-2b and H-2c.

21

Plutonium, Americium, and Curium. K_d values for plutonium are decreased from the values in Paine (1977), Dosch (1979), and Tien et al. (1983), because of the potential effect of carbonate complexation and competition for sorption sites by competing cations. K_d values for americium are decreased from cited values because of the potential effects of organic complexation and competition. K_d values for curium were decreased from the values listed in Tien et al. (1983) based on the assumption of behavior similar to americium and europium.

28

Uranium and Neptunium. In general, low K_ds for uranium and thorium have been measured in waters relevant to the WIPP repository. Low values ($K_d = 1$ or 10) have been assumed here to account for the possible effects of complexation and competition.

32

Thorium. There are very few data for thorium under conditions relevant to the WIPP. Thorium K_d values were estimated from data for plutonium, a reasonable homolog element for thorium (Krauskopf, 1986).

36

Radium and Lead. Siegel assumed that sorption of lead and radium will be controlled by the amount of clay in the matrix (1%) and fracture-filling clay (100%). (Note the fractures are assumed to be 50% filled by clays in the calculation of the retardation factor.) The matrix K_{ds} are obtained from the clay K_{ds} by multiplying by a utilization factor of 0.01 as discussed in Lappin et al. (1989). The maximum values are based on Tien et al. (1983) as cited in Lappin et al., (1989, Table 3-15).

Available data suggest that radium will sorb onto clays that are similar to those identified 1 within the matrix and lining fractures in the Culebra Dolomite. The same data indicate that 2 the degree of sorption is dependent upon the solution composition. Based on this 3 information, values of 100 and 5 ml/g were chosen to represent the sorption of radium and 4 lead onto clays in the Culebra. These K_d values correspond to sorption in dilute to 5 moderately saline Culebra groundwaters (Case 1) and solutions with high contents of salt and 6 organic ligands (Case 2), respectively. Retardation factors for the bulk matrix were 7 calculated using the K_d values and a utilization factor of 0.01 to account for the occurrence 8 of the clay as a trace constituent in the dolomite matrix. 9

- 10
- 11 General Rationale for Constructing Cumulative Distributions
- 12

The general rationale for selecting the K_d value in each percentile of the cumulative distribution follows (Tables 2.6-9 and 2.6-10).

15

16 Dolomite Matrix. A description of distributions for dolomite matrix is given below.

17

18 100th percentile: The highest K_d value for each radionuclide for the Culebra brine was used 19 for the 100th percentile. If data for this brine were not available, the highest minimum value 20 of the ranges from experiments carried out in WIPP Solutions A, B, and C (see Table 3-16 in 21 Lappin et al., 1989) was used. The use of the minimum values introduces a degree of 22 conservatism in the distributions. Data from experiments that include organic ligands were 23 not considered.

24

75th percentile: The K_d values for the 75th percentile represent a compromise between the empirical data that show that sorption will occur under WIPP-specific conditions and theoretical calculations that suggest that many factors can decrease the extent of sorption significantly under other conditions that are possible in the Culebra. The values are identical to those used in Case I of Lappin et al. (1989, Table E-10).

30

50th percentile: The lowest reported K_d value for Culebra brine was used for the 50th percentile. If no data for Culebra brine were available, the lowest of the values reported for organic-free WIPP Solutions A, B, and C was used.

34

25th percentile: The 25th percentile represents conditions under which the solution chemistry is dominated by the influx of inorganic salts from the Salado and Castile Formations and includes the additional effects of organic ligands. The K_d values are identical to those of Case IIB of Lappin et al. (1989, Table E-10).

39

40 *Oth percentile:* The use of a K_d value of zero increases the conservatism of the distribution 41 because there is evidence some sorption will occur (Lappin et al., 1989, Table 3-14). 42 1 Clay in Fractures. A description of distributions for clay in fractures is given below. For 2 the 1990 calculations, the fracture K_d values used were 3 orders of magnitude lower than the 3 estimates provided.

4

75th and 50th percentiles: The values in Table E-11 in Lappin et al. (1989) and the lowest
value for Culebra brine were compared; the larger of the two values was used for the 75th
percentile. The smaller value was used for the 50th percentile. If no data for Culebra brine
were available, the lowest value reported for WIPP Solutions A, B, and C (organic-free) was
compared to the value in Table E-11, and the smaller value was used for the 50th percentile.

11 25th percentile: The 25th percentile represents conditions under which the solution chemistry 12 is dominated by the influx of inorganic salts from the Salado and Castile Formations and 13 includes the additional effects of organic ligands. The K_d values are identical to those of 14 Case IIB of Lappin et al. (1989, Table E-11).

15

10

16 *Oth percentile:* The use of a K_d value of zero increases the conservatism of the distribution 17 because there is evidence some sorption will occur (Lappin et al., 1989, Table 3-14).

GEOLOGIC BARRIERS Parameters for Culebra Dolomite Member of Rustler Formation

2 Retardation

3

4 For codes requiring retardation, the retardation for the matrix was calculated using the 5 standard expression for retardation in a porous matrix (Freeze and Cherry, 1979, p. 404):

6 789 10

$$R_{\rm m} = 1 + \rho_{\rm b} K_{\rm d} / \phi_{\rm m}$$
(2.6-1)

11 The retardation factor for the fractures was calculated from (Neretnieks and Rasmusson, 12 1984):

$$R_{f} = 1 + \rho_{b} K_{d} b_{c} / b$$
 (2.6-2)

18 where

19

13

20 $b_c =$ thickness of the minerals (e.g., clay) lining both sides of the fracture ($b_c/b = 0.5$, 21 Table 2.6-1)

b = fracture aperature

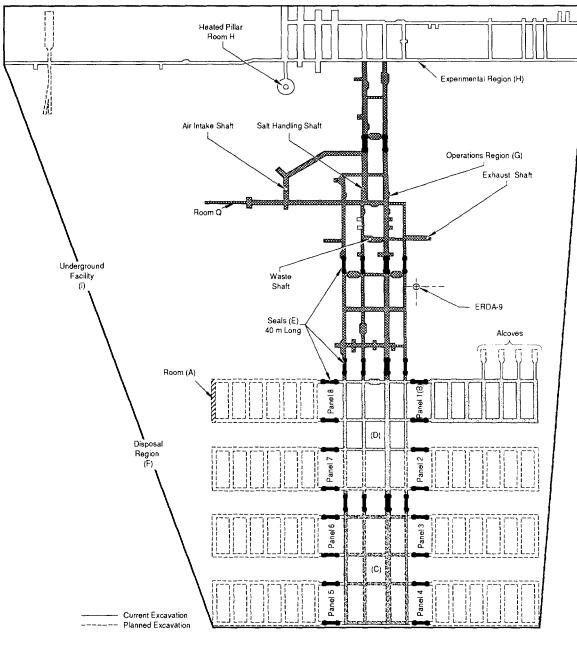
- 23 K_d = partition coefficient (Tables 2.6-8 and 2.6-9)
- 24 $\phi_{\rm m}$ = matrix porosity (Table 2.6-1)
- 25 $\rho_{\rm b}$ = bulk density of material (Table 2.6-1) = $(1 \phi)\rho_{\rm g}$

26

2

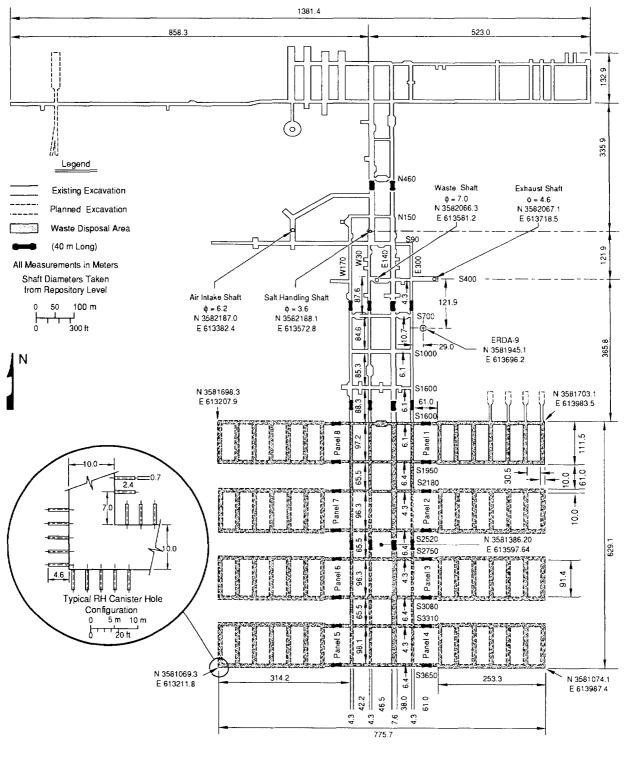
3. ENGINEERED BARRIERS AND SOURCE TERM

- 3
- 4 6


The engineered barriers consist of the repository design, waste form, seals, and backfill. Also

- 7 discussed in this chapter are characteristics of the waste such as inventory of radionuclides
 8 and hazardous chemicals, solubility, and gas production potential.
- 9

2 3.1 Dimensions of Underground Facility


3

The WIPP repository is composed of a single 15-ha (38-acre) underground disposal level 5 constructed in one stratigraphic interval, which dips slightly to the south. The repository 6 level consists of an experimental region at the north end, the operations region in the center 7 for waste-handling and repository equipment maintenance, and a disposal region at the south 8 end. Figures 3.1-1 and 3.1-2 show the excavated and enclosed areas in the WIPP repository, 9 and the planned dimensions of the WIPP disposal region and access drifts. The UTM 10 coordinates shown in Figure 3.1-2 are derived from the state plane coordinates reported in 11 Gonzales, 1989. To maintain consistency with coordinate values reported elsewhere in this 12 volume, the UTM coordinates were computed by the Technology Application Center, 13 University of New Mexico, Albuquerque, New Mexico 87106. Table 3.1-1 provides a 14 15 summary of the excavated and enclosed areas and initial volumes of excavated regions (not considering disturbed rock zone [DRZ] or closure). At present, only the first panel has been 16 excavated. 17

TRI- 6334-206-1

Figure 3.1-1. Excavated and Enclosed Areas in the WIPP Repository.

TRI- 6334-198-2

Figure 3.1-2. Planned Dimensions of WIPP Disposal Region and Access Drifts. (Dimensions originally specified in units of feet.) (after Bechtel, 1986)

(page date: 15-NOV-91)

Table 3.1-1. Summary of Excavated and Enclosed Areas and Initial Volumes of Excavated Regions within the WIPP Repository, Not Considering the DRZ or Closure (Rechard et al., 1990b, Table A-12)

Region*	Area Excavated (10 ³ m ²)	Enclosed (10 ³ m ²)	Excavated (10 ³ m ³)	Enclosed (10 ³ m ³)
Room (A)	0.9197	0.9197	3.644	3.644
One panel excluding seals (B)	11.64	29.42	46.10	116.59
Southern equivalent panel excluding seals (C)	8.820	49.46	32.26	180.90
Northern equivalent panel excluding seals (D)	9.564	53.68	34.98	196.34
Panel seals (20) (E)	4.133		15.119	
Total disposal region (F)	111.52	506.8	436.0	2008.0
Operations region (G)	21.84	283.6	78.07	1037.2
Four shafts (only) to base of Rustler Fm.	0.08691	0.08691	34.76	34.76
Experimental region (H)	21.61	298.1	71.90	1090
Total facility (I)	152.83	1748	583.4	6926
*Regions shown in Figure 3.1-1; detailed dime	nsions shown in F	igure 3.1-2.		

2 3.1.1 Disposal Region

3

5 All of the underground openings are rectangular in cross section. The disposal area drifts are generally 3.96 m (13 ft) high by 4.3 m (14 ft) wide; the disposal rooms are 4 m (13 ft) high, 6 7 10 m (33 ft) wide, and 91.4 m (300 ft) long. The width of the pillars between rooms is 30.5 m (100 ft). The total excavated volume in the disposal region is 4.334 x 10^5 m³ (1.53 x 8 107 ft³). The reported design disposal volume is 1.756 x 10⁵ m³ (6.2 x 10⁶ ft³) or about 36% 9 of the excavated volume (Bechtel, 1986). The disposal volume, however, for waste changes 10 depending on the type of containers, waste form, and volume of panel seals. Hence, the 11 design volume is discussed in the description of the containers (Section 3.1.5). 12

2 3.1.2 Experimental Region

3

4 The experimental region (Figure 3.1-2) is located in the northern portion of the underground 5 facility and consists of over ten rooms, which are used for in situ testing of salt creep and

- 6 brine inflow (Matalucci, 1987, pp. 3,15). The sizes of the rooms vary, depending on the
- 7 experiment. The excavated area of the experimental region is about 21.61 x 10^3 m² (23.2 x 10^4 ft²), and its volume is about 71.90 x 10^3 m³ (25.3 x 10^5 ft³) (Table 3.1-1).
- 9

ENGINEERED BARRIERS Dimensions of Underground Facility

2 3.1.3 Operations Region

3

4 The operations region (Figure 3.1-2) consists of the access drifts located in the center of the

5 underground facility. The drifts are used for transport of equipment and personnel to the

6 experimental area and disposal region. All four shafts are connected to the operations region.

7 The excavated area of the operations region is $21.84 \times 10^3 \text{ m}^2$ (23.4 x 10^4 ft^2), and its volume

- 8 is 78.07 x 10^3 m³ (27.6 x 10^5 ft³) (Table 3.1-1).
- 9

2 3.1.4 Shafts

3

The four shafts connecting the underground facility to the surface are (1) the Air Intake Shaft, 6.2 m (20 ft) in diameter; (2) the Exhaust Shaft, 4.6 m (15 ft) in diameter, (3) the Salt Handling (C&SH) Shaft, 3.6 m (12 ft) in diameter, and (4) the Waste Shaft, 7 m (23 ft) in diameter (Figure 3.1-2).

During operations, the Salt-Handling Shaft will transport personnel, equipment, and salt. The Waste Shaft will transport the waste, and the Air Intake and Exhaust Shafts will provide air flow. The Air Intake Shaft will also serve as a backup for transporting personnel and equipment.

14

At present, the shaft functions are the same as those described above, except that the Waste
Shaft is not currently used to transport waste. It serves as a backup for transport of
personnel and materials.

18

The Air Intake Shaft, the most recently constructed shaft (1988), provides fresh air to the underground. It also serves as a backup for transporting personnel and materials. In addition, in situ testing is being performed to investigate the disturbed rock zone (DRZ) surrounding the shaft and hydrologic properties of the Rustler Formation (Nowak et al., 1990).

24

The Exhaust Shaft, drilled in 1983-84, serves as the primary air exhaust for the underground facility (Bechtel, 1985).

27

The Salt-Handling Shaft (formerly called the Construction and Salt-Handling [C&SH] Shaft and the Exploratory Shaft [Bechtel, 1985]) was drilled in 1981. It was used during construction of the WIPP repository to remove salt and serve as the primary transport for personnel and equipment. The Salt-Handling Shaft continues to serve as the primary transport for personnel and equipment and as a secondary air supply to the underground facility.

34

The Waste Shaft (initially called the Ventilation Shaft) is designed to move radioactive waste between the surface waste-handling facilities and the underground facility. The Ventilation Shaft was enlarged from 2 m (6 ft) diameter to 6 m (20 ft) diameter in 1983-84, when it was renamed the Waste Shaft (Bechtel, 1985). Until waste transport begins, the Waste Shaft serves as a secondary means to transport personnel, materials, large, equipment, and diesel fuel. The Waste Shaft can continue to serve as backup for transporting personnel and materials whenever waste is not being transported.

42

All four shafts will be backfilled upon decommissioning of the WIPP (Nowak et al., 1990).

2 3.1.5 Waste Containers

3

Contact-handled (CH) transuranic (TRU) waste to be shipped to the WIPP is currently stored 4 in 55-gal. drums, metal boxes, and fiberglass-reinforced plywood (FRP) boxes of various 5 sizes (Table 3.1-2). The WIPP Waste Acceptance Criteria (see Section 3.4, Table 3.4-2) 6 requires a metal overpack for all combustible boxes as a fire prevention measure, so FRP 7 boxes and any other non-metal boxes will be overpacked and subsequently handled and 8 disposed of in these overpacks. Furthermore, TRUPACT II, the transportation container for 9 trucking TRU waste to the WIPP has space only for 7-pack drums and SWBs; hence, large 10 boxes will have to be repacked unless a new transportation container is built in later years. 11 CH-TRU waste in drums will be stacked three high in the waste-storage rooms. 12

13

The reference canister for the remotely handled (RH) TRU waste is a 0.65-m (26-in.) O.D. (outside diameter) right-circular cylinder made of 1/4-in. carbon steel plate. Caps are welded at both ends. The canister is 3 m (10 ft) in length, including the handling pintle. Inside, the waste occupies about 0.89 m³ (30 ft³) (U.S. DOE, 1990d).

	Approximate Dimensions		Volume	
Container Description	(h x w x l) m	Internal m ³	External m ³	Packing m ³
Approved for transportation:				
DOT 17C (metal) 55-gal				
steel drums	0.9 x 0.1 dia.	0.208	0.21	
7-Pack of 55-gal				
steel drums		1.451	1.47	2.2
Standard waste box	0.94 x 1.8 x 1.3	1.90	1.95	2.34
(Dwg 165-F-001-W)	0.04 × 1.0 × 1.0	1.00	1.55	2.04
Other storage containers:				
Steel box	1.2 x 1.2 x 1.2		2.3	
Steel box	2.0 x 1.7 x 2.8		9.5	
Steel box (FRP box	1 4 1 4 0 0			
overpacked)	1.4 x 1.4 x 2.2		4.1	
Plywood Box	1.2 x 1.2 x 1.7		3.17	

Table 3.1-2. CH-TRU Waste Containers (U.S. DOE, 1990a, Dwg 165-F-001-W)

2 3.1.6 Waste Placement and Backfill in Rooms

3

Figure 3.1-3 shows the ideal packing configuration of drums in the rooms and drifts. At the A 6 waste storage room, the waste packages (7-packs) will be removed from the transporter and stacked 3 high and 6 wide across the room. In the ideal packing configuration, a total of 7 6,804 drums (972 7-pack units) can be placed in one room. A 0.711-m air gap exists above 8 the drums; also a thin plastic pallet is set between layers. For the 1991 calculations, the q plastic sheet was assumed to be 0.30-m thick, consistent with the Bechtel initial reference 10 11 design report (1986). Recently developed final plans (U.S. DOE, 1990d) for the plastic sheet call for 0.004-m-thick plastic on the top and bottom; hence, slightly more salt backfill will be 12 used. 13

14

The standard waste box stacking (SWB) configuration depends upon the box size (Figure 3.1-4). Seven-packs and SWBs may be intermixed, as practical. To reach the original design capacity of 175,600 m³ (6.2×10^6 ft³), the SWBs were also assumed to be stacked three high. However, current plans call for stacking the SWBs only two high, which substantially reduces the disposal capacity of the WIPP.

20

The current placement technique for RH TRU waste in the WIPP is to emplace one canister horizontally every 2.4 m (8 ft) into the drift and room walls. Based on this technique, the capacity in each panel for RH-TRU canisters along drifts and rooms 10-m wide is 874 canisters or about 6,000 m³. The intended capacity for RH-TRU waste is 7,080 m³ (250,000 ft³); hence, additional methods will be explored. Current PA calculations assume a capacity of 7,080 m³.

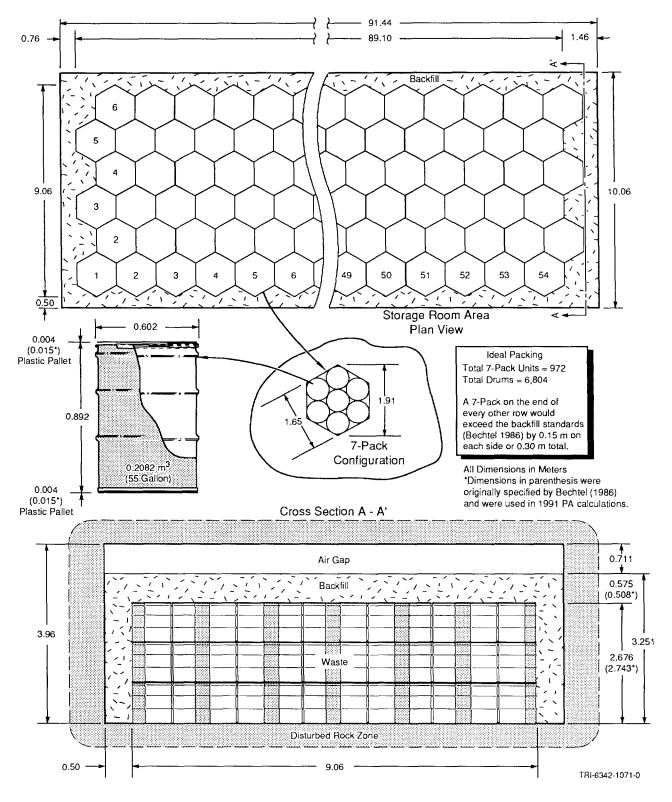


Figure 3.1-3. Ideal Packing of Drums in Rooms and 10-m-wide Drifts.

(page date: 15-NOV-91)

(database version: X-2.19PR)

ENGINEERED BARRIERS Dimensions of Underground Facility

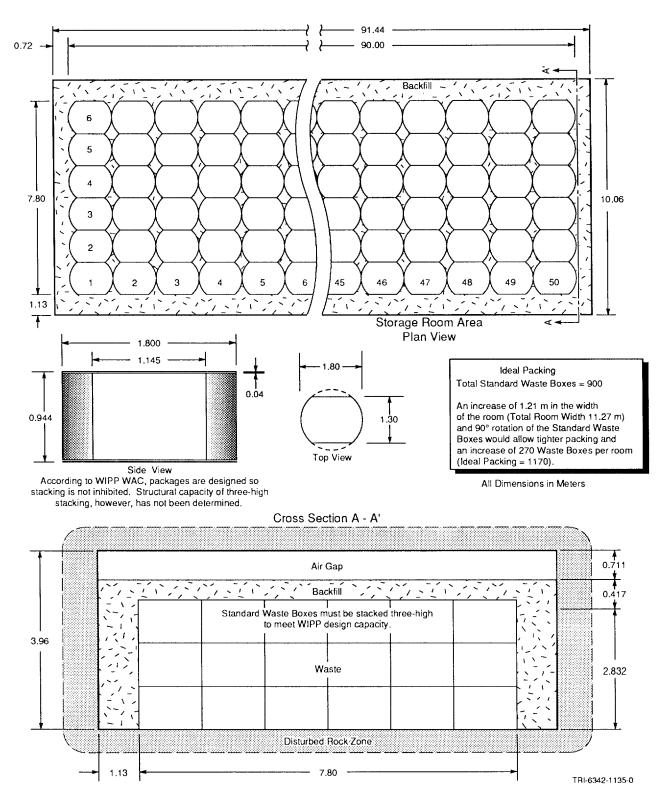


Figure 3.1-4. Ideal Packing of Standard Waste Boxes in Rooms and Drifts.

3.2 Parameters for Backfill Outside Disposal Region 2

3 5

6 7

This section presents parameters (such as permeability and porosity) for backfill placed in the shafts and access drifts when WIPP is decommissioned (Table 3.2-1).

					Distribution	
Parameter	Median	Rang	e	Units	Туре	Source
Preconsolidated Salt (Lo	ower shaft, dr	ifts, panels)				
Density (p)				_		
Initial		0.8 ₉ Salado)		kg/m ³	Constant	Nowak et al., 1990, Figure 11
Final	2.03 x 10 ³ (0.95¢Salado)		kg∕m ³	Constant	Sjaardema and Krieg, 1985 Arguello, 1988
Height (Lower shaft) Permeability (k)		1 x 10 ²	3 x 10 ²	m	Uniform	Nowak et al., 1990, p. 14.
Initial	1 x 10 ⁻¹⁴			m ²	Constant	Holcomb and Shields, 1987, Figure 4
Final	1 x 10-20	3.3 x 10 ⁻²¹	3.3 x 10 ⁻²⁰	m ²	Lognormal	Holcomb and Shields, 1987 Figure 4; Nowak et al., 1990 Figure 11, p. 14.
Salt Backfill in Drifts						
Density (ρ)	-			~		
Initial	1.28 x 10 ³ (0.6pSalado)		kg/m ³	Constant	Nowak et al., 1990, Figure 11
Final	2.03 x 10 ³ ł	(0.95¢Salado)		kg∕m ³	Constant	Sjaardema and Krieg, 198 Arguello, 1988
Permeability (k)				•		
Initial	1 x 10 ⁻¹¹			m ²	Constant	Holcomb and Shields, 1987, Figure 4
Final	1 x 10 ⁻²⁰	3.3 x 10 ⁻²¹	3.3 x 10 ⁻²⁰	m ²	Lognormal	Holcomb and Shields, 1987, Figure 4; Nowak et al., 199 Figure 11, p. 14.
Partition Coefficients fo	r Salt Backfill					
Am	1 x 10 ⁻⁴			m ³ /kg	Constant	Lappin et al., 1989, Table D
Am				/	000000	(K _{dclay} /1000)
Np	1 x 10 ⁻⁵			m ³ /kg	Constant	Lappin et al., 1989, Table D
· •				, 0		(K _{dclay} /1000)
Pb	1 x 10 ⁻⁶			m ³ /kg	Constant	Lappin et al., 1989, Table D
						(K _{dclay} /1000)
Pu	1 x 10 ⁻⁴			m ³ /kg	Constant	Lappin et al., 1989, Table D
				_		(K _{dclay} /1000)
Ra	1 x 10-6			m ³ /kg	Constant	Lappin et al., 1989, Table D
				~	_	(K _{dclay} /1000)
Th	1 x 10 ⁻⁴			m ³ /kg	Constant	Lappin et al., 1989, Table E
	~			o	A	(K _{dclay} /1000)
U	1 x 10 ⁻⁶			m ³ /kg	Constant	Lappin et al., 1989, Table [(K _{dclay} /1000)
Concrete and Bentonite	9					
Permeability (k)	0.7. 10-10	1		m ²	Constant	Nowak et al. 1000 Figure 11 p.
Concrete	2.7 x 10 ⁻¹⁹			m² m²	Constant Constant	Nowak et al., 1990, Figure 11, p. Nowak et al., 1990, Figure 11, p.
Bentonite	1.4 x 10 ⁻¹⁹			111-	Constant	nowar et al., 1390, rigule 11, p.

(page date: 15-NOV-91)

3.2.1 Description of the Reference Design for Backfill

2

The purpose of the reference backfill design, which Sandia has developed for backfilling the WIPP repository, is to provide a common basis for calculations performed in modeling tasks such as performance assessment and sensitivity analysis (Nowak et al., 1990; Nowak and Tyler, 1989). The reference design is a starting point for developing experiments and analysis from which a detailed design will evolve.

8

9 General Backfill Strategy

10

In general, the entire underground facility and shafts will be backfilled. As part of the 11 reference design, portions of the backfill emplaced at several locations within the shafts and 12 various drifts, which are specially prepared (i.e., preconsolidated salt with concrete plugs), are 13 often termed "seals." However, the purpose of these prepared portions is not to act as the 14 sole seal for the shaft or drift (in general, all the backfill fulfills this function), but instead to 15 protect sections of the backfill from fluids (gases or liquids). Inhibiting fluids hastens 16 backfill consolidation and thus greatly increases the probability that the salt backfill will 17 rapidly (< 200 yr) assume properties similar to the surrounding host rock. Consequently, the 18 term seal is misleading; however, since it has been used throughout the WIPP Project, it is 19 also used here. 20

21

The strategy for backfilling specially prepared portions of the drift and shaft combines shortand long-term seal components; preconsolidated crushed salt is the principal long-term component in the Salado Formation salt. Clay -- a swelling clay material shown to be stable and to have low permeability to brines -- is the principal long-term component in the Rustler Formation. Concrete is the principal short-term component in both locations.

27

The combination of short- and long-term seals (backfill) is used so that short-term seals provide the initial sealing functions necessary until the long-term seal components become adequately reconsolidated (Nowak et al., 1990). Preconsolidated crushed-salt and clay components are expected to become fully functional for sealing within 100 yr after emplacement (Nowak and Stormont, 1987; Arguello, 1988). Then the long-term seals take over all sealing functions.

34

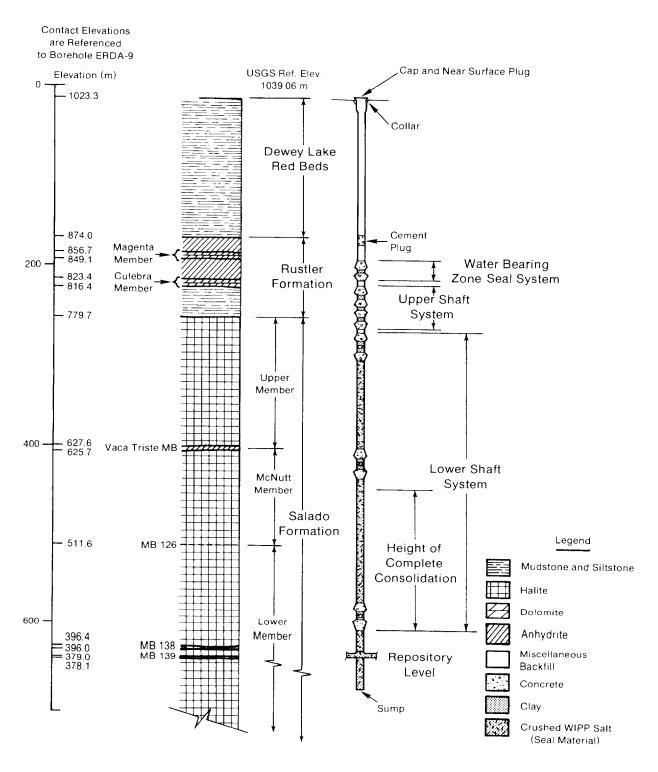
Short-term seal components consist of concretes developed specifically for the WIPP. The concrete components provide flow resistance to control the effects of possible gas generation in the waste disposal area and limit water inflow from above to protect the crushed salt from saturation with brine; they also provide physical containment for the swelling clay and consolidating crushed-salt materials (Nowak et al., 1990).

The long-term seals in the Salado consist of preconsolidated WIPP crushed salt in the shafts, 1 drifts, and panel entries. The emplaced crushed-salt material is intended to have an initial 2 density equal to 80% of the density of the intact WIPP host rock salt (80% relative density) 3 (Nowak et al., 1990). Within 100 yr of emplacement, the preconsolidated salt backfill will be 4 fully consolidated by creep closure of the host-rock salt to a state of low permeability, 5 approximately 1 x 10⁻²⁰ m² (Nowak and Stormont, 1987; Arguello, 1988; Lappin et al., 1989). 6 This permeability value is in the expected permeability range for the host-rock salt (1 x 10^{-21} 7 to 1 x 10⁻²⁰) (Nowak et al., 1988; Lappin et al., 1989). There is very little compositional 8 difference between the reconsolidated WIPP crushed-salt material and the surrounding host 9 rock from which it was mined. The crushed-salt seals, therefore, are expected to be 10 mechanically and chemically stable in the WIPP environment (Nowak et al., 1990). 11

12

13 Seal Locations

14


In the reference design, multicomponent seals between 30 and 40 m (100 and 130 ft) long will 15 be located in each of the four shafts, the entrances to the waste disposal panels, and selected 16 access drifts (Nowak et al., 1990). (See Figures 3.1-1 and 3.1-2 for seal locations.) Seals near 17 the Rustler Formation (upper shaft and water-bearing zone seals) serve to limit brine flow 18 from water-bearing zones down into the crushed-salt backfill. Seals in the drifts serve to 19 reduce fluid flow (gas and brine) from the repository area and thus limit the creation of a 20 preferred pathway for contaminant migration. The drift entries to each filled disposal panel 21 will be sealed during operations. The disturbed rock zone (DRZ), which occurs in the host-22 rock salt at the excavated openings, is expected to heal by creep closure (Nowak et al., 1990). 23 The extent of a DRZ in the drift entries may be reduced by the use of concrete liners during 24 operations. If necessary, however, the conceptual design for sealing the DRZ (both in drifts 25 and shafts) and anhydrite interbeds (e.g., MB139 directly underneath the disposal area) 26 envisions a salt-based grout (Nowak and Tyler, 1989) using grouting techniques that are 27 currently under development (Figure 3.2-3). When all disposal panels are filled, the drift 28 entries to the entire disposal area will be sealed. The shafts will be backfilled upon 29 decommissioning of the WIPP (Figures 3.2-1 and 3.2-2) (Nowak et al., 1990). 30

31

32 Backfill in Upper Shaft, Water-Bearing Zone, and Dewey Lake Red Beds

33

According to current calculations, movement of radionuclides does not reach the upper shaft in 10,000 yr. Therefore, the actual properties of the backfill in the upper shaft and above have not been used in the 1991 PA calculations and properties are not given. Instead the initial placement properties of the lower shaft have been used.

TRI-6342-311-2

Figure 3.2-1. Diagram of Typical Backfilled Access Shaft (after Nowak et al., 1990).

(page date: 15-NOV-91)

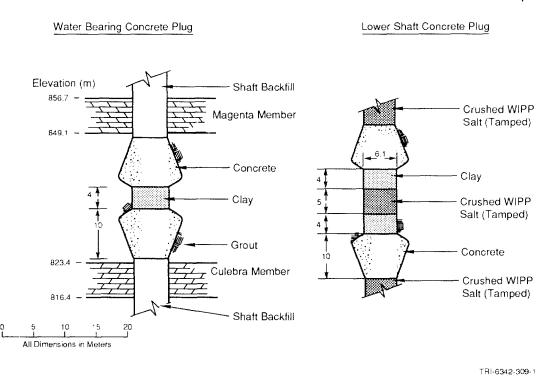
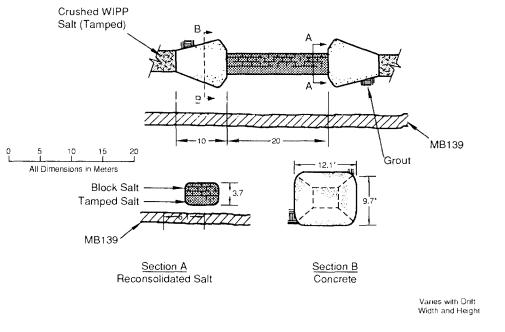



Figure 3.2-2. Diagram of Typical Concrete Plugs in Backfilled Shafts. The drawing shows concrete plugs between water-bearing units (e.g., Culebra Dolomite) (left) and for the Lower Shaft Backfill (e.g., at Vaca Triste) for Waste Shaft (right) (after Nowak et al., 1990).

TRI-6342-308-1

Figure 3.2-3. Diagram of Typical Concrete and Preconsolidated Salt Backfill for Drifts and Panels (after Nowak et al., 1990).

(page date: 15-NOV-91)

(database version: X-2.19PR)

3.2.2 Preconsolidated Salt Backfill in Lower Shaft, Drifts, and Panels

2 3

The reference seal uses preconsolidated (tamped) crushed WIPP salt as the primary long-term seal material. For redundancy, concrete plugs and clay (Figure 3.2-2) are emplaced at three locations in the shaft: (1) near the bottom of the shaft, (3) at an intermediate position in the shaft just below the Vaca Triste Marker Bed, and (3) near the top of the Salado Formation.

8

9 The emplaced WIPP crushed salt is intended to have an initial density equal to 80% of the 10 density of the intact WIPP host rock salt (80% relative density). Salt with 80% relative 11 density will be created either by pouring and tamping crushed salt or by laying 12 preconsolidated salt blocks. Creep closure of the lower part of the shaft will continue to 13 consolidate this crushed salt.

Parameter:	Density, initial (p)
Median:	$1.71 \text{ x } 10^3 (0.8 \rho_{\text{Salado}})$
Range:	None
Units:	kg/m ³
Distribution:	Constant
Source(s):	Nowak, E. J., J. R. Tillerson, and T. M. Torres. 1990. Initial Reference Seal System Design: Waste Isolation Pilot Plant. SAND90-0355. Albuquerque, NM: Sandia National Laboratories (Figure 11)
D	
Parameter:	Density, final (ρ)
Median:	$2.03 \times 10^3 (0.95 \rho_{\rm Salado})$
Range:	None kg/m ³
Units: Distribution:	Constant
Source(s):	Sjaardema, G. D. and R. D. Krieg. 1987. A Constitutive Model for
Source(s).	the Consolidation of WIPP Crushed Salt and Its Use in Analysis o
	Backfilled Shaft and Drift Configurations. SAND87-1977
	Albuquerque, NM: Sandia National Laboratories.
	Arguello, J. G. 1988. WIPP Panel Entryway Seal - Numerica
	Simulation of Seal Composite Interaction for Preliminary Sea
	Simulation of Seal Composite Interaction for Pretiminary Sea
	Design Evaluation. SAND87-2804. Albuquerque, NM: Sandia

Density for Preconsolidated Backfill ("Seals")

35

2

36 Discussion:

37

38 The initial placement density for the crushed-salt backfill is specified in the reference design as 0.8 of the intact Salado density $(0.8\rho_{Salado})$ (Nowak et al., 1990). A higher initial 39 compaction than in the drift and panel backfill is specified to ensure faster consolidation. 40 The estimated final density of 0.95 of the intact Salado density $(0.95\rho_{Salado})$ comes from salt 41 creep modeling (Sjaardema and Krieg, 1987; Arguello, 1988). The initial and final porosity 42 can be calculated directly from the densities. Assuming that the intact Salado density is 2.14 43 44 x 10^3 kg/m³ with a porosity of 0.01 (see Table 2.3-1), the resulting initial and final porosities are 0.21 and 0.069, respectively. 45

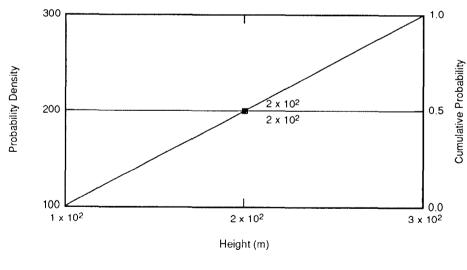
ENGINEERED BARRIERS Parameters for Backfill Outside Disposal Region

Height of Complete Consolidation in Lower Shaft

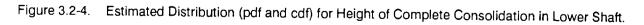
Param	eter:	Height of complete consolidation in lower shaft
Media	n:	2×10^2
Range	•	1×10^{2}
		3×10^2
Units:		m
Distri	oution:	Uniform
Source	e(s):	Nowak, E. J., J. R. Tillerson, and T. M. Torres. 1990. Initial Reference Seal System Design: Waste Isolation Pilot Plant. SAND90-0355. Albuquerque, NM: Sandia National Laboratories. (p. 14)

16 17

2


18

20 Discussion:


21

The estimated range for the height of the final column of consolidated salt with $1 \times 10^{-20} \text{ m}^2$ permeability is between 100 and 300 m, with an expected height of 200 m in each shaft (Nowak and Stormont, 1987; Lappin et al., 1989, p. 4-57). Figure 3.2-4 gives the distribution for height.

25

TRI-6342-1137-0

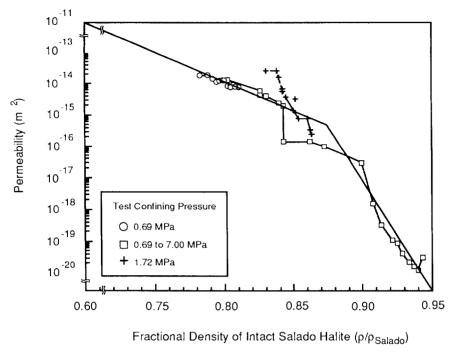
1 Permeability for Preconsolidated Backfill ("Seals")

The initial and final permeability, porosity, and density of the salt component in the shaft, drift, and panel seals are as follows:

5		
6	Parameter:	Permeability, initial (k)
9	Median:	1×10^{-14}
10	Range:	None
11	Units:	m²
12	Distribution:	Constant
13	Source(s):	Holcomb, D. J. and M. Shields. 1987. Hydrostatic Creep
14		Consolidation of Crushed Salt with Added Water. SAND87-1990.
15		Albuquerque, NM: Sandia National Laboratories. (Figure 4)
16		

Parameter:	Permeability, final (k)
Median:	1×10^{-20}
Range:	3.3×10^{-21}
	3.3×10^{-20}
Units:	m²
Distribution:	Lognormal
Source(s):	Holcomb, D. J. and M. Shields. 1987. Hydrostatic Cree
	Consolidation of Crushed Salt with Added Water. SAND87-199
	Albuquerque, NM: Sandia National Laboratories. (Figure 4)
	Nowak, E. J., J. R. Tillerson, and T. M. Torres. 1990. Initia
	Reference Seal System Design: Waste Isolation Pilot Plan
	SAND90-0355. Albuquerque, NM: Sandia National Laboratorie
	(Figure 11, p. 14)

38 Discussion:


39

35 36

2

17

Knowing the initial and final salt density, the final permeability was estimated from laboratory experiments (Holcomb and Shields, 1987, Figure 4) (Figure 3.2-5). The resulting initial and final permeabilities were 1 x 10^{-14} and 1 x 10^{-20} m². Nowak et al. (1990, p. 14) places a range of 3 x 10^{-21} to 3 x 10^{-20} m² on the final permeability. The lower limit is equivalent to that found by extrapolating the data in Figure 3.2-5 to a relative density of 0.95. Figure 3.2-6 illustrates the assumed time-dependent permeability relationship of the preconsolidated and normal backfill.

TRI-6342-394-1

Figure 3.2-5. Permeability as a Function of Relative Halite Density (after Holcomb and Shields, 1987, Figure 4).



Figure 3.2-6. Time Variation of Permeability Decrease from Consolidation for Disposal Area, Drift, and Seal. Dashed line indicates seal permeability including the concrete/bentonite component (after Rechard et al., 1990b, Figure 3-30).

(page date: 15-NOV-91)

3.2.3 Salt Backfill in Drifts

3 **B** Density for Backfill

1 2

Parameter:	Density, initial (ρ)
Median:	$1.28 \times 10^3 (0.6 \rho_{\rm Salado})$
Range:	None
Units:	kg/m³
Distribution:	Constant
Source(s):	Nowak, E. J., J. R. Tillerson, and T. M. Torres. 1990. Initial Reference Seal System Design: Waste Isolation Pilot Plant. SAND90-0355. Albuquerque, NM: Sandia National Laboratories. (Figure 11)
Parameter:	Density, final (p)
Median:	$2.03 \times 10^3 (0.95 \rho_{\text{Salado}})$
Range:	None
	1 m / m 3
Units:	kg/m ³
Units: Distribution:	Constant
Distribution:	Constant Sjaardema, G. D. and R. D. Krieg. 1987. A Constitutive Model for
	Constant Sjaardema, G. D. and R. D. Krieg. 1987. A Constitutive Model for the Consolidation of WIPP Crushed Salt and Its Use in Analysis of
Distribution:	Constant Sjaardema, G. D. and R. D. Krieg. 1987. A Constitutive Model for the Consolidation of WIPP Crushed Salt and Its Use in Analysis of Backfilled Shaft and Drift Configurations. SAND87-1977
Distribution:	Constant Sjaardema, G. D. and R. D. Krieg. 1987. A Constitutive Model for the Consolidation of WIPP Crushed Salt and Its Use in Analysis of Backfilled Shaft and Drift Configurations. SAND87-1977 Albuquerque, NM: Sandia National Laboratories.
Distribution:	Constant Sjaardema, G. D. and R. D. Krieg. 1987. A Constitutive Model for the Consolidation of WIPP Crushed Salt and Its Use in Analysis of Backfilled Shaft and Drift Configurations. SAND87-1977
Distribution:	 Constant Sjaardema, G. D. and R. D. Krieg. 1987. A Constitutive Model for the Consolidation of WIPP Crushed Salt and Its Use in Analysis of Backfilled Shaft and Drift Configurations. SAND87-1977 Albuquerque, NM: Sandia National Laboratories. Arguello, J.G. 1988. WIPP Panel Entryway Seal - Numerical

37 Discussion:

38

36

The initial placement density for the crushed salt backfill is specified in the reference design as 0.6 of the intact Salado density $(0.6\rho_{Salado})$ (Nowak et al., 1990). The estimated final density of 0.95 of the intact Salado density $(0.95\rho_{Salado})$ comes from modeling (Sjaardema and Krieg, 1987; Arguello, 1988). The initial and final porosity can be calculated directly from the densities, assuming that the intact Salado density of 2.14 x 10³ kg/m³ with a porosity of 0.01 (see Table 2.3-1). The resulting initial and final porosities are 0.38 and 0.069, respectively.

2 Permeability

3		
6	Parameter:	Permeability, initial (k)
7	Median:	I x 10 ⁻¹¹
8	Range:	None
9	Units:	m ²
10	Distribution:	Constant
11	Source(s):	Holcomb, D. J. and M. Shields. 1987. Hydrostatic Creep
12		Consolidation of Crushed Salt with Added Water. SAND87-1990.
13		Albuquerque, NM: Sandia National Laboratories. (Figure 4)
14		
15		
16	······	
18	Parameter:	Permeability, final (k)
20	Median:	1×10^{-20}
21	Range:	3.3×10^{-21}
22		3.3×10^{-20}
23	Units:	m ²
24	Distribution:	Lognormal
25	Source(s):	Holcomb, D. J. and M. Shields. 1987. Hydrostatic Creep
26		Consolidation of Crushed Salt with Added Water. SAND87-1990.
27		Albuquerque, NM: Sandia National Laboratories. (Figure 4)
28		Nowak, E. J., J. R. Tillerson, and T. M. Torres. 1990. Initial
29		Reference Seal System Design: Waste Isolation Pilot Plant.
30		SAND90-0355. Albuquerque, NM: Sandia National Laboratories.
31		(Figure 11, p. 14)
32	L	
33		
34		
36	Discussion:	
37		
38	Knowing the in	nitial and final salt density, the final permeability was estimated from
39	-	riments (Holcomb and Shields, 1987, Figure 4) (Figure 3.2-5); the initial
40		as found by extrapolating this data to the initial placement density of
41		resulting initial and final permeabilities were 1 x 10^{-11} and 1 x 10^{-20} m ² .
42		1990, p. 14) places a range of 3 x 10^{-21} to 3 x 10^{-20} m ² on the final
43		ne lower limit can be found by extrapolating to a density of $0.95\rho_{Salado}$.
44	permeability. II	to to the many of 0.99p _{Salado} .
	Figure 2.2.6 show	ws the assumed time variation of the decrease in permeability as the result of
45 46		ed in many current PA calculations. A linear permeability decrease over 50
46		
47		until the drift backfill reached a density (and permeability) equal to the lideted ("seel") permeability $(1 \times 10^{-14} \text{ m}^2)$.
48	initial preconso	lidated ("seal") permeability (1 x 10^{-14} m ²). Afterwards, the backfill

49 50 permeability was assumed to decrease similar to the "seals."

3.2.4 Partition Coefficients for Salt Backfill

Table 3.2-2 provides the partition coefficients for salt backfill.

	Partition Coefficient
е	(m³/kg)
<u> </u>	1 x 10 ⁻⁴
	1 x 10 ⁻⁵
	1 x 10 ⁻⁶
	1 x 10 ⁻⁴
	1 x 10 ⁻⁶
	1 x 10 ⁻⁴
	1 x 10 ⁻⁶

32 Discussion:

As mentioned for halite, none of the radionuclides is assumed to sorb onto halite ($K_d = 0$), but the crushed salt from the excavation will have small amounts of clay, which does sorb radionuclides. For those studies exploring the influence of retardation near the repository, partition coefficients similar to those for anhydrite (Section 2.4) are used, with the following exceptions: (1) americium and neptunium had larger values by a factor of 10 and (2) the values for anhydrite with clay were reduced by 1000 to account for only 0.1% clay volume in the backfill.

As a conservative assumption, the 1991 PA calculations do not consider adsorption of radionuclides in the salt backfill (similar to halite and anhydrite interbeds, Section 2.4).

	Concrete permeability (k)
Median:	2.7×10^{-19}
Range:	None
Units:	m ²
Distribution:	Constant
Source(s):	Nowak, E. J., J. R. Tillerson, and T. M. Torres. 1990. Initial Reference Seal System Design: Waste Isolation Pilot Plant SAND90-0355. Albuquerque, NM: Sandia National Laboratories (Figure 11, p. 13)
Parameter:	Bentonite permeability (k)
	1.4×10^{-19}
Median:	
Range:	None
	None m ² Constant

32

Nowak et al. (1990, Figure 11) has specified maximum permissible permeabilities (as well as 33 strength and expansion characteristics) for the concrete and bentonite (saturated in brine) 34 35 components of the seals. The maximum permeabilities are 2.7 x 10⁻¹⁹ and 1.4 x 10⁻¹⁹ m² for the concrete and bentonite, respectively. Because all PA calculations have considered only 36 37 the long-term salt components in the lower and upper shaft system and not examined the water-bearing zone shaft seal, these values have not been used to date. 38 39

2 3.3 Parameters for Contaminants Independent of Waste Form

3

The TRU waste for which the WIPP is designed is defense-program waste that has been generated at ten facilities since 1970. The waste consists of laboratory and production trash such as glassware, metal pipes, solvents, disposable laboratory clothing, cleaning rags, and solidified sludges. Current plans specify that most of the TRU waste generated since 1970 will be placed in the WIPP repository, with the remainder to be disposed of at other DOE facilities.

11

The ten defense facilities ("generators") that eventually will ship TRU waste to the WIPP are (1) Argonne National Laboratory-East (ANL-E), Illinois; (2) Hanford Reservation (HANF), Washington; (3) Idaho National Engineering Laboratory (INEL), Idaho; (4) Los Alamos National Laboratory (LANL), New Mexico; (5) Lawrence Livermore National Laboratory (LLNL), California; (6) Mound Laboratory, Ohio; (7) Nevada Test Site (NTS), Nevada; (8) Oak Ridge National Laboratory (ORNL), Tennessee; (9) Rocky Flats Plant (RFP), Colorado; and (10) Savannah River Site (SRS), South Carolina (U.S. DOE, 1990c).

19

The trash is contaminated by alpha-emitting transuranic elements, defined as having atomic numbers greater than uranium-92, half-lives greater than 20 yr, and curie contents greater than 100 nCi/g. Other contaminants include uranium and several radionuclides with halflives less than 20 yr. Approximately 60% of the waste may be co-contaminated with waste considered hazardous under the RCRA, e.g., lead (WEC, 1989a).

25

30

46

Radioactive waste that emits alpha radiation, although dangerous if inhaled or ingested, is not hazardous externally. Most of the waste, therefore, can be contact handled (CH) because the external dose rate (5.6 x 10⁻⁷ Sv/s [200 mrem/h] or less) permits people to handle properly sealed drums and boxes without any special shielding.

A small portion of the TRU waste must be transported and handled in shielded casks (remotely handled [RH]), i.e., the surface dose rate exceeds 5.6 x 10⁻⁷ Sv/s (200 mrem/h). The surface dose rate of RH-TRU canisters cannot exceed 2.8 x 10⁻³ Sv/s (1000 rem/h); however, no more than 5% of the canisters can exceed 2.8 x 10⁻⁴ Sv/s (100 rem/h) (U.S. DOE, 1990d). The total curie content is being determined but the volume must be less than 250,000 m³ and the curie content must be less than 5.1 x 10⁶ Ci (1.89 x 10¹⁷ Bq) according to the agreement between DOE and the State of New Mexico (U.S. DOE/NM, 1984).

Subpart B of the Standard sets release limits in curies for isotopes of americium, carbon, cesium, iodine, neptunium, plutonium, radium, strontium, technetium, thorium, tin, and uranium, as well as for certain other radionuclides (Section 3.3.4 of this volume). Although the initial WIPP inventory contains little or none of some of the listed nuclides, they may be produced as a result of radioactive decay and must be accounted for in the compliance evaluation; moreover, any radionuclides not listed in Subpart B must be accounted for if those radionuclides would contribute to doses used in NEPA calculations (e.g., Pb-210).

Figure 3.3-1 shows the total activity for all stored, projected, and scaled CH waste. Figure
3.3-2 gives the same information for RH waste. Table 3.3-1 provides the parameters for
TRU radionuclides. Table 3.3-2 provides the parameter values for TRU waste.

(page date: 15-NOV-91)

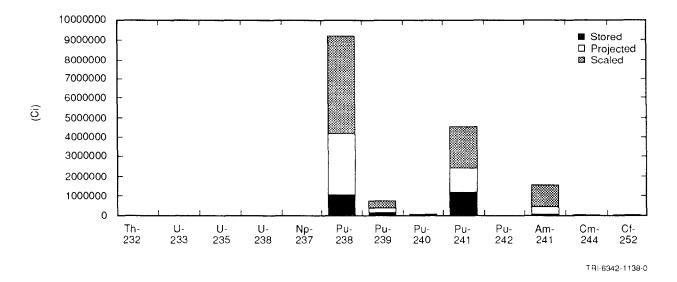
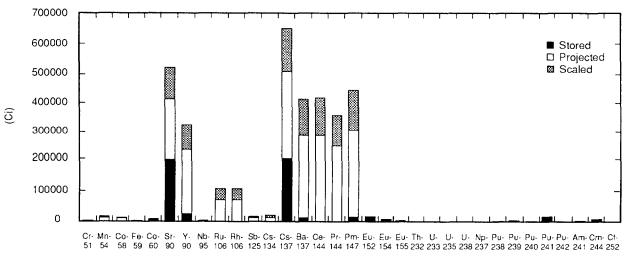



Figure 3.3-1. Total Activity for Stored, Projected, and Scaled CH Waste Activities.

TRI-6342-1139-0

Figure 3.3-2. Total Activity for Stored, Projected, and Scaled RH Waste Activities.

Parameter	Median	Units	Source
Ac225			
Half-life	8.640x10 ⁵	S	ICRP, Pub 38, 1983
Ac227			
Half-life	6.871×10 ⁸	s	ICRP, Pub 38, 1983
Ac228			
Half-life	2.207x10 ⁴	s	ICRP, Pub 38, 1983
Am241			
Activity conversion	3.43x10 ³	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	1.364x10 ¹⁰	S	ICRP, Pub 38, 1983
Inventory, Anticipated (19			
СН	6.65×10 ⁶	Ci	See text.
RH	1.29x10 ³	Ci	IDB, 1990; Peterson, 1990
Inventory, Design (1990)			
СН	1.65x10 ⁶	Ci	See text.
RH	1.46x10 ³	Ci	IDB, 1990; Peterson, 1990
Am243			
Half-life	5.822x10 ¹¹	S	ICRP, Pub 38, 1983
At217			
Half-life	3.230×10 ⁻²	S	ICRP, Pub 38, 1983
Bi210	_		
Half-life	4.330x10 ⁵	S	ICRP, Pub 38, 1983
Bi211			
Half-life	1.284x10 ²	S	ICRP, Pub 38, 1983
Bi212	-		
Half-life	3.633x10 ³	S	ICRP, Pub 38, 1983
Bi213	•		
Half-life	2.739x10 ³	S	ICRP, Pub 38, 1983
Bi214			
Half-life	1.194x10 ³	S	ICRP, Pub 38, 1983

Table 3.3-1. Inventory and Parameter Values for TRU Radioisotopes

ENGINEERED BARRIERS Parameters for Contaminants Independent of Waste Form

2 3

Table 3.3-1. Inventory and Parameter Values for TRU Radioisotopes (Continued)

	Median	Units	Source
Cf252			
Activity conversion	5.38x10 ⁵	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	8.325x10 ⁷	S	ICRP, Pub 38, 1983
Inventory, Anticipated (1990)			
СН	1.27x10 ⁴	Ci	See text.
RH	2.39x10 ³	Ci	IDB, 1990; Peterson, 1990
Inventory, Design (1990)			
СН	1.84x10 ⁴	Ci	See text.
RH	1.25x10 ²	Ci	IDB, 1990; Peterson, 1990
Cm244			
Activity conversion	8.09x10 ⁴	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	5.715×10 ⁸	S	ICRP, Pub 38, 1983
Inventory, Anticipated (1990)			
СН	1.23x10 ⁴	Ci	See text.
RH	8.75x10 ³	Ci	IDB, 1990; Peterson, 1990
Inventory, Design (1990)			
CH	1.78x10 ⁴	Ci	See text.
RH	4.63x10 ³	Ci	IDB, 1990; Peterson, 1990
Cs137			
Activity conversion	8.70x10 ⁴	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	9.467x10 ⁸	S	ICRP, Pub 38, 1983
Inventory, Anticipated (1990)			
RH	3.33x10 ⁵	Ci	IDB, 1990; Peterson, 1990
Inventory, Design (1990)			
RH	6.54×10 ⁵	Ci	IDB, 1990; Peterson, 1990
E-221			
Fr221 Half-life	2.880x10 ²	s	ICRP, Pub 38, 1983

Parameter	Median	Units	Source
Np237			
Activity conversion	7.05x10 ⁻¹	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	6.753×10 ¹³	s	ICRP, Pub 38, 1983
Inventory, Anticipated (1990)			
СН	1.47	Ci	See text.
RH	8.87x10 ⁻¹	Ci	IDB, 1990; Peterson, 1990
Inventory, Design (1990)			
СН	2.14	Ci	See text.
RH	1.29	Ci	IDB, 1990; Peterson, 1990
Np239			
Half-life	2.035x10 ⁵	S	ICRP, Pub 38, 1983
Pa231			
Half-life	1.034x10 ¹²	S	ICRP, Pub 38, 1983
Pa233			
Half-life	2.333x10 ⁶	S	ICRP, Pub 38, 1983
РЬ209			
Half-life	1.171x10 ⁴	S	ICRP, Pub 38, 1983
Pb210			
Activity conversion	7.63x10 ⁴	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	7.037x10 ⁸	s	ICRP, Pub 38, 1983
Pb211			
Half-life	2.166x10 ³	S	ICRP, Pub 38, 1983
Pb212			
Half-life	3.830x10 ⁴	S	ICRP, Pub 38, 1983
Pb214			
Half-life	1.608x10 ³	s	ICRP, Pub 38, 1983
Pm147			
Activity conversion	9.27x10 ⁵	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	8.279x10 ⁷	s	ICRP, Pub 38, 1983
Inventory, Anticipated (1990)			
	3.15x10 ⁵	Ci	IDB, 1990; Peterson, 1990

Table 3.3-1. Inventory and Parameter Values for TRU Radioisotopes (Continued)

ENGINEERED BARRIERS Parameters for Contaminants Independent of Waste Form

2

Parameter	Median	Units	Source
Inventory, Design (1990)			
RH	4.49x10 ⁵	Ci	IDB, 1990; Peterson, 1990
Po210			
Half-life	1.196x10 ⁷	S	ICRP, Pub 38, 1983
Po212			
Half-life	3.050x10 ⁻⁷	s	ICRP, Pub 38, 1983
Po213			
Half-life	4.200×10 ⁻⁶	S	ICRP, Pub 38, 1983
Po214			
Half-life	1.643x10 ⁻⁴	S	ICRP, Pub 38, 1983
Po215	_		
Half-life	1.780x10 ⁻³	S	ICRP, Pub 38, 1983
Po216			
Half-life	1.500x10 ⁻¹	S	ICRP, Pub 38, 1983
Po218			
Half-life	1.830x10 ²	S	ICRP, Pub 38, 1983
Pu238			
Activity conversion	1.71x10 ⁴	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	2.769x10 ⁹	s	ICRP, Pub 38, 1983
Inventory, Anticipated (199		-	_
CH	4.26x10 ⁶	Ci	See text.
RH	5.14x10 ²	Ci	IDB, 1990; Peterson, 1990
Inventory, Design (1990)			
CH	9.26x10 ⁶	Ci	See text.
RH	1.33x10 ³	Ci	IDB, 1990; Peterson, 1990
	LOOK IU*	UI UI	
Pu239			
Activity conversion	6.22x10 ¹	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	7.594x10 ¹¹	s	ICRP, Pub 38, 1983

Table 3.3-1. Inventory and Parameter Values for TRU Radioisotopes (Continued)

Parameter	Median	Units	Source
Inventory, Anticipated (199	0)		
CH	4.37x10 ⁵	Ci	See text.
RH	1.45x10 ³	Ci	IDB, 1990; Peterson, 1990
Inventory, Design (1990)			
СН	8.45×10 ⁵	Ci	See text.
RH	1.31x10 ³	Ci	IDB, 1990; Peterson, 1990
Pu240			
Activity conversion	2.28x10 ²	Ci/kg	1.1281x10 ¹⁶ (half-life(s)xAt.Wt.)
Half-life	2.063×10 ¹¹	s	ICRP, Pub 38, 1983
Inventory, Anticipated (199			
СН	5.91×10 ⁴	Ci	See text.
RH	2.89x10 ²	Ci	IDB, 1990; Peterson, 1990
Inventory, Design (1990)			
СН	1.07x10 ⁵	Ci	See text.
RH	2.98x10 ²	Ci	IDB, 1990; Peterson, 1990
Pu241			
Activity conversion	1.03x10 ⁵	Ci/kg	1.1281x10 ¹⁶ /half-life(s)xAt.Wt.)
Half-life	4.544x10 ⁸	S	ICRP, Pub 38, 1983
Inventory, Anticipated (199	90)		
СН	2.54x10 ⁶	Ci	See text.
RH	1.32x10 ⁴	Ci	IDB, 1990; Peterson, 1990
Inventory, Design (1990)			
CH	4.60x10 ⁶	Ci	See text.
RH	1.35x10 ⁴	Ci	IDB, 1990; Peterson, 1990
Pu242			
Activity conversion	3.93	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	1.187x10 ¹³	s Ci/kg	ICRP, Pub 38, 1983
		5	
Inventory, Anticipated (199	·	C:	See tout
CH	1.84 2.21v10-3	Ci	See text.
RH	3.31x10 ⁻³	Ci	IDB, 1990; Peterson, 1990
Inventory, Design (1990)			
СН	2.16	Ci	See text.
	4.07x10 ⁻³		

Table 3.3-1. Inventory and Parameter Values for TRU Radioisotopes (Continued)

ENGINEERED BARRIERS Parameters for Contaminants Independent of Waste Form

2

Parameter	Median	Units	Source
Ra223			
Half-life	9.879x10 ⁵	S	ICRP, Pub 38, 1983
Ra224			
Half-life	3.162x10 ⁵	S	ICRP, Pub 38, 1983
Ra225			
Half-life	1.279x10 ⁶	S	ICRP, Pub 38, 1983
Ra226			
Activity conversion	9.89x10 ²	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	5.049x10 ¹⁰	S	ICRP, Pub 38, 1983
Ra228			
Half-life	1.815x10 ⁸	S	ICRP, Pub 38, 1983
Pa010			
Rn219 Half-life	3.960	S	ICRP, Pub 38, 1983
(QII TILO	0.000	3	1011, 1 00 00, 1900
Rn220			
Half-life	5.560x10 ¹	S	ICRP, Pub 38, 1983
Rn222			
Half-life	3.304x10 ⁵	S	ICRP, Pub 38, 1983
		-	
Sr90	_		
Activity conversion	1.36x10 ⁵	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	9.189x10 ⁸	S	ICRP, Pub 38, 1983
Inventory, Anticipated (1990)			
RH	2.80x10 ⁵	Ci	IDB, 1990; Peterson, 1990
			· · ·
Inventory, Design (1990)	_	_	
RH	5.21x10 ⁵	Ci	IDB, 1990; Peterson, 1990
Th227			
Half-life	1.617x10 ⁶	S	ICRP, Pub 38, 1983
			, , ,
Th228	_		
Half-life	6.037x10 ⁷	S	ICRP, Pub 38, 1983

Table 3.3-1. Inventory and Parameter Values for TRU Radioisotopes (Continued)

Parameter	Median	Units	Source
Th229			
Activity conversion	2.13x10 ²	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	2.316x10 ¹¹	s	ICRP, Pub 38, 1983
Th230			
Activity conversion	2.02x10 ¹	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	2.430×10 ¹²	S	ICRP, Pub 38, 1983
Th231			
Half-life	9.187x10 ⁴	S	ICRP, Pub 38, 1983
Th232			
Activity conversion	1.10×10 ⁻⁴	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	4.434×10 ¹⁷	S	ICRP, Pub 38, 1983
Inventory, Anticipated (19	-		
СН	0.0	Ci	See text.
RH	0.0	Ci	IDB, 1990; Peterson, 1990
Inventory, Design (1990)			
CH	0.0	Ci	See text.
RH	0.0	Ci	IDB, 1990; Peterson, 1990
Th234			
Half-life	2.082x10 ⁶	s	ICRP, Pub 38, 1983
TI207			
Half-life	2.862x10 ²	S	ICRP, Pub 38, 1983
U233			
Activity conversion	9.68	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	5.002x10 ¹²	s	ICRP, Pub 38, 1983
Inventory, Anticipated (19	990)		
CH	7.18x10 ¹	Ci	See text.
RH	2.86x101	Ci	IDB, 1990; Peterson, 1990
Inventory, Design (1990)	•		
СН	1.04x10 ²	Ci	See text.
RH	2.02x10 ²	Ci	IDB, 1990; Peterson, 1990
U234			
Activity conversion	6.25	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	7.716x10 ¹²	s	ICRP, Pub 38, 1983
		~	1011,140,00,1300

Table 3.3-1. Inventory and Parameter Values for TRU Radioisotopes (Continued)

Parameter	Median	Units	Source
U235			
Activity conversion	2.16x10 ⁻³	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	2.221x10 ¹⁶	s	ICRP, Pub 38, 1983
Inventory, Anticipated (199	0)		
СН	5.54x10 ⁻²	Ci	See text.
RH	1.23x10 ⁻²	Ci	IDB, 1990; Peterson, 1990
Inventory, Design (1990)			
СН	1.43x10 ⁻¹	Ci	See text.
RH	1.39x10 ⁻²	Ci	IDB, 1990; Peterson, 1990
U236			
Half-life	7.389x10 ¹⁴	S	ICRP, Pub 38, 1983
U238			
Activity conversion	3.36x10-4	Ci/kg	1.1281x10 ¹⁶ /(half-life(s)xAt.Wt.)
Half-life	1.410x10 ¹⁷	s	ICRP, Pub 38, 1983
Inventory, Anticipated (199	0)		
СН	0.0	Ci	See text.
RH	7.83x10 ⁻²	Ci	IDB, 1990; Peterson, 1990
Inventory, Design (1990)			
СН	0.0	Ci	See text.
RH	8.71x10 ⁻²	Ci	IDB, 1990; Peterson, 1990

Table 3.3-1. Inventory and Parameter Values for TRU Radioisotopes (Concluded)

					D	istribution	_		
	Parameter	Median	Rang		Units	Туре	Source		
	Gas generation								
	Corrosion								
	Inundated rate	6.3 x 10 ⁻⁹	0	1.3 x 10 ⁻⁸	mol/m ² /s*	Cumulative	Brush, July 8, 1991, Men (Appendix A)		
	Relative humid rate	1 x 10 ⁻¹	0	5 × 10 ⁻¹	none	Cumulative	Brush, July 8, 1991, Men (Appendix A)		
	Microbiological								
	Inundated rate	3.2 x 10 ⁻⁹	0	1.6 x 10 ⁻⁸	mol/kg/s**	Cumulative	Brush, July 8, 1991, Men (Appendix A)		
	Relative humid rate	1 x 10 ⁻¹	0	2 x 10-1	none	Uniform	Brush, July 8, 1991, Men (Appendix A)		
	Radiolysis	1 x 10 ⁻⁴	1 x 10 ⁻⁷	1 × 10 ⁻¹	mol/drum/yr	Constant	Brush, July 8, 1991, Men (Appendix A)		
	Gas generation stoichior	metry factor							
	Corrosion	5 x 10 ⁻¹	0	1	none	Uniform	Brush and Anderson in		
							Lappin et al., 1989, p. A-		
	Microbiological	8.35 x 10 ⁻¹	0	1.67	none	Uniform	Brush and Anderson in		
							Lappin et al., 1989, p. A-		
	Am								
	Diffusion coefficient*	** 1.76×10-10	5.3x10-11	3x10-10	m²/s	Uniform	Lappin et al.,1989,		
			0.0/10	00	,0		Table E-7		
	Am ³⁺								
	Solubility	1x10 ⁻⁹	5×10 ⁻¹⁴	1.4	Molar	Cumulative	Trauth et al., 1991		
	Cm	10		10	•				
	Diffusion coefficient	1.76x10-10	5.3x10 ⁻¹¹	3×10 ⁻¹⁰	m²/s	Uniform	Lappin et al.,1989,		
	Cm ³⁺						Table E-7		
	Solubility	1x10 ⁻⁹	5x10-14	1.4	Molar	Cumulative	Trauth et al., 1991		
	Solubility		JATU **	1.4	NOIAI	Culturative	flautif et al., 1991		
	Np								
	Diffusion coefficient	1.76x10-10	5.2x10 ⁻¹¹	3x10-10	m²/s	Uniform	Lappin et al.,1989, Table E-7		
	Np ⁴⁺								
	Solubility	6x10 ⁻⁹	3x10-16	2x10 ⁻⁵	Molar	Cumulative	Trauth et al., 1991		
	Np ⁵⁺						·		
	Solubility	6x10 ⁻⁷	3x10-11	1.2x10-2	Molar	Cumulative	Trauth et al., 1991		
	Pb	1 10-10	0.10.10	0 10 10	2,				
	Diffusion coefficient	4x10-10	2x10-10	8×10-10	m²/s	Cumulative	Lappin et al.,1989, Table E-7		

Table 3.3-2. Parameter Values for TRU Waste Radioelements

58

2 2

* mole/m² surface area steel/s
** mole/kg cellulosics/s

*** Free liquid diffusion coefficient of the indicated species 59

2
2

Table 3.3-2. Parameter Values for TRU Waste Radioelements (Concluded)

Parameter	Median	Rang	e	Units	Distribution Type	Source
₽ _b 2+						
Solubility						
Absence of CO ³	1.64	1x10 ⁻²	1x10 ¹	Molar	Cumulative	Trauth et al., 1991
Presence of CO ³	8x10 ⁻³	1x10 ⁻⁹	8x10 ⁻²	Molar	Cumulative	Trauth et al., 1991
-						
Diffusion coefficient	1 74-10-10	4.8x10-11	3x10-10	2/-	11-16	
Diffusion coefficient	1.74X1010	4.8X IU ''	3x10-10	m²/s	Uniform	Lappin et al.,1989, Table E-7
⊃u4+						
Solubility	6x10-10	2.0x10-16	4x10 ⁻⁶	molar	Cumulative	Trauth et al., 1991
Pu ⁵⁺						,
Solubility	6x10 ⁻¹⁰	2.5x10 ⁻¹⁷	5.5x10 ⁻⁴	Molar	Cumulative	Trauth et al., 1991
D-						
Ra Diffusion coefficient	3 75×10-10	1.88x10-10	7 5-10-10	m2/n	Cumulative	
Diridaion coemcient	0.70010	1.80×10	7.5010	111-/5	Cumulative	Lappin et al.,1989, Table E-7
Ra ²⁺						
Solubility						
Absence of CO ³						
and SO ⁴	1.1x10 ¹	2	1.8x10 ¹	Molar	Cumulative	Trauth et al., 1991
Presence of CO ³ Presence of SO ⁴	1.6x10 ⁻⁶ 1x10 ⁻⁸	1.6x10 ⁻⁹ 1x10 ⁻¹¹	1 1x10 ⁻⁶	Molar	Cumulative	Trauth et al., 1991
Presence of 50 ⁻⁴		1X 10-11	1X10-0	Molar	Cumulative	Trauth et al., 1991
Th						
Diffusion coefficient	1x10 ⁻¹⁰	5x10 ⁻¹¹	1.5x10-10	m²/s	Uniform	Lappin et al.,1989,
				,		Table E-7
Th ⁴⁺	10	10	•			
Solubility	1x10-10	5.5x10-16	2.2x10 ⁻⁶	Molar	Cumulative	Trauth et al., 1991
U						
Diffusion coefficient	2.7x10-10	1.1x10-10	4.3x10-10	m²/s	Uniform	Lappin et al.,1989,
		-		,-	••••••	Table E-7
U ^{4 +}						
Solubility	1x10 ⁻⁴	1x10-15	5x10 ⁻²	Molar	Cumulative	Trauth et al., 1991
U6+ Solubility	0-10-3	110-7		14 -1-	o	_
Solubility	2x10 ⁻³	1x10 ⁻⁷	1	Molar	Cumulative	Trauth et al., 1991

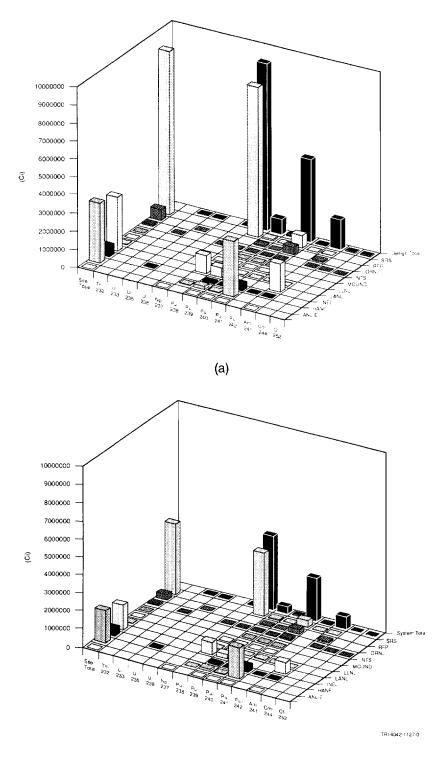
2 3.3.1 Inventory of Radionuclides in Contact-Handled Waste

3 4

The inventory (curie content) of radionuclides in the contact-handled (CH) waste was 5 estimated from input submitted to the 1990 Integrated Date Base (IDB) (IDB, 1990). The 6 information submitted to the IDB is separated into retrievably stored and newly generated 7 (future generation), referred to herein as projected inventory. The anticipated total volume 8 (stored plus projected) of CH waste submitted to the 1990 IDB was 1.06 x 10⁵ m³ (3.76 x 10⁶ 9 ft³), which is less than the current design volume for the WIPP of about $1.8 \times 10^5 \text{ m}^3$ (6.2 x 10 10⁶ ft³). To estimate the total curie content in the WIPP, if it contained a design volume of 11 CH waste, the future-generated radionuclide inventories of the five largest future generators 12 listed in the 1990 IDB were volume scaled to reach a design volume of waste. (Details of this 13 volume scaling are discussed in Section 3.4.) This inventory per generator site is only a 14 projected estimate and should not be considered a statement of what they will generate. 15 16

The weight fractions reported in the 1990 IDB were used to calculate the major radionuclides of the mixes reported. The IDB did not report the inventory of each radionuclide. Rather the inventory of each radionuclide at each site was based on the mix of waste streams reported. The Hanford submittal to the 1990 IDB indicated that the activity of some of the CH waste was currently unknown. Rather than underestimate the potential inventory, the Hanford input to the 1987 IDB was used. These inventories have not been independently checked and should be considered preliminary estimates.

24

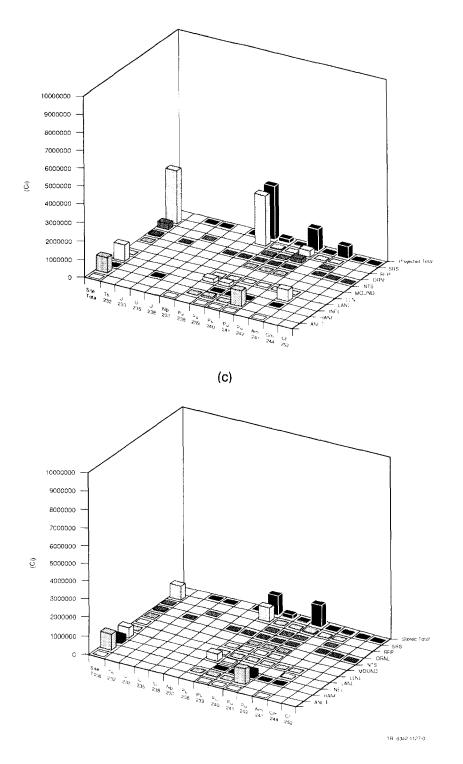

30

The estimate of the radionuclide inventory for the retrievably stored waste at the 10 generator/storage sites is listed in Table 3.3-3. The estimated total curie content of the retrievably stored waste was 2.6 x 10⁶ Ci (9.7 x 10¹⁶ Bq). The projected radionuclide inventory is also listed in Table 3.3-4. The estimated total curie content of the projected waste is 5.4 x 10⁶ Ci (1.99 x 10¹⁷ Bq).

The estimated inventory of radionuclides, based on volume scaling, that could be emplaced in the WIPP if the total design volume were used is shown in Table 3.3-5; the total is about 1.65 $x \ 10^7$ Ci (6.1 x 10^{17} Bq). This inventory is different from that reported in Lappin et al. (1989, 1990). The input for this estimate was based on input to the 1990 IDB, whereas the earlier estimate was based on input to the 1987 IDB. Note that the estimate for Hanford was based on the 1987 input since the 1990 IDB input indicated that the total was unknown.

37

The estimated radionuclide inventory of CH waste by site and isotope is illustrated in Figure 3.3-3.



(b)

Figure 3.3-3. Estimate of Radionuclide Inventory of CH Waste by Site and Isotope for (a) Design Total, (b) Anticipated System Total, (c) Projected Total, and (d) Stored Total.

(page date: 15-NOV-91)

(database version: X-2.19PR)

(d)

Figure 3.3-3. Estimate of Radionuclide Inventory of CH Waste by Site and Isotope for (a) Design Total, (b) Anticipated System Total, (c) Projected Total, and (d) Stored Total. (Concluded)

(page date: 15-NOV-91)

(database version: X-2.19PR)

Radionucli	Half-Life de (s)	ANL-E (Ci)	HANF ^b (Ci)	INEL (Ci)	LANL (Ci)	LLNL (Ci)	MOUND (Ci)	NTS (Ci)	ORNL (Ci)	RFP (Ci)	SRS (Ci)	Stored Total (Ci)
Th-232	4.4337x10 ¹⁷		_									0.0
U-233	5.0018x10 ¹²								4.0x10 ¹			4.0x10 ¹
U-235	2.221x10 ¹⁶		-						-	4.69x10 ⁻⁴		4.69x10 ⁻⁴
U-238	1.41x10 ¹⁷		-									0.0
Np-237	6.753x10 ¹³								8.0x10 ⁻¹			8.0x10 ⁻¹
Pu-238	2.768 8 ×10 ⁹		3.819x10 ³		3.558x10 ⁵	9.377x10 ¹	2.312x10 ³		6.86x10 ³		7.460x10 ⁵	1.115x10 ⁶
Pu-239	7.5492x10 ¹¹	1.0	4.242x10 ⁴	5.012x10 ⁴	7.886x10 ⁴	1.673x10 ³	1.79	6.586x10 ¹	6.23x10 ²	2.045x10 ³	3.677x10 ³	1.795x10 ⁵
Pu-240	2.0629x10 ¹¹	4.3x10 ⁻¹	1.511x10 ⁴	1.146x10 ⁴		5.431x10 ²	1.15	1.517x10 ¹	3.062x10 ²	4.686x10 ²	1.015x10 ³	2.892x10 ⁴
Pu-241	4.5422x10 ⁸	1.922x10 ¹	7.687x10 ⁵	3.571x10 ⁵		1.308x10 ⁴	1.04	6.31x10 ²	3.405x10 ⁴	1.119x10 ⁴	5.283x10 ⁴	1.238x10 ⁶
Pu-242	1.1875x10 ¹³			1.02		4.3x10 ⁻¹					1.7x10 ⁻¹	1.62
Am-241	1.3639x1010	6.4x10 ⁻¹		2.722x10 ³	4.022×10 ⁴	1.371x10 ³			5.045x10 ²	2.113x10 ³	5.687x10 ²	4.75x10 ⁴
Cm-244	5.715x10 ⁸								6.796×10 ³			6.796x10 ³
Cf-252	8.3247x10 ⁷								7.055x10 ³			7.055x10 ³
TOTALS		2.129x10 ¹	8.301x10 ⁵	4.214x10 ⁵	4.749x10 ⁵	1.676x10 ⁴	2.316x10 ³	7.12x10 ²	5.624x10 ⁴	1.581x10 ⁴	8.041x10 ⁵	2.622x10 ⁶
^a Stored as	of December (31, 1989 such	that containe	ers can be retr	ieved and shi	ipped to the V	VIPP.					
^b Based on	1987 input sin	ce 1990 total	was unknowr	۱.								

3-44

					LLNL		NTS				Projected Total	(Proje + Sto System	ored)
Radionuclide	ANL-E	HANF ^{b,c}	INELC	LANLC		MOUND		ORNL	RFPC	SRSC		1990	1987
 Th-232												0.0	2.74x10 ⁻¹
U-233	-							3.185x10 ¹			3.185×10 ¹	7.185x10 ¹	7.7x10 ³
U-235			4.8x10 ⁻²						6.924x10 ⁻³		5.492x10 ⁻²	5.539x10 ⁻²	3.73x10-1
U-238											0.0	0.0	1.4 9
Np-237	2.0x10 ⁻²							6.5x10 ⁻¹			6.7x10 ⁻¹	1.47	8.01
Pu-238		4.362x10 ³		2.231x10 ⁵	9.15			5.529x10 ³		2.913x10 ⁶	3.146x10 ⁶	4.261x10 ⁶	3.91x10 ⁶
Pu-239	3.212x10 ¹	4.742x10 ⁴	4.415x10 ²	1.554x10 ⁵	1.876x10 ²			5.053x10 ²	3.016x10 ⁴	2.288x10 ⁴	2.571x10 ⁵	4.366x10 ⁵	4.24x10 ⁵
Pu-240	1.148x10 ¹	1.689x10 ⁴	1.824x10 ²		4.574x10 ¹			2.468x10 ²	6.912x10 ³	5.897x10 ³	3.02x10 ⁴	5.912x10 ⁴	1 x 10 ⁵
Pu-241	6.255x10 ²	8.593x10 ⁵	6.409x10 ²		1.302x10 ³			2.744x10 ⁴	1.65x10 ⁵	2.509x10 ⁵	1.306x10 ⁶	2.54x10 ⁶	4.1 x 10 ⁶
Pu-242					5.0x10 ²					1.7x10 ⁻¹	2.2x10 ⁻¹	1.84	1.83x10 ¹
Am-241	2.085x10 ¹		1.211x10 ²	5.815x10 ⁵	2.534x10 ¹			4.066x10 ²	3.118x10 ⁴	3.76x 10 ³	6.17x10 ⁵	6.645x10 ⁵	6.34x10 ⁵
Cm-244								5.477x10 ³			5.477x10 ³	1.227x10 ⁴	1.27x10 ⁴
Cf-252	••							5.685x10 ³			5.685x10 ³	1.274x10 ⁴	2.02x10 ³
Projected Totals	6.9x10 ²	9.28x10 ⁵	1.386x10 ³	9.6x10 ⁵	1.57x10 ³	0.0	0.0	4.532x10 ⁴	2.333x10 ⁵	3.196x10 ⁶	5.367x10 ⁶	7.99 x 10 ⁶	9.19 x 10
Percent of Design Total	0.0	5.63	0.01	5.82	0.01	0.0	0.0	0.27	1.41	19.38	32.54		
System Total		1.401x10 ³	3.233x10 ⁶	4.25x10 ⁵	2.961x10 ⁶	1.99x104	[‡] 7.12x10 ²	2.139x10 ⁻³	1.469x10 ⁵	6.2x10 ⁵	9.082x10 ⁶		

Table 3.3-4. Projected^a Radionuclide Inventory by Waste Generator for Contact-Handled Waste (Curies)

^a Generated between 1990 and 2013

b Based on 1987 input since 1990 total was unknown.

^c One of five DOE defense facilities, which produce the largest volume of waste and are used to scale the inventory.

(page
date:
15-NC
16-AC

Ű

Radionuclide	ANL-E	HANF	INEL	LANL	LLNL	MOUND	NTS	ORNL	RFP	SRS	PA Calculations Design 1990	Waste Unit Factor
Th-232											0.0	0.0
U-233								1.037x10 ²			1.037x12	
U-235			1.243x10 ⁻¹			-			1.84x10 ⁻²		1.427x10-1	
U-238											0.0	
Np-237	4.0x10 ⁻²		-					2.1		-	2.14	2.14
Pu-238		1.512x10 ⁴		9.336x10 ⁵	1.121x10 ²	2.312x10 ³		1.792x10 ⁴		8.29x10 ⁶	9.259x10 ⁶	9.259x10 ⁶
Pu-239	6.524x10 ¹	1.652x10 ⁵	5.126x10 ⁴	4.813x10 ⁵	2.048x10 ³	1.79	2.003x10 ²	1.634x10 ³	8.016x10 ⁴	6.293x10 ⁴	8.448x10 ⁵	8.448x10 ⁵
Pu-240	2.339x10 ¹	5.885x10 ⁴	1.193x10 ⁴		6.346x10 ²	1.15	4.551x10 ¹	7.998x10 ²	1.837x10 ⁴	1.629x10 ⁴	1.069x10 ⁵	1.069x10 ⁵
Pu-241	1.27x10 ³	2.994x10 ⁶	3.588x10 ⁵		1.568x10 ⁴	1.04	1.893x10 ³	8.893x10 ⁴	4.386x10 ⁵	7.026x10 ⁵	4.602x10 ⁶	
Pu-242			1.02		5.3x10 ⁻¹					6.103x10 ⁻¹	2.16	2.16
Am-241	4.234x10 ¹		3.036x10 ³	1.546x10 ⁶	1.422x10 ³			1.318x10 ³	8.285x10 ⁴	1.031x10 ⁴	1.645x10 ⁶	1.645x10 ⁶
Cm-244								1.775x10 ⁴		-	1.775x10 ⁴	1.775 x 10 ⁴
Cf-252								1.843x10 ⁴			1.843x10 ⁴	
TOTALS	1.401x10 ³	3.233x10 ⁶	4.25x10 ⁵	2.961x10 ⁶	1.99x10 ⁴	2.316x10 ³	2.139x10 ³	1.469x10 ⁵	6.2x10 ⁵	9.082x10 ⁶	1.649x10 ⁷	1.187 x 10 ⁷

Table 3.3-5. Design Radionuclide Inventory by Waste Generator for Contact-Handled Waste (Curies)

2 3.3.2 Inventory of Remotely Handled Waste

3

The inventory of TRU waste that must be transported and handled in shielded casks because 6 of dose rates at the surface above 200 mrem/hr (remotely handled [RH]) was estimated from 6 the input submitted to the 1990 IDB (IDB, 1990). Estimates were made using a similar 7 method to that used for the CH waste (discussed in Section 3.3.1).* Some differences 8 between the methods for estimating CH and RH were in the estimation of the activity for 9 RH waste reported as mixed fission products and the "unknown" distribution from Hanford. 10 For the mixed fission products, a mixture of 10-yr-old fission products was assumed as the 11 source term. For the Hanford "unknown," a slurry mixture from the Hanford high level 12 waste tanks provided the isotopic distribution; it was estimated that a 2.15 x 10^{-6} C/(kg·s) 13 canister will contain about 450 Ci of gamma emitters. For other mixtures reported in the 14 1990 IDB, the weight fractions reported were used to calculate the major radionuclides. A 15 volume scaling method similar to that used for CH waste was used to increase the volume 16 from about 5,300 m³ (estimated from the 1990 IDB) to the maximum volume of 7,079 m³. 17

The estimates of the radionuclide inventory for stored waste at the five generator sites are tabulated in Table 3.3-6. The estimated inventory of the stored RH waste was about 5.3 x 10^5 Ci (2.0 x 10^{16} Bq). The projected generated inventory is listed in Table 3.3-7 and the design radionuclide inventory is listed in Table 3.3-8. The estimated total curies content of the projected RH waste was 2.1 x 10^6 Ci (7.0 x 10^{16} Bq).

24

18

To estimate the inventory for the maximum volume of RH waste, the projected volumes at each site were volume scaled to provide the additional volume. The projected radionuclide inventory was also volume scaled to estimate the total inventory. The total additional scaled inventory was about 9.4 x 10^5 Ci (3.5 x 10^{17} Bq). Not including the radionuclides with short half-lives, the estimated inventory was 1.6×10^6 Ci (3.6 x 10^{16} Bq). By agreement with the State of New Mexico, the DOE will not emplace more than 5.2 x 10^6 Ci (1.9 x 10^{17} Bq) (U.S. DOE and NM, 1989). The current estimate was less than the allowed curie content.

32

Figure 3.3-4 provides a summary of the estimated activity of the stored, projected, and design radionuclide inventory. These are estimates for PA analyses and should not be considered as a statement of what each site will generate.

36

For the 1991 PA calculations, the RH-TRU waste was included in the cuttings releases. The 37 RH-TRU waste has not been included in the long-term performance assessment inventory for 38 most previous calculations (Marietta et al., 1989; Lappin et al., 1989; U.S. DOE, 1990b), 39 because RH-TRU waste constituted less than 2% of the activity. Furthermore, as discussed 40 41 in Section 3.5, the current procedure for emplacing RH waste in the pillar walls will minimize the interaction of the RH waste canisters and the CH waste rooms. Also a large 42 amount of the activity in RH waste is from radionuclides with relatively short half-lives, 43 which have a small consequence over the long term. 44

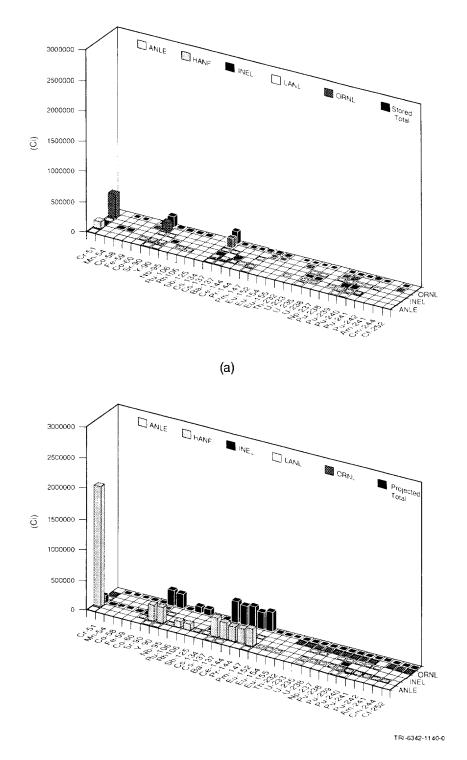
<sup>46
48 *</sup> An alternate method would be to scale the radionuclides so that the activity limit agreed upon by the State of New Mexico and
49 the DOE--5.2 x 10⁶ Ci--would be emplaced instead of the agreed upon volume limit.

Table 3.3-6. Retrievably Stored* Design Radionuclide Inventory by Waste Generator for Remotely 2 Handled Waste 3

Radionuclide	Half-Life (s)	ANL-E (Ci)	HANF (Ci)	INEL (Ci)	LANL (Ci)	ORNL (Ci)	Stored Tota (Ci)
 Cr-51	2.3936x10 ⁶						0.0
Mn-54	2.7x10 ⁷			1.703x10 ²			1.703x10 ²
Co-58	6.1171x10 ⁶			5.288x10 ¹			5.288x101
Fe-59	3.8473x10 ⁶					**	0.0
Co-60	1.6634x10 ⁸		1.667x10 ³			4.794x10 ³	6.461x10 ³
Sr-90	9.1894x10 ⁸	3.582x10 ¹	2.466x10 ⁴		5.408x10 ²	1.728x10 ⁵	1.98x10 ⁵
Y-90	2.304x10 ⁵	3.582x10 ¹	2.466x10 ⁴		5.408x10 ²		2.523x10 ⁴
Nb-95	3.037x10 ⁶			8.963x10 ⁻¹			8.963x10⁻
Ru-106	3.1812x10 ⁷		1.468				1.468
Rh-106	2.99x10 ¹		1.468			••	1.468
Sb-125	8.7413x10 ⁷						0.0
Cs-134	6.507x10 ⁷						0.0
Cs-137	9.4671x10 ⁸	2.687x10 ¹	1.851x10 ⁴	2.996x10 ³	4.056x10 ²	1.825x10 ⁵	2.044x10 ⁵
Ba-137m	1.5312x10 ²	2.388x10 ¹	1.645x10 ⁴		3.605x10 ²		1.683x10 ⁴
Ce-144	2.4564x10 ⁷		1.468x10 ²	1.603x10 ³			1.75x10 ³
Pr-144	1.0368x10 ³		1.468x10 ²				1.468x104
Pm-147	8.2786x10 ⁷	2.687x10 ¹	1.868x10 ⁴		4.056x10 ²		1.911x10 ⁴
Eu-152	4.2065x10 ⁸					2.397x10 ⁴	2.397x104
Eu-154	2.777x10 ⁸					1.438×10 ⁴	1.438x10
Eu-155	1.5652x10 ⁸				••		0.0
Th-232	4.4337x10 ¹⁷						
U-233	5.0018x10 ¹²					1.918x10 ²	1.918x10
U-235	2.221x10 ¹⁶	7.351x10 ⁻⁵	5.429x10-3	1.769x10 ⁻³	2.916x10 ⁻³		1.019x10
U-238	1.41x10 ¹⁷		6.145x10 ⁻²	2.386×10 ⁻⁴	2.723x10 ⁻⁴		6.196x10
Np-237	6.7532x10 ¹³						0.0
··· P == -							0.0
Pu-238	2.7688x10 ⁹		5.066x10 ²		2.334	8.137x10 ²	1.323x10
Pu-239	7.5942x10 ¹¹	1.508	4.801x10 ²	4.306x10 ¹	2.57x10 ¹	2.876x10 ²	8.38x10 ²
Pu-240	2.0629x10 ¹¹	2.356x10 ⁻¹	2.589x10 ²	1.667	8.608		2.694x10
Pu-241	4.5442x10 ⁸		1.21x10 ⁴		3.611x10 ²		1.246x10
Pu-242	1.1875x1013				1.609x10 ⁻³		1.609x10 ⁻
Am-241	1.3639x10 ¹⁰						0.0
Cm-244	5.7515x10 ⁸					3.452x10 ³	3.452x10
Cf-252	8.3247x10 ⁷						0.0
TOTALS		1.51x10 ²	1.183x10 ⁵	4.868x10 ³	2.651x10 ³	4.032x10 ⁵	5.291x10 ⁴

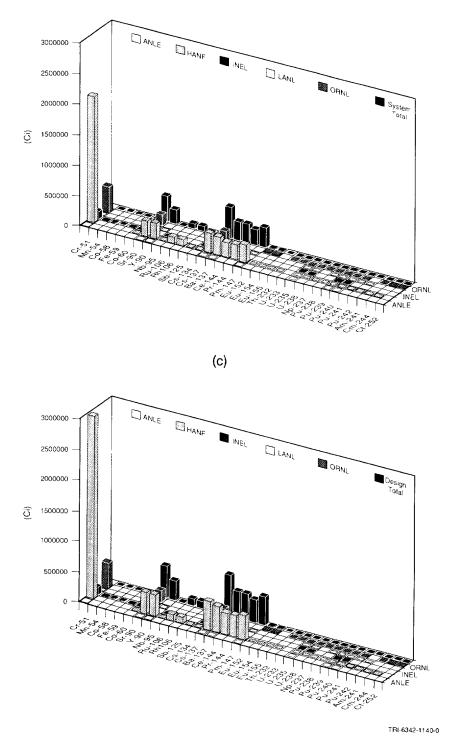
- (Westinghouse, WIPP) and transmitted by personal communication.
- 55 56

Radiouncu	ilide ANL-E	HANF	INEL	LANL	ORNL	Projected Total	(Stored + Projected) Anticipated System Tota
Cr-51			1.976x10 ²			1.976x10 ²	1.976x10 ²
Mn-54			1.196x10 ⁴			1.196x10 ⁴	1.213x10-'
Co-58			7.707x10 ³			7.707x10 ³	7.759x10 ³
Fe-59			1.976x10 ²			1.976x10 ²	1.976x10 ²
Co-60	-	1.889x10 ²	1.559x10 ³			1.748x10 ³	8.209x10 ³
Sr-90	4.403x10 ²	2.067x10 ⁵	1.558×10 ⁴	5.519x10 ¹	2.088x10 ¹	2.228x10 ⁵	4.209x10 ⁵
Y-90	4.403x10 ²	2.067x10 ⁵		5.519x10 ¹		2.072x10 ⁵	2.325×10 ⁵
Nb-95		1.629x10 ³				1.629x10 ³	1.63x10 ³
Ru-106		7.573x10 ⁴				7.573x10 ⁴	7.573×104
Rh-106		7.573x10 ⁴				7.573x10 ⁴	7.573x10 ⁴
Sb-125		1.369x10 ⁴				1.369x10 ⁴	1.369x10 ⁴
Cs-134		8.91x10 ³	7.68x10 ³			1.659x10 ⁴	1.659x104
Cs-137	3.302x10 ²	2.939x10 ⁵	1.548×10 ⁴	4.139x10 ¹	1.623x10 ²	3.099x10 ⁵	5.144x10
Ba-137m	2.935x10 ²	2.779x10 ⁵		3.679x10 ¹		2.782x10 ⁵	2.95x10 ⁵
Ce-144		2.53x10 ⁵	3.825×10 ⁴			2.913x10 ⁵	2.93x10 ⁵
Pr-144		2.53x10 ⁵				2.53x10 ⁵	2.531x10
Pm-147	3.302x10 ²	2.957x10 ⁵		4.139x10 ¹		2.961x10 ⁵	3.152x10 ⁵
Eu-152		1.149x10 ¹				1.149x10 ¹	2.398×10
Eu-154		1.607x10 ³	~-			1.607x10 ³	1.599x10
Eu-155		2.939x10 ³				2.939x10 ³	2.939x10
Th-232							
U-233					6.696	6.696	1.985x10
U-235	9.036x10 ⁻⁴	8.782x10 ⁻⁴		2.663x10 ⁻⁴	5.079x10 ⁻⁴	2.556x10 ⁻³	1.276x10 ⁻
U-238		1.627x10 ⁻²		2.486x10 ⁻⁵	1.035x10 ⁻³	1.733x10 ⁻²	7.929x10 ⁻
Np-237		6.986x10 ⁻¹			1.881×10 ⁻¹	8.867x10 ⁻¹	8.867x10
Pu-238		5.275		7.105x10 ⁻²	3.305x10-2	5.379	1.328x10
Pu-239	1.853x10 ¹	5.898x101	1.975x10 ²	7.826x10 ⁻¹	5.14x10 ¹	3.272x10 ²	1.165x10
Pu-240	2.896	1.6x10 ¹		2.001x10 ⁻¹	4.496×10 ⁻¹	1.955x10 ¹	2.89x10 ²
Pu-241		7.075x10 ²		1.099x10 ¹	1.053x10 ⁻²	7.185x10 ²	1.318x10
Pu-242		1.648x10-3		4.899x10 ⁻⁵	-	1.697x10 ⁻³	3.306x10
Am-241		9.409x10 ²			6.481x10 ¹	1.006x103	1.006x10
Cm-244		2.209			8.073x10 ²	8.095x10 ²	4.262x10
Cf-252					8.629x10 ¹	8.629x10 ¹	8.629x10
TOTALS	1.856x10 ³	1.969x10 ⁶	9.88x10 ⁴	2.42x10 ²	1.20x10 ³	2.071x106	2.6x10 ⁶


Table 3.3-7. Projected* Radionuclide Inventory by Waste Generator for Remotely Handled Waste 2 (Curies) 3

56 57 58

^{*} Generated between 1990 and 2013; these estimates were based on 1990 IDB input and were made by H. Batchelder (Westinghouse, WIPP) and transmitted by personal communication.


Radionuclide	ANL-E	HANF	INEL	LANL	ORNL	PA Calculations Design 1990	Waste Unit Factor
Cr-51			2.869x10 ²				
Mn-54			1.753x10 ⁴				
Co-58			1.124x10 ⁴				
Fe-59			2.869x10 ²				
Co-60		1.941x10 ³	2.263x10 ³	++	4.794x10 ³		
Sr-90	6.747x10 ²	3.247x10 ⁵	2.262x10 ⁴	6.213x10 ²	1.728x10 ⁵	5.214x10 ⁵	
Y-90	6.747x10 ²	3.247x10 ⁵		6.213x10 ²			
Nb-95		2.364x10 ³	8.963x10- 1				
Ru-106		1.099x10 ⁵					
Rh-106		1.099x10 ⁵					
Sb-125		1.987x10 ⁴					
Cs-134		1.293x10 ⁴	1.115x10 ⁴				
Cs-137	5.06x10 ²	4.451x10 ⁵	2.547x10 ⁴	4.66x10 ²	1.827x10 ⁵	6.543x10 ⁵	
Ba-137m	4.498x10 ²	4.199x10 ⁵		4.142x10 ²		•	
Ce-144		3.673x10 ⁵	5.713x10 ⁴				
Pr-144		3.673x10 ⁵					
Pm-147	5.06x10 ²	4.479x10 ⁵		4.66x10 ²		4.489x10 ⁵	
Eu-152		1.668x10 ¹			2.397x10 ⁴		
Eu-154		2.333x10 ³			1.438x10 ⁴	*	
Eu-155		4.266x10 ³					
Th-232							
U-233					2.015x10 ²	2.015x10 ²	
U-235	1.385x10 ⁻³	6.704x10 ⁻³	1.769x10 ⁻³	3.298x10 ⁻³	7.372x10 ⁻⁴	1.389x10 ⁻²	
U-238		8.507x10 ⁻²	2.386x10 ⁻⁴	3.086x10 ⁻⁴	1.502x10 ⁻³		
Np-237		1.014			2.73x10-1	1.287	1.287
Pu-238		5.143x10 ²		2.438	8.137x10 ²	1.33x10 ³	1.33x 10 ³
Pu-239	2.84x10 ¹	5.657x10 ²	3.298x10 ²	2.684x10 ¹	3.622x10 ²	1.313x10 ³	1.313x10 ³
Pu-240	4.438	2.821x10 ²	1.667	8.9	6.525x10 ⁻¹	2.978x10 ²	2.978x10 ²
Pu-241		1.313x10 ⁴		_			2.3/0/10
		1.313x10 * 2.392x10* ³		3.771x10 ²	1.101x10 ⁻¹	1.350x10 ⁴	4 0 70 40 3
Pu-242		2.392x 10 0		1.68x10 ⁻³		4.072x10 ⁻³	4.072x10 ⁻³
Am-241		1.366x10 ³			9.406x10 ¹	1.46x10 ³	1.46x10 ³
Cm-244		3.206			4.624x 10 ³	4.627x10 ³	
Cf-252					1.252x10 ²	1.252x10 ²	
TOTALS	2.844x10 ³	2.976x10 ⁶	1.483x10 ⁵	3.004x10 ³	4.049x10 ⁵	1.697x10 ⁶	4.410x10 ³

2 Table 3.3-8. Design Radionuclide Inventory by Waste Generator for Remotely Handled Waste (Curies)

- (b)
- Figure 3.3-4. Activity of (a) Stored, (b) Projected, (c) Anticipated Actual System Total, and (d) Design Radionuclide Inventory of RH Waste.

(page date: 15-NOV-91)

(d)

Figure 3.3-4. Activity of (a) Stored, (b) Projected, (c) Anticipated Actual System Total, and (d) Design Radionuclide Inventory of RH Waste (Concluded).

2 3.3.3 Radionuclide Chains and Half-Lives

3 4

6 The decay chains for the initial radionuclides in the CH and RH inventory are shown in 7 Figures 3.3-5 and 3.3-6, respectively. The half-lives for each radionuclide as listed in the 8 literature by ICRP Publication 38 (ICRP, Pub 38, 1983) and the mass of the initial inventory 9 are also on Figure 3.3-5. For reference, the half-lives of the radionuclides in the initial 10 WIPP inventory and decay products are tabulated in Table 3.3-9.

11

Many of the daughter radionuclides have extremely short half-lives, low activities, and make
a small contribution to the curie inventory. Shortened chains are used when modeling as
follows.

15

16 Radionuclides for Cuttings and Repository Modeling

17

From the 70 radionuclides shown in Figure 3.3-5, 23 are considered major contributors to the inventory and are used in calculating the radionuclide releases from drilling into the repository and bringing cuttings to the surface and when calculating concentrations within the repository prior to transport to the Culebra. In general, most radionuclides of plutonium, thorium, americium, curium, neptunium, californium, radon, and uranium are considered.

23

The RH inventory decay chains include the chains in the CH inventory shown in Figure 3.3-5 plus the three chains shown in Figure 3.3-6. The radionuclides in the RH cuttings releases included cesium-137, promethium-147, and strontium-90 in addition to all of the radionuclides in the CH releases.

28

30

29 Radionuclides for Transport Modeling

Seven radionuclides are considered in PA transport calculations for CH waste and are highlighted on Figure 3.3-5.

33

Figure 3.3-7 shows the change with time in radionuclide activity in one panel normalized to the EPA release limits for 11 of the 23 radionuclides not included in the transport calculations. The curies of each radionuclide may be calculated by multiplying the normalized activity by the EPA release limit and the total curies in the initial inventory (11.87 x 10⁶ Ci). Figure 3.3-7 indicates that the total activity at 10,000 yr in a panel for all radionuclides omitted, except for radium-226, is less than 1% of the EPA limit. The normalized activity including radium-226 is less than 2% of the EPA limit.

41

Five additional radionuclides were not included. Californium-252, curium-244, and plutonium-241 were not included for transport because of their small initial quantities and relatively short half-lives, all less than 20 yr. Curium-248, a daughter of californium-252, was not included because of the small quantity and low radiological toxicity. Plutonium-244 was not included because of its small quantity also.

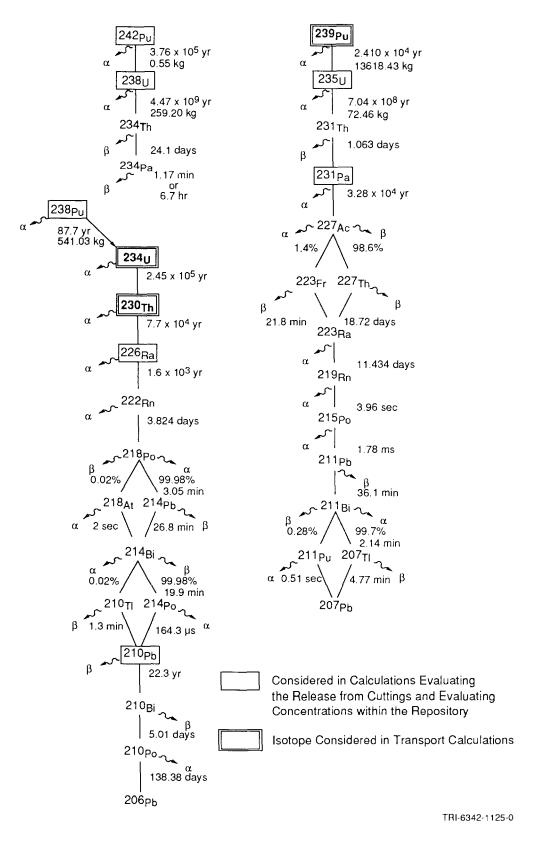
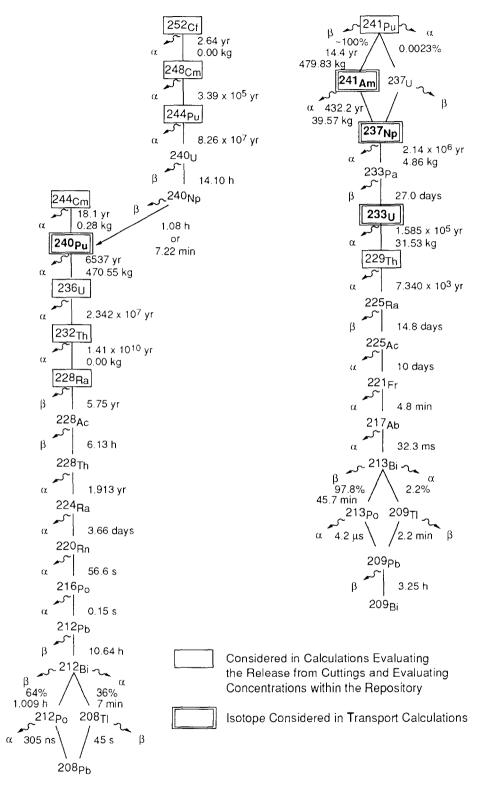



Figure 3.3-5. Decay of CH Radionuclide Chain in TRU-Contaminated Waste.

(page date: 15-NOV-91)

3-54

(database version: X-2.19PR)

TRI-6342-1125-0

Figure 3.3-5. Decay of CH Radionuclide Chain in TRU-Contaminated Waste (Concluded).

(page date: 15-NOV-91)

(database version: X-2.19PR)

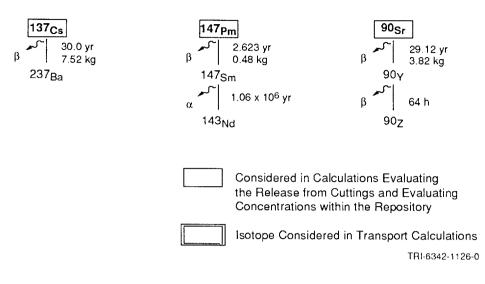


Figure 3.3-6. Decay of RH Radionuclide Chain in TRU-Contaminated Waste.

		Half-lif	e (t _{1/2})
Radioisc	otope	(s)	Reported
Actinium	228 _{Ac}	2.207 x 10 ⁴	6.13 h
	227 _{AC}	6.871 x 10 ⁸	2.177 x 10 ¹ y
	225 _{AC}	8.64 x 10 ⁵	10 day
Americium	243 _{Am}	5.822 x 10 ¹¹	7.38 x 10 ³ yr
	241 _{Am}	1.364 x 1010	4.322×10^2 y
Antimony	125 _{Sb}	8.741 x 10 ⁷	2.77 yr
Astatine	217 _{At}	3.23 x 10 ⁻²	3.23 x 10 ⁻² s
Barium	137m _{Ba}	1.531×10^2	2.552 min
Bismuth	214 _{Bi}	1.194 x 10 ³	19.9 min
Diornativ	213Bi	2.739 x 10 ³	45.65 min
	212 _{Bi}	3.633 x 10 ³	60.55 min
	211 _{Bi}	1.284×10^2	2.14 min
	210Bi	4.33 x 10 ⁵	5.012 day
Californium	252Cf	8.325 x 10 ⁷	2.638 yr
Cerium	144 _{Ce}	2.456 × 10 ⁷	2.038 yi 284.3 day
Cesium	137Cs	9.467 x 10 ⁸	
Cestum	134 _{Cs}	6.507 x 10 ⁷	30.0 yr 2.062 yr
Chromium	51Cr	2.394 x 10 ⁶	-
Cobalt	60Co	1.663 x 10 ⁸	27.7 day 5.221 yr
Cobait	58Co	6.117 x 10 ⁶	70.8 day
Curium	248 _{Cm}	1.070 x 10 ⁻¹	3.39 x 10 ⁵ y
Gunum	244Cm	5.715 x 10 ⁸	18.11 yr
Europium	155 _{Eu}	1.565 x 10 ⁸	4.96 yr
Luiopium	154 _{Eu}	2.777 x 10 ⁸	
	152 _{Eu}	4.207 x 10 ⁸	8.80 yr 13.53 yr
Francium	221Fr	2.88 X 10 ²	-
Iron	59Fe	3.847 x 10 ⁶	4.8 min 44.53 day
Lead	214Pb	1.608×10^3	26.8 min
Leau	212Pb	3.83 x 10 ⁴	10.64 h
	211Pb	2.166 x 10 ³	3.61 min
	210Pb	7.037×10^8	22.3 yr
	209 _{Pb}	1.171 x 10 ⁴	3.253 h
Manganese	54 _{Mn}	2.7×10^7	312.5 day
Neptunium	239 _{Np}	2.035 x 10 ⁵	2.355 day
Neptunium	237 _{Np}	6.753 x 10 ¹ 3	2.14 x 10 ⁶ y
Niobium	95 _{Nb}	3.037 x 10 ⁶	35.15 day
Plutonium	244 _{Pu}	2.607 x 10 ¹⁵	8.76 x 10 ⁷ γ
	242Pu	1.187 x 10 ¹³	3.763 x 10 ⁵
	241Pu	4.544 x 10 ⁸	14.4 yr
	240 _{Pu}	2.063 x 10 ¹¹	6.537 x 10 ³
	239 _{Pu}	7.594 x 10 ¹¹	2.407 x 10 ⁴
	238 _{Pu}	2.769 x 10 ⁹	87.74 yr
Polonium	218 _{P0}	1.83 x 10 ²	3.05 min
roionan	216 _{P0}	1.5 x 10 ⁻¹	1.5 x 10 ⁻¹ s
	215Po	1.78 x 10 ⁻³	1.78 x 10 ⁻³ s
	214Po	1.643 x 10 ⁻⁴	1.643 x 10 ⁻⁴
	213po	4.2 x 10 ⁻⁶	4.2 x 10 ⁻⁶ s
	212 _{Po}	4.2 × 10 ° 3.05 × 10 ⁻⁷	4.2 x 10 ⁻⁰ s 3.05 x 10 ⁻⁷ s
	210 _{Po}	1.196 x 10 ⁻⁷	
Praseodymium	144Pr	1.037 x 10 ³	138.4 day
Praseodymium	147Pm	8.279 x 10 ³	17.28 min
FIUMEUNUM	· · · FIII	0.2/310.	2.623 yr

Table 3.3-9. Half-Lives of Isotopes Disposed or Created in WIPP (ICRP, 1983)

1

* Bolding indicates isotopes assumed in inital inventory for PA calculations

2

Radioisotope Protactinium Radium Radon Rhodium Ruthenium Strontium Thallium Thorium	233Pa 231Pa 228Ra 226Ra 225Ra 224Ra 223Ra 222Rn 220Rn 219Rn 106Rh 106Rh 106Ru 90Sr* 207TI	Half-life (s) 2.333 x 10 ⁶ 1.034 x 10 ¹² 1.815 x 10 ⁸ 5.049 x 10 ¹⁰ 1.279 x 10 ⁶ 3.162 x 10 ⁵ 9.879 x 10 ⁵ 5.56 x 10 ¹ 3.96 2.99 x 10 ¹ 3.181 x 10 ⁷ 9.189 x 10⁸	27 day 3.276 x 10 ⁴ yr 5.75 yr 1.6 x 10 ³ yr 14.8 day 3.66 day 11.43 day 3.824 day 5.56 x 10 ¹ s 3.96 s 2.99 x 10 ¹ s 3.682 x 10 ² da
Radium Radon Rhodium Ruthenium Strontium Thallium	231Pa 228Ra 226Ra 225Ra 224Ra 222Rn 222Rn 220Rn 219Rn 106Rh 106Rh 106Ru 90Sr *	$\begin{array}{c} 1.034 \times 10^{12} \\ 1.815 \times 10^8 \\ 5.049 \times 10^{10} \\ 1.279 \times 10^6 \\ 3.162 \times 10^5 \\ 9.879 \times 10^5 \\ 3.304 \times 10^5 \\ 5.56 \times 10^1 \\ 3.96 \\ 2.99 \times 10^1 \\ 3.181 \times 10^7 \end{array}$	3.276 x 10 ⁴ yr 5.75 yr 1.6 x 10 ³ yr 14.8 day 3.66 day 11.43 day 3.824 day 5.56 x 10 ¹ s 3.96 s 2.99 x 10 ¹ s
Radon Rhodium Ruthenium Strontium Thallium	228Ra 226Ra 225Ra 224Ra 223Ra 222Rn 220Rn 219Rn 106Rh 106Rh 106Ru 90Sr *	$\begin{array}{c} 1.815 \times 10^8 \\ 5.049 \times 10^{10} \\ 1.279 \times 10^6 \\ 3.162 \times 10^5 \\ 9.879 \times 10^5 \\ 3.304 \times 10^5 \\ 5.56 \times 10^1 \\ 3.96 \\ 2.99 \times 10^1 \\ 3.181 \times 10^7 \end{array}$	5.75 yr 1.6 x 10 ³ yr 14.8 day 3.66 day 11.43 day 3.824 day 5.56 x 10 ¹ s 3.96 s 2.99 x 10 ¹ s
Radon Rhodium Ruthenium Strontium Thallium	226Ra 225Ra 224Ra 223Ra 222Rn 220Rn 219Rn 106Rh 106Rh 106Ru 90Sr *	5.049 x 10 ¹⁰ 1.279 x 10 ⁶ 3.162 x 10 ⁵ 9.879 x 10 ⁵ 3.304 x 10 ⁵ 5.56 x 10 ¹ 3.96 2.99 x 10 ¹ 3.181 x 10 ⁷	1.6 x 10 ³ yr 14.8 day 3.66 day 11.43 day 3.824 day 5.56 x 10 ¹ s 3.96 s 2.99 x 10 ¹ s
Rhodium Ruthenium Strontium Thallium	225Ra 224Ra 223Ra 222Rn 220Rn 219Rn 106Rh 106Ru 90Sr *	1.279 x 10 ⁶ 3.162 x 10 ⁵ 9.879 x 10 ⁵ 3.304 x 10 ⁵ 5.56 x 10 ¹ 3.96 2.99 x 10 ¹ 3.181 x 10 ⁷	14.8 day 3.66 day 11.43 day 3.824 day 5.56 x 10 ¹ s 3.96 s 2.99 x 10 ¹ s
Rhodium Ruthenium Strontium Thallium	224 _{Ra} 223 _{Ra} 222 _{Rn} 220 _{Rn} 219 _{Rn} 106 _{Rh} 106 _{Ru} 90Sr *	3.162 x 10 ⁵ 9.879 x 10 ⁵ 3.304 x 10 ⁵ 5.56 x 10 ¹ 3.96 2.99 x 10 ¹ 3.181 x 10 ⁷	3.66 day 11.43 day 3.824 day 5.56 x 10 ¹ s 3.96 s 2.99 x 10 ¹ s
Rhodium Ruthenium Strontium Thallium	223Ra 222 _{Rn} 220 _{Rn} 219 _{Rn} 106 _{Rh} 106 _{Ru} 90Sr*	9.879 x 10 ⁵ 3.304 x 10 ⁵ 5.56 x 10 ¹ 3.96 2.99 x 10 ¹ 3.181 x 10 ⁷	11.43 day 3.824 day 5.56 x 10 ¹ s 3.96 s 2.99 x 10 ¹ s
Rhodium Ruthenium Strontium Thallium	222Rn 220Rn 219Rn 106Rh 106Ru 90Sr ≁	3.304 x 10 ⁵ 5.56 x 10 ¹ 3.96 2.99 x 10 ¹ 3.181 x 10 ⁷	3.824 day 5.56 x 10 ¹ s 3.96 s 2.99 x 10 ¹ s
Rhodium Ruthenium Strontium Thallium	220 _{Rn} 219 _{Rn} 106 _{Rh} 106 _{R⊔} 90Sr≁	5.56 x 10 ¹ 3.96 2.99 x 10 ¹ 3.181 x 10 ⁷	5.56 x 10 ¹ s 3.96 s 2.99 x 10 ¹ s
Ruthenium Strontium Thallium	219Rn 106Rh 106Ru 90Sr *	3.96 2.99 x 10 ¹ 3.181 x 10 ⁷	3.96 s 2.99 x 10 ¹ s
Ruthenium Strontium Thallium	106Rh 106Ru 90Sr *	2.99 x 10 ¹ 3.181 x 10 ⁷	2.99 x 10 ¹ s
Ruthenium Strontium Thallium	106 _{Ru} 90Sr*	3.181 x 10 ⁷	
Strontium Thallium	90Sr*		3.682 x 10 ² da
Thallium		9.189 x 10 ⁸	
	207TI		29.12 yr
Thorium		2.862 x 10 ²	4.77 min
	234Th	2.082 x 10 ⁶	24.1 day
	232 _{Th}	4.434 x 10 ¹⁷	1.405 x 10 ¹⁰ y
	231 _{Th}	9.187 x 10 ⁴	25.52 h
	230Th	2.43 x 10 ¹²	7.7 x 10 ⁴ yr
	229 _{Th}	2.316 x 10 ¹¹	7.34 x 10 ³ yr
	228 _{Th}	6.037 x 10 ⁷	1.913 yr
	227 _{Th}	1.617 x 10 ⁶	18.72 day
Uranium	240[]	5.076 x 10 ⁴	1.41 x 10 ¹ hr
or an inclusion	238	1.41 x 10 ¹⁷	4.468 x 10 ⁹ yr
	236U	7.389 x 10 ¹⁴	2.342 x 10 ⁷ yr
	2350	2.221 x 10 ¹⁶	7.038 x 10 ⁸ yr
	2341	7.716 x 10 ¹²	2.445 x 10 ⁵ yr
	23311	5.002 x 10 ¹²	1.585 x 10 ⁵ yr
Yttrium	90y	2.304 x 10 ⁵	64.0 h
T (III)	,	2.304 x 10-	04.011

Table 3.3-9. Half-Lives of Isotopes Disposed or Created in WIPP (ICRP, 1983) (Concluded)

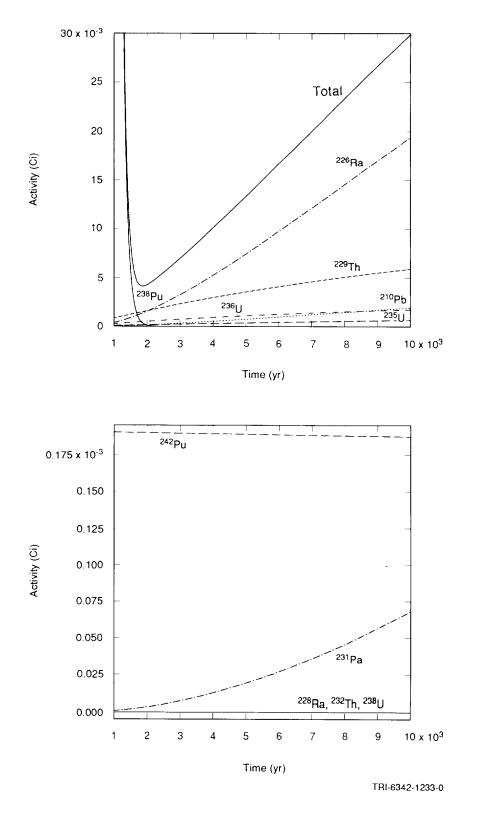


Figure 3.3-7. Radionuclides in One Panel Normalized by EPA Release Limits, Which Were Eliminated from Transport Calculations.

(page date: 15-NOV-91)

(database version: X-2.19PR)

40 CFR 191 Release Limits		
The release limits (L_i) for evaluating compliance 3.3-10.	with 40 CFR 191 § 13 a	ire provided in
Table 3.3-10. Cumulative Release Limits (Li) to Disposal for Evaluating Complian 191, Appendix B, Table 1)		
0	Release limit (L _i) per 1 x 10 ⁶ Ci α -emitting TRU nuclide with t _{1/2} > 20 yr*	1991 PA Release Limits f _m L _i
Radionuclide	(Ci)	(Ci)
Americium (Am) -241 or -243	100	1187
Carbon (C) -14	100	1187
Cesium (Cs) -135 or -137	1000	11870
lodine (l) -129	100	1187
Neptunium (Np) -237		1187
Plutonium (Pu) -238, -239, -240, or -242	100	1187
Radium (Ra) -226	100	1187
Strontium (Sr) -90	1000	11870
Technetium (Tc) -99		118700
Thorium (Th) -230 or -232		118.7
Tin (Sn) -126	1000	11870
Uranium (U) -233, -234, -235, -236, or -238	100	1187
Any other α -emitting radionuclide with $t_{1/2} > 20$ yr	100	1187
Any other non α -emitting radionuclide with $t_{1/2} > 20$ y	r 1000	11870

1 Waste Unit Factor

2

The waste unit factor (f_w) is the inventory in curies of transuranic (TRU) α -emitting 8 radionuclides in the waste with half-lives greater than 20 yr divided by 10⁶ Ci, where TRU 5 is defined as radionuclides with atomic weights greater than uranium (92). Consequently, as 6 currently defined in 40 CFR 191, all TRU radioactivity in the waste cannot be included when 7 calculating the waste unit factor. For the WIPP, 1.187 x 107 Ci of the radioactivity design 8 total of 1.814 x 10⁷ Ci comes from TRU α -emitting radionuclides with half-lives greater than 9 20 yr (see Tables 3.3-5 and 3.3-8).* Regardless of the waste unit, the WIPP has assumed that 10 all nuclides listed in Tables 3.3-5 and 3.3-8 are regulated and must be included in the release 11 calculations. Therefore, the release limits (Li) used by the WIPP are reduced somewhat (i.e., 12 more restrictive). 13

14

15 EPA Sums for Each nS Scenario Set

- 16
- 17 See discussion in Chapter 1, Section 1.4.1.
- 18
- 19

²⁰ _

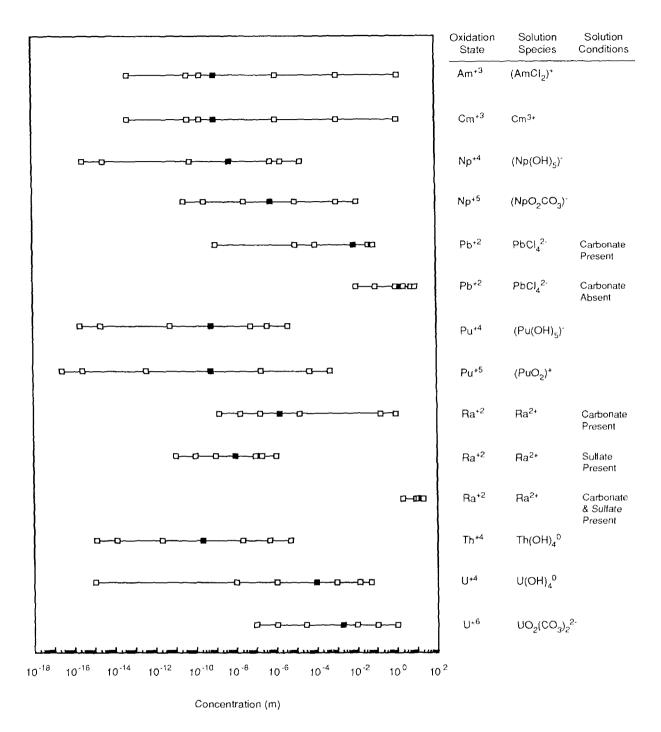
^{22 *} For the remanded regulation, the following change has been suggested: Include all radionuclides in the inventory but use the

activity (curie content) of the first daughter with a half-life greater than 20 yr for radionuclides with half-lives of less than 20 yr.

1 3.3.5 Solubility

2

3


The solubility of specific radionuclides was estimated by a panel of experts (outside Sandia) in the fields of actinide and brine chemistry (Trauth et al., 1991). Supporting calculations with EQ3/6 were performed using a standard brine that simulates the brine in the Salado Formation as the solvent (Lappin et al., 1989, Table 3-4). These efforts resulted in the estimation of the oxidation state(s) in which the radionuclides would exist in the environment of the WIPP disposal area, and corresponding solid species that would exist with that particular oxidation state.

11

Figure 3.3-8 depicts the estimated distributions of solubility for americium, curium, lead, neptunium, plutonium, radium, thorium, and uranium.

14

The points on the probability distributions that were elicited during the expert panel session are found in Figure 3.3-8 and Table 3.3-11.

The blocks represent, from left to right, the 0.00, 0.10, 0.25, 0.50, 0.75, 0.90 and 1.00 fractiles

TRI-6342-1410-0

Figure 3.3-8. Subjective Distribution (cdf) of Solubility for Americium, Curium, Lead, Neptunium, Plutonium, Radium, Thorium, and Uranium (after Trauth et al., 1991).

(page date: 15-NOV-91)

(database version: X-2.19PR)

Solution		Solid Species Maximum and		Cumulative Probabilities of Concentrations (M)						
Element	Species	Minimum	Condition	0.0	0.10	0.25	0.50	0.75	0.90	1.00
Am ³⁺	(AmCl ₂) +	Am(OH) ₃ AmOHCO ₃		5.0 x 10 ⁻¹⁴	5.0 x 10 ⁻¹¹	2.0 x 10 ⁻¹⁰	1.0 × 10 ⁻⁹	1.2 x 10 ⁻⁶	1.4 x 10 ⁻³	1.4
Cm ³⁺	Cm ^{III}	Cm(OH) ₃ CmO ₂		5.0 x 10 ⁻¹⁴	5.0 x 10 ⁻¹¹	2.0 x 10 ⁻¹⁰	1.0 x 10 ⁻⁹	1.2 x 10 ⁻⁶	1.4 x 10 ⁻³	1.4
Np ^{5 +}	(NpO ₂ CO ₃) ⁻	NpO ₂ (OH) (amorp NaNpO ₂ CO ₃ •3.5	hous) H ₂ O	3.0 x 10-11	3.0 x 10 ⁻¹⁰	3.0 x 10 ⁻⁸	6.0 x 10 ⁻⁷	1.0 x 10 ⁻⁵	1.2 x 10 ⁻³	1.2 x 10
Np ⁶⁺	(Np(OH) ₅)⁻	Np(OH) ₄ NpO ₂		3.0 x 10 ⁻ 16	3.0 x 10 ⁻¹⁵	6.0 x 10 ⁻¹¹	6. 0 x 10 ⁻⁹	6.0 x 10 ⁻⁷	2.0 x 10 ⁻⁶	2.0 x 10
Pb ²⁺	PbCl42-	PbCO3	Carbonate Present	1.0 x 10 ⁻⁹	1.0 x 10 ⁻⁵	1.0 x 10 ⁻⁴	8.0 x 10 ⁻³	4.4 x 10 ⁻²	6.2 x 10 ⁻²	8.0 x 10
		PbCl ₂	Carbonate Absent	0.01	0.10	1.0	1.64	2.5	6.0	10.0
Pu ⁴⁺	(Pu(OH) ₅) ⁻	Pu(OH) ₄ PuO ₂		2.0 x 10 ⁻¹⁶	2.0 x 10 ⁻¹⁵	6.0 x 10 ⁻¹²	6.0 x 10 ⁻¹⁰	6.0 x 10 ⁻⁸	4.0 x 10 ⁻⁷	4.0 x 10
Pu ⁵⁺	(PuO ₂) ⁺	Pu(OH) ₄ PuO ₂		2.5 x 10 ⁻¹⁷	2.5 x 10 ⁻¹⁶	4.0 x 10 ⁻¹³	6.0 x 10 ⁻¹⁰	2.0 x 10 ⁻⁷	5.5 x 10 ⁻⁵	5.5 x 10
Ra ^{2 +}	Ra ²⁺	RaSO4 and (Ra/Ca)SO4	Sulfate Present	1.0 x 10 ⁻¹¹	1.0 x 10 ⁻¹⁰	1.0 x 10 ⁻⁹	1.0 x 10 ⁻⁸	1.0 x 10 ⁻⁷	2.0 x 10 ⁻⁷	1.0 x 10
		RaCO ₃ and (Ra/Ca)CO ₃	Carbonate Present	1.6 x 10 ⁻⁹	1.6 x 10 ⁻⁸	1.6 x 10 ⁻⁷	1.6 x 10 ⁻⁶	1.6 x 10 ⁻⁵	1.6 x 10 ⁻¹	1.0
		RaCl₂•2H₂O	Carbonate and Sulfate Absent	2.0	4.0	8.6	11.0	14.5	17.2	18.0
Th ^{4 +}	Th(OH) ₄ 0	Th(OH) ₄ ThO ₂		5.5 x 10 ⁻¹⁶	5.5 x 10 ⁻¹⁵	1.0 x 10 ⁻¹²	1.0 x 10 ⁻¹⁰	1.0 x 10 ⁻⁸	2.2 x 10 ⁻⁷	2.2 x 10
+ 4ر	U(OH) ₄ 0	UO ₂ (amorphous) U ₃ O ₈		1.0 x 10 ⁻¹⁵	1.0 × 10 ⁻⁸	1.0 x 10 ⁻⁶	4.0 x 10 ⁻³	1.0 x 10 ⁻³	1.4 x 10 ⁻²	5.0 × 10
+6ر	UO ₂ (CO ₃)2 ²⁻	UO3•2H2O UO2		1.0 x 10 ⁻⁷	1.0 × 10-6	3.0 x 10 ⁻⁵	2.0 x 10 ⁻³	1.0 x 10 ⁻²	0.1	1.0

- General Rationale for Constructing Cumulative Distributions 2
- 3

4 The assessment of each distribution began by establishing the upper and lower solubility regimes. The first regime was based on the solid species with the highest solubility, and thus, 5 6 the highest concentration of the actinide, and the second regime was based on the solid species with the lowest solubility, and thus, the lowest concentration. The regime depends 7 upon the chemical properties within the repository, which are uncertain. The conditions 8 considered included the pH and ionic strength of the brine, and the presence of carbonate 9 and sulfate. The factor(s) controlling each regime differed for each actinide. 10

11

12 Each of these probability distributions represents the uncertainty in estimating a fixed, but unknown, quantity. In this case, the quantity is the concentration of a particular radionuclide 13 given a particular condition. Thus, uncertainty cannot be assigned to the concentration for a 14 particular fractile. The uncertainty inherent in these distributions includes that due to 15 uncertainty in the pH of the solvent in contact with the waste. When the impact of variation 16 in pH was included, the ranges of the distributions increased. Likewise, the distributions 17 encompass the differences of opinion of the experts. These differences also resulted in larger 18 ranges for the distributions. Because the distributions were developed by the panel as a 19 whole, the uncertainty in the judgments of the individual panel members cannot be 20 quantified. 21

22

10th, 90th and 0th, 100th Percentiles. Typically, the calculated value of each actinide for 23 24 each regime was used to establish a fractile, often either the 0.10 or 0.90 fractile, of the 25 distribution. The absolute lower, or upper, end point of the distribution was obtained by considering the sensitivity of solubility to the underlying brine chemistry. For example, the 26 27 calculated lower solubility limit for Am^{3+} (solid species $AmOHCO_3$) was 5 x 10⁻¹¹ M. The absolute lower limit of the distribution was judged to be 5 x 10⁻¹⁴ M. This judgment was 28 obtained through consideration and discussion of the sensitivity of solubility to pH. In a 29 30 similar manner, the upper 0.90 fractile was set equal to the calculated solubility with the solid 31 speciation $Am(OH)_3$. The calculated value was 1.4 x 10⁻³ M. The absolute upper limit was 32 judged to be 1.4 M.

33

25th and 75th Percentiles. The interior fractiles (0.25 and 0.75) were obtained after the 0.10 34 and 0.90 fractiles and the endpoints were established and based on speciation. In some cases, 35 one speciation was thought to be more likely, resulting in a skewed distribution. In other 36 cases, both speciations were thought to be likely, or to perhaps coexist, so that the assessed 37 distribution was more symmetric and either bimodal or flat. 38 39

50th Percentile. Where possible, concentration data from a well (J-13) at the Nevada Yucca 40 Mountain site, with a correction made for the ionic strength difference between the J-13 41 42 water and the WIPP A brine (Lappin et al., 1989, Table 3-4), was used as the 0.50 fractile. 43

1 Radium and Lead

2

The assessments for radium and lead require special comment because they are the only ones based on the presence or absence of specific compounds—carbonateand sulfate. For radium, the solubility is controlled by the solid species $RaSO_4$ and $(Ra/Ca)SO_4$ if sulfate is present. In the absence of sulfate, but in the presence of carbonate, $RaCO_3$ and $(Ra/Ca)CO_3$ control the solubility. If neither sulfate nor carbonate is present, then $RaCl_2 2H_2O$ will be the solid species. In the case of lead, the solid speciation depends upon the presence of carbonate but not sulfate. If carbonate is present, the solid speciation is $PbCO_3$, otherwise, $PbCl_2$.

- 10 11 Colloids
- 12

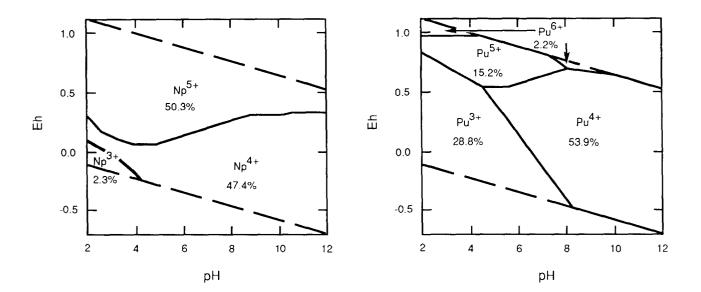
The expert panel had considerable difficulty dealing with colloids because of a lack of 13 experimental data and physical principles governing their formation. There was some 14 diversity of opinion about the significance of colloids. One expert placed an upper limit on 15 the concentration of colloids of 10% of the concentration due to solubility. Another expert 16 suggested that for some actinides, such as plutonium, the concentration due to colloidal 17 formation may be greater than that due to solubility. Another suggestion was that the 18 activity coefficients embody some colloid formation and thus the assessed distributions reflect 19 the presence of both dissolved and suspended materials. The panel did not believe they could 20 make judgments about suspended solids concentrations at the present time. They plan to 21 include recommendations for future experiments related specifically to colloids in a final 22 panel report. 23

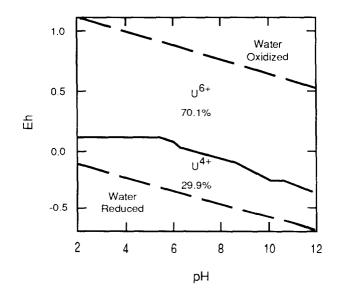
24

25 Correlations

26

27 Correlations between the concentrations assigned to the radionuclides were discussed briefly 28 by the panel. The consensus was that correlations do exist, possibly between Am^{3+} and 29 Cm^{3+} , and between Np^{4+} and Pu^{4+} . The panel will address this issue in their final panel 30 report.


3.3.6 Eh - pH Conditions


Parameter:	Relative areas of radionuclide oxidation state	
Median:	0.5	
Range:	0	
	1.0	
Units:	Dimensionless (A _i /A _{total})	
Distribution:	Uniform	
Source(s):	See text.	

Discussion:

From estimates of constituents in the waste, inventory estimates of radionuclide concentration in brine as a function of Eh and pH are theoretically possible. However, the work remains to be done. Currently, radionuclide solubility estimates include variations in pH when assigning the 0th and 100th percentiles (Section 3.3.5, Solubility). For Eh, the oxidizing or reducing potential of the solution is sampled from a uniform distribution with ranges dependent on the stability of water. For 1991 PA calculations, an index variable between 0 and 1 was used to select the relative areas of the estimated regimes of stability for the various oxidation states of neptunium (Np), plutonium (Pu), and uranium (U) (Figure 3.3-9).

(page date: 15-NOV-91)

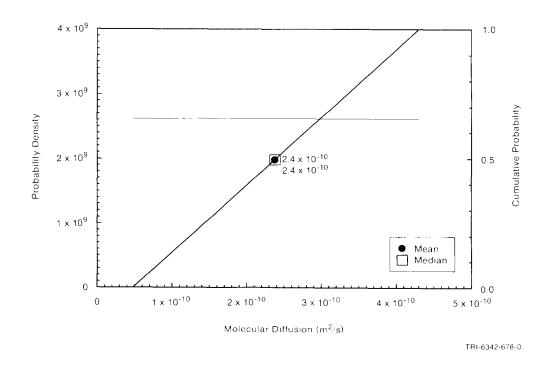
TRI--6342-1132-0

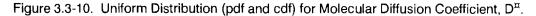
Figure 3.3-9. Estimated Regimes of Stability in the Eh-pH Space for Neptunium, Plutonium, and Uranium and Percentage of Area of Stable Water.

3.3.7 Molecular Diffusion Coefficient*

1 2 з

5 6


7 8


10

11 12 Table 3.3-12 provides estimated values of the free liquid diffusion coefficient of important actinides. Figure 3.3-10 provides the uniform distribution assumed for the average actinide.

Table 3.3-12. Estimated Molecular Diffusion Coefficient for Radionuclide Transport in Culebra Dolomite (after Lappin et al., 1989, Table E-7).

Parameter	Median	Range		Units	Distribution Ty p e	
Actinide, average	2.4 x 10-10	4.8 x 10 ⁻¹¹	4.3 x 10-10		Uniform	
Am	1.765 x 10-10	5.3 x 10 ⁻¹¹	3 x 10-10	m ² /s m ² /s	Uniform	
Cm	1.765 x 10-10	5.3 x 10 ⁻¹¹	3 x 10 ⁻¹⁰	m²́/s	Uniform	
Np	1.76 x 10 ⁻¹⁰	5.2 x 10 ⁻¹¹	3 x 10-10	m²/s	Uniform	
Pb	4 x 10 ⁻¹⁰	2 x 10 ⁻¹⁰	8 x 10 ⁻¹⁰	m ^{2′} /s m²/s	Cumulative	
Pu	1.74 x 10 ⁻¹⁰	4.8 x 10 ⁻¹¹	3 x 10-10	m²/s	Uniform	
Ra	3.75 x 10 ⁻¹⁰	1.875 x 10 ⁻¹⁰	7.5 x 10-10	m²/s	Cumulative	
Th	1 x 10 ⁻¹⁰	5 x 10 ⁻¹¹	1.5 x 10 ⁻¹⁰	m²/s	Uniform	
U	2.7 x 10 ⁻¹⁰	1.1 x 10 ⁻¹⁰	4.3 x 10 ⁻¹⁰	m²́/s	Uniform	

This section provides data for free-liquid diffusion coefficients; the diffusion coefficient for an actual porous media is the free-38 39 liquid coefficient times the tortuosity factor for that media.

2 Discussion:

3

4 Table 3.3-12 provides values of the molecular diffusion estimated both from the Nernst 5 equation at infinite dilution (upper range) (Brush, 1988; Li and Gregory, 1974) and data 6 obtained in experiments (lower range). For cases with both experimental and Nernst equation 7 estimates, the molecular diffusion was assumed to be uniformly distributed between the two 8 values.

9

Because the experimental values were obtained from apparent diffusion coefficients in 10 granitic ground waters and sodium bentonite, they required assumptions about retardation 11 factors for the radionuclides, porosity, and tortuosity (Torstenfelt et al., 1982; Lappin et al., 12 1989, Table E-7). Therefore, considerable but unquantifiable uncertainty is associated with 13 all the values of the actinide diffusion coefficients reported in the literature. Furthermore, 14 there are few data to guide predictions of radionuclide diffusion coefficients in the 15 concentrated brines. Consequently, extrapolation of the measured diffusion coefficients to 16 the range of conditions assumed for the Salado and Culebra Dolomite brines introduces more 17 uncertainty. 18

19

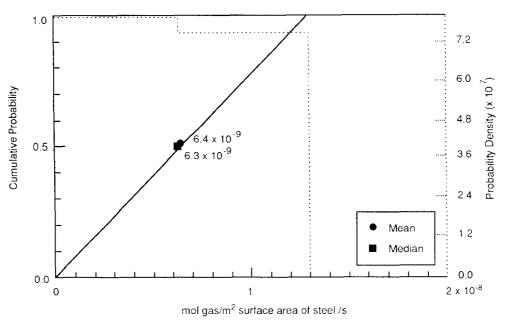
Some data suggest that diffusion coefficients for divalent cations (alkaline earth chlorides, 20 transitions metal chlorides) decrease by a factor of 2 with increasing ionic strength over the 21 range 0 to 6 M (Miller, 1982). This factor of 2 was used to establish ranges for Ra and Pb, 22 for which only a single value (the upper range) is available from the Nernst expression (Li 23 and Gregory, 1974). Specifically, the median value selected is smaller than the Nernst 24 equation value by a factor of 2 to include some salinity effects. The lower range is smaller 25 than the median by a factor of 2 to account for greater salinity and miscellaneous 26 uncertainties. 27

28

Although molecular diffusion varies with each species and the concentration of ions (e.g., Na⁺ from brackish water), some of the computational models used by the PA Division require a single value. For these cases, molecular diffusion is assumed to be uniformly distributed (Figure 3.3-11) with a range chosen to encompass the extremes for the actinide radionuclides, 4.8 x 10⁻¹¹ to 4.3 x 10⁻¹⁰ m²/s (4.5 x 10⁻⁵ to 4.0 x 10⁻⁴ ft²/d) with a mean of 2.4 x 10⁻¹⁰ m²/s (2.2 x 10⁻⁴ ft²/d).

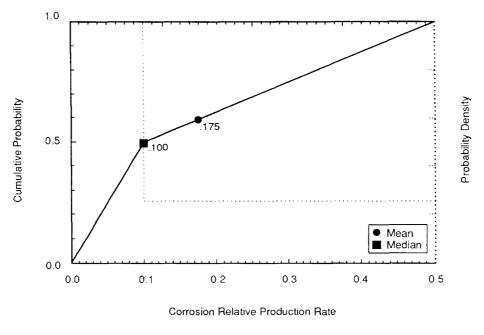
Parameter: Gas production rates, corrosion, inundated rate Median: 6.3 x 10⁻⁹ 0 Range: 1.3 x 10⁻⁸ mol $H_{2}/(m^{2} \text{ surface area steel } \cdot s)$ Units: **Distribution:** Cumulative Source(s): Brush, L. H. 1991. "Current Estimates of Gas Production Rates, Gas Production Potentials, and Expected Chemical Conditions Relevant to Radionuclide Chemistry for the Long-Term WIPP Performance Assessment," Internal memo to D.R. Anderson (6342), July 8, 1991. Albuquerque, NM: Sandia National Laboratories. (Memo 3 in Appendix A of this volume) Parameter: Gas production rates, corrosion, relative humid rate 1 x 10⁻¹ Median: Range: 0 5 x 10⁻¹ Units: Dimensionless Distribution: Cumulative Brush, L. H. 1991. "Current Estimates of Gas Production Rates, Gas Source(s): Production Potentials, and Expected Chemical Conditions Relevant to Radionuclide Chemistry for the Long-Term WIPP Performance Assessment," Internal memo to D.R. Anderson (6342), July 8, 1991. Albuquerque, NM: Sandia National Laboratories. (Memo 3 in Appendix A of this volume) **Parameter:** Anoxic iron corrosion stoichiometry Median: 0.5 Range: 0 1 Units: None (mol fraction) **Distribution:** Uniform Source(s): Brush, L. H. and D. R. Anderson. 1989. In Lappin et al., 1989. Systems Analysis Long-Term Radionuclide Transport and Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern New Mexico; March 1989. SAND89-0462. Albuquerque, NM: Sandia National Laboratories.

3.3.8 Gas Production from Corrosion


1 2

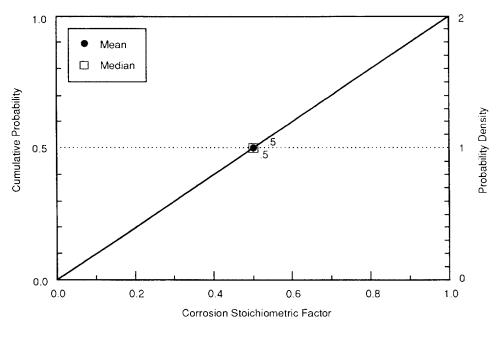
48 49 50

46


47

Figures 3.3-11, 3.3-12, and 3.3-13 provide the assumed distributions for gas production rates from corrosion under inundated conditions; gas production rates from corrosion under humid conditions; and anoxic iron corrosion stoichiometry, respectively. These distributions were constructed using information from Brush (July 8, 1991, Memo, Appendix A).

TRI-6342-1267-0

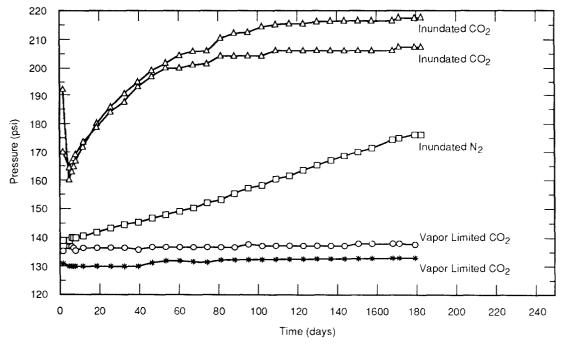

Figure 3.3-11. Assumed Distribution (pdf and cdf) for Gas Production Rates from Corrosion under Inundated Conditions.

TRI-6342-1268-1

Figure 3.3-12. Assumed Distribution (pdf and cdf) for Relative Gas Production Rates from Corrosion under Humid Conditions.

(page date: 15-NOV-91)

TRI-6342-1269-0


Figure 3.3-13. Assumed Distribution (pdf and cdf) for Anoxic Iron Corrosion Stoichiometric Factor, x.

7 Discussion:

8

9 After waste is emplaced in the WIPP repository, some gas is expected to be generated from three types of chemical reactions: (1) anoxic corrosion, (2) biodegradation, and (3) 10 11 radiolysis. In theory, the rates are dependent upon several factors, such as the chemical makeup of the waste (both organic and inorganic), the types of bacteria present, 12 interactions among the products of the reactions, characteristics of WIPP brine, pH, and 13 Experimental data describing these dependencies are incomplete at this time. 14 Eh. However, some rough estimates of the range of gas generation rate values under possible 15 WIPP environmental conditions have been made using available data. 16

17 Brush (July 8, 1991, Memo [Appendix A]) estimates gas production from corrosion for 18 inundated and humid conditions. The estimates for inundated conditions are based on 3-19 and 6-month experiments by R. E. Westerman of Pacific Northwest Laboratory (PNL) on 20 ASTM A 366 and ASTM A 570 steels by WIPP Brine A when N_2 is present at low 21 22 pressures (~ 0.105 MPa [150 psig]) (Brush, July 8, 1991, Memo [Appendix A]) (Figure 3.3-14). The following are estimated gas production and corrosion rates for inundated 23 conditions: minimum, 0 mol H_2/m^2 steel/yr (0 mol $H_2/drum/yr$); best estimate, 0.2 mol 24 H_2/m^2 steel/yr (1 mol/drum/yr); and maximum, 0.4 mol H_2/m^2 steel/yr (2 mol/drum/yr) 25 with N₂ at 0.698 MPa (1000 psig) (Brush, July 8, 1991, Memo [Appendix A]). 26 27

TRI-6342-1403-0

Figure 3.3-14. Pressure-Time Plots for 6-Month Anoxic Corrosion Experiments Under Brine-Inundated and Vapor-Limited ("Humid") Conditions (Davies et al., 1991).

9

Westerman also performed 3- and 6-month low-pressure humid experiments with either 10 CO₂ or N₂ atmospheres (Brush, July 8, 1991, Memo [Appendix A]). No H₂ production 11 was observed except for very limited quantities from corrosion of the bottom 10% of the 12 specimens splashed with brine during pretest preparation of the containers. Westerman is 13 currently quantifying H₂ production from anoxic corrosion of steels in contact with 14 noninundated backfill materials; results are expected in late 1991. Until these results are 15 available, the estimated rates for humid conditions are as follows: minimum, 0 mol 16 H_2/m^2 steel/yr (0 mol $H_2/drum/yr$); best estimate, 0.02 mol H_2/m^2 steel/yr (0.1 mol 17 $H_2/drum/yr$; and maximum, 0.2 mol H_2/m^2 steel/yr (1 mol $H_2/drum/yr$) with N_2 at 18 0.698 MPa (1000 psig) (Brush, July 8, 1991, Memo [Appendix A]). When expressed in 19 terms of relative rates, the values are 0 to 0.5 with a median of 0.1. 20 21

Previous Simulations. Previous simulations used ficticious wells in the waste as a way to introduce reaction-generated gas. The various gas generation rates were assumed to be constant for a specified length of time after which the "wells" were turned off. However, the corrosion and biodegradation rates are dependent on brine saturation (distinguishing brine-inundated conditions from humid conditions). While it is not known if the biodegradation reactions will consume or produce water, it is believed that water will be consumed during corrosion and radiolysis.

8
9 Current Procedure. To handle the rate of reactant consumption (brine, steel, and cellulosics) and product generation (gas) in a more realistic fashion, chemical reactions, reaction mechanisms, kinetics, and stoichiometry are used in PA calculations (i.e., BRAGFLO) and replace the use of wells.

Anoxic Corrosion Stoichiometry. Brush and Anderson (Lappin et al., 1989, p. A-6)
 describe four possible anoxic corrosion reactions likely to occur when waste drums are
 exposed to WIPP brines:

18 Fe + $2H_2O$ = Fe(OH)₂ + H₂ (3.3-1)

20 $3Fe + 4H_2O = Fe_3O_4 + 4H_2$ (3.3-2)

21 22

13

17

19

 $Fe + H_2O = FeO + H_2$ (3.3-3)

23 24

 $(x + y)Fe + (2(x + y) + z)H_2O + yNacl = xFe(OH)2.yFeOCl.zH_2O + yNa^+ + yOH^- + (x + 3y)H_2$ (3.3-4)

26 27

31

25

Brush and Anderson believed that FeO would not be stable under low-temperature conditions, so reaction 3.3-3 was discounted. Sufficient data are not available to characterize reaction 3.3-4, so it, too, is ignored in current PA calculations.

The average stoichiometry of reactions 3.3-1 and 3.3-2 is Fe + $((4+2x)/3)H_2O = ((4-x)/3)H_2 + (3x)Fe(OH)_2 + ((1-x)/3)Fe_3O_4$ (3.3-5) 36

where x mole fraction of iron is consumed by reaction 3.3-1. The PA calculations sample
 the parameter x from a uniform distribution between 0 and 1.

ENGINEERED BARRIERS Parameters for Contaminants Independent of Waste Form

Reaction Rate Constant. The reaction rate for corrosion under inundated conditions is 1 sampled from the distribution shown in Figure 3.3-11, ranging from 0 to 0.4 mol H_2/m^2 2 steel/yr = 1.268 x 10⁻⁸ mol H₂/m² steel/s. The rate under humid conditions is sampled as 3 a fraction of the inundated rate, the fraction ranging from 0 to 1, with the distribution 4 shown in Figure 3.3-12. This forces the humid rate always to be less than the inundated 5 rate as observed in preliminary tests (Figure 3.3-14). 6 7 For use in BRAGFLO, the corrosion rate (mol H_2/m^2) for both humid and inundated 8 conditions is converted to units of mol Fe/m³ panel/s by the following formula: 9 10 $\hat{n}_{CI} = (\hat{n}_{CI})(A_d)(n_d)/x_{CH2}/V_{pf}$ (3.3-6)11 12 $\hbar_{CH} = (\hbar'_{CH})(A_d)(n_d)/x_{CH2}/V_{pf}$ (3.3-7)13 14 15 where 16 17 \hbar_{CH}, \hbar_{CI} = humid and inundated corrosion reaction rate, respectively (mol Fe/m^3 18 panel/s) 19 20 = humid and inundated corrosion reaction rate, respectively (mol H_2/m^2 ħ_{CH}, ħ_{CI} 21 steel/s) 22 23 = surface area of steel in an equivalent drum, including both the drum 24 Ad and its contents (Brush, July 8, 1991, Memo [Appendix A, p. A-25]) 25 (6 m^2 steel/drum; 4.5 m^2 for drum surfaces alone) 26 27 = number of equivalent drums per panel (6,804 drum/panel, Section 28 n_d 3.1.6) 29 30 = stoichiometric coefficient in reaction 3.3-5 31 X_{CH2} = (4-x)/3, where x is a sampled parameter (mol H₂/mol Fe) 32 33 = final enclosed volume of a panel $(m^3 panel)$ Vpf 34 35 = $(V_{pI})(\Delta z_f / \Delta z_i)$ 36 = initial enclosed volume of a panel (Table 3.1-1) V_{pi} 37 $= (116.39 \times 10^3 \text{ m}^3 \text{ panel})$ 38 39 = initial height of a panel (3.9624 m, Section 3.1.6)40 Δz_i 41 = final height of a gas-tight panel after the full potential of gas has 42 Δz_{f} been generated (see discussion under Waste Porosity Calculation, 43 Section 3.4.8) (m) 44 45 Implicit in the use of average stoichiometry from Eq. 3.3-5 to determine a reaction rate is 46 the assumption that each of the reactions (comprising the average) react at the same rate. 47 48

Model Usage. Collection of data describing the kinetic rate expressions for corrosion in 1 the WIPP environment is continuing at this time. The available data suggest that as long 2 as inundated conditions (liquid phase brine in contact with metal) exist, corrosion 3 proceeds at a constant rate (e.g., in N₂ atmosphere and, at least early in the corrosion 4 process, in a CO₂ atmosphere) (Figure 3.3-14). This suggests zero-order kinetics with 5 respect to steel (independent of the steel concentration in the waste). Future data may 6 suggest that the reaction rate may be a function of surface area, film resistance, gas 7 pressure or gas composition. For the 1991 PA calculations, we assume that the rate of 8 corrosion is independent of the parameters mentioned above as well as the concentration 9 of steel in the waste. 10

Data also suggest that corrosion under humid conditions (no liquid phase brine in contact with metal) may proceed at a slower rate than that under inundated conditions. The humid rate could be dependent on the moisture content in the vapor which contacts the metal; however, in absence of data to support this, we assume that as long as brine is present the humid corrosion rate is independent of humidity. We further assume that any water consumed during corrosion under humid conditions is replenished from the brine pool as long as liquid phase brine is present.

Throughout the course of a calculation, BRAGFLO determines and uses an effective 20 corrosion rate. Both the inundated and humid rate contribute to the effective rate. 21 BRAGFLO calculates the effective corrosion rate from a weighted average of the 22 inundated and humid rates. This weighting is assumed to be dependent on the portion of 23 steel which is in contact with liquid and gas phases. BRAGFLO and numerical models in 24 general are characterized by finite sized homogenous volumes of uniform properties called 25 grid blocks. A typical grid block in the waste can be divided to include 4 material types: 26 brine, gas, steel, and other (rock, backfill, other waste components, etc.) Since each block 27 is assumed homogenous, the steel will be in contact with the brine, gas, steel, and "other." 28 The portion of steel in contact with brine in a given grid block is assumed propotional to 29 30 the volume fraction of brine in the block and similarly for the portions of steel in contact with gas, steel, and "other." These volume fractions are determined from porosity and 31 saturation; brine volume fraction = ϕs_{ℓ} , gas volume fraction = ϕs_{g} , and "other" 32 (including steel) volume fraction = $1 - \phi$, where ϕ is the porosity (volume fraction of grid 33 block that is void space), s_{ℓ} is the brine saturation (volume fraction of void space 34 occupied by brine, and sg is the gas saturation. The portion of steel in contact with brine 35 is assumed to react at the inundated rate while the portion of steel in contact with gas 36 reacts at the humid rate as long as there is some liquid phase brine present to be in 37 equilibrium with the brine in the gas phase. 38

39

11

19

The portion of steel which is in contact with "other" does not corrode at all. The effective corrosion rate under these assumptions becomes

42

45

 $\hbar_{Ce} = \hbar_{CI} \phi s_{\ell} + \hbar_{CH} \phi s_g + 0 (1 - \phi)$

(3.3-8)

1 where

 $\mathbf{\hat{h}_{Ce}}$ = effective corrosion rate (moles of steel consumed/reservoir volume/second)

 $\mathbf{\hat{h}}_{CI}$ = inundated corrosion rate (mol/(m³•s))

5 6 7

8

22

25

32

33

34

35 36

37

38

2

3 4

 $\mathbf{\hat{h}}_{CH}$ = humid corrosion rate (mol/(m³•s))

Other expressions for obtaining an effective corrosion rate can be envisioned. For 9 example, if the materials in a grid block are not uniformly distributed, all of the steel 10 could always be in contact with either the brine phase or only the gas phase. In addition, 11 moisture in the gas phase could condense on the metal. Nevertheless, Eq. 3.3-8 is used in 12 BRAGFLO for the 1991 PA calculation to determine corrosion rate because (1) it is most 13 consistent with the homogenous assumption, (2) no data are currently available to support 14 any other relationship, and (3) it lies between the bounds set by fully inundated and 15 humid conditions. It should be kept in mind that any uncertainty in the value of the 16 17 effective rate calulated from Eq. 3.3-8 is captured by the large range of inundated and humid rate values sampled on during the calculations. It should further be pointed out 18 19 that Eq. 3.3-8 implies that the corrosion rate will vary with time and position in the waste since porosity and saturation vary temporally and spatially. This is a departure from last 20 year when corrosion rates were asumed to be constant in time and space. 21

The kinetic expression for inundated corrosion assuming zero-order kinetics with aspect to steel concentration in the waste is

$$k_{CI} = -\frac{\partial C_{Fe}}{\partial t} = n_{CI} = -n_{Fe}$$
(3.3-9)

31 where

 k_{CI} = rate constant for corrosion under inundated conditions (mole Fe/(m³ panel•s))

 $-\hat{\mathbf{n}}_{Fe}$ = rate of steel consumption (mole Fe/(m³ panel•s))

 C_{Fe} = steel concentration (mole Fe/(m³ panel)

A similar expression results for humid corrosion kinetics. A characteristic of zero-order kinetics is that the rate constant has the same units as the reaction rate (r_{CI}).

41

From Eqs. 3.3-8 and 3.3-9, the amount of iron per unit volume of panel consumed by corrosion is given by

$$(C_{Fe}^{k+1} - C_{Fe}^{k}) = (k_{CI} \phi s_{\ell} + k_{CH} \phi s_{g}) \Delta t$$
 (3.3-10)

where

1234

5

6

7

8 9

10

11

12

13

14 15

16789012334

25

26

58 59

60120345

66

67 68

69 70 Δt = the time step size (s)

The amount of gas produced and brine consumed by corrosion over a specified time step depends on the rate constant and stoichiometry of reaction. Assuming the stoichiometry of Eq. 3.3-5 remains valid for both humid and inundated conditions and the effective corrosion reaction rate is determined as in Eq. 3.3-8, the rate of gas production and water consumption are calculated from Eqs. 3.3-11 and 3.3-12, respectively.

$$q_{CH_2} = (k_{CI} \phi s_{\ell} + k_{CH} \phi s_g) (x_{CH_2})(M_{H_2})$$
 (3.3-11)

$$q_{CH_20} = (k_{CI} \phi s_{\ell} + k_{CH} \phi s_g) (x_{CH_20}) (M_{H_20})$$
 (3.3-12)

where

 q_{CH_2} = rate of H₂ produced from corrosion per unit volume of panel (kg/m³s) q_{CH_2O} = rate of H₂O consumed by corrosion per unit volume of panel (kg/m³s) x_{CH_2} = corrosion stoichiometry for H₂ = (4 - x)/3 (see Eq. 3.3-5) x_{CH_2O} = corrosion stoichiometry for H₂O = -(4 + 2x)3 (see Eq. (3.3-5)) M_{H_2} = molecular weight for H₂(kg/gmol) M_{H_2O} = molecular weight for H₂O (kg/gmol)

Since we are concerned with brine removal rather than water, we convert the water consumption rate of Eq. 3.3-12 to that of brine using Eq. 3.3-13.

$$q_{cb} = (q_{CH_20})/(1.0 - w_s)$$
 (3.3-13)

where

 $q_b = rate of brine consumption (kg brine/(m³ panel • s))$

 w_s = weight fraction of NaCl in brine (kg NaCl/kg brine) assumed to be 25%

We do not adjust the salinity of the brine nor do we deposit salt in the pore space as water is consumed. The corrosion reaction rates, the concentration of steel, and the rates of production and consumption of the various species are computed in BRAGFLO as outlined above.

- 75
- (page date: 15-NOV-91)

(database version: X-2.19PR)

Parameter: Median: Range:	Gas production rates, microbiologial, inundated rate 3.2 x 10 ⁻⁹ 0 1.6 x 10 ⁻⁸
Units:	mol gas/kg cellulosics/s
Distribution: Source(s):	Cumulative Brush, L. H. 1991. "Current Estimates of Gas Production Rates, Ga Production Potentials, and Expected Chemical Conditions Relevan to Radionuclide Chemistry for the Long-Term WIPP Performanc Assessment," Internal memo to D.R. Anderson (6342), July 8 1991. Albuquerque, NM: Sandia National Laboratories. (Ir
	Appendix A of this volume)
Parameter:	Gas production rates, microbiologial, relative humid rate
Median:	1 x 10 ⁻¹
Range:	0
	2×10^{-1}
Units:	Dimensionless
Distribution:	Cumulative
Source(s):	Brush, L. H. 1991. "Current Estimates of Gas Production Rates, Ga
	Production Potentials, and Expected Chemical Conditions Relevan
	to Radionuclide Chemistry for the Long-Term WIPP Performanc Assessment," Internal memo to D.R. Anderson (6342), July 8
	1991. Albuquerque, NM: Sandia National Laboratories. (In
	Appendix A of this volume)
Parameter: Median:	Gas generation, stoichiometry factor 8.35 x 10 ⁻¹
Range:	0
Kange.	1.67
Units:	Dimensionless
Distribution:	Uniform
Source(s):	Brush, L. H. and D. R. Anderson. 1989. In Lappin et al., 1989
	Systems Analysis Long-Term Radionuclide Transport and Dos Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern New Mexico; March 1989. SAND89-0462. Albuquerque, NM: Sandi National Laboratories.

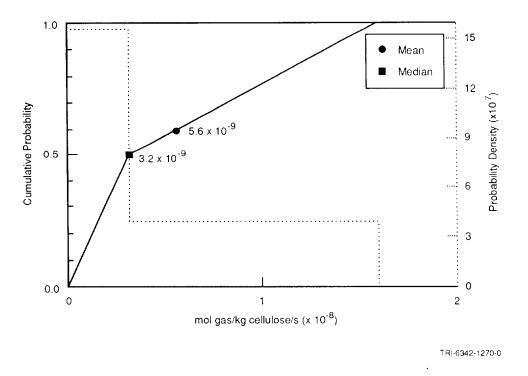
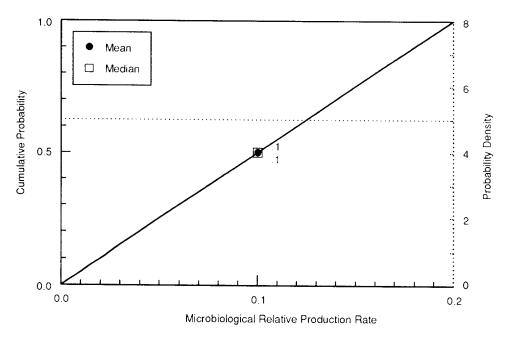



Figure 3.3-15. Estimated Distribution (pdf and cdf) for Gas Production Rates from Microbiological Degradation under Inundated Conditions.

TRI-6342-1271-1

Figure 3.3-16. Estimated Distribution (pdf and cdf) for Relative Gas Production Rates from Microbiological Degradation under Humid Conditions.

(page date: 15-NOV-91)

1 Discussion:

2

Brush (July 8, 1991, Memo [Appendix A]) estimates activity from microbiological degradation 3 based on a recent study at Stanford University and studies carried out during the 1970s 4 (Barnhart et al., 1980; Caldwell, 1981; Caldwell et al., 1988; Molecke, 1979; Sandia National 5 Laboratories, 1979). A test plan for laboratory experiments (Brush, 1990) and in-situ gas 6 production experiments using real waste at the WIPP (Lappin et al., 1989) describe 7 experiments currently underway. Although the Stanford tests seemed to suggest that 8 microbial gas production may be significant under overtest conditions but not under realistic 9 10 conditions, results from the earlier tests implied significant microbial gas production under both realistic and overtest conditions. However, until the Stanford tests are corroborated, the 11 12 best estimate for microbial gas production has remained the same as first proposed by Brush and Anderson (in Lappin et al., 1989; Brush, 1990), 0.1 mole of various gases per kg 13 14 cellulosics per year (1 mol $gas/(drum \cdot yr)$). However, new minimum and maximum rates for inundated conditions are 0 and 0.5 mol/(kg•yr) (5 mol per drum per year), respectively. 15 16

- For humid conditions, new minimum and best estimates for microbial gas production rates are 0 and 0.01 mol/(kg cellulosics•yr) (0.1 mol/(drum•yr)). The maximum estimate under humid conditions remains unchanged from the value estimated by Brush and Lappin (1990), 0.1 mol/(kg•yr) (1 mol/(drum•yr)). Expressed in terms of relative rates, the values are 0 to 0.2 with a median of 0.1.
- 22

Microbiologic Degradation Stoichiometry. The stoichiometry of the net biodegradation 23 reaction is uncertain. About 20 reactions have been postulated and others may be possible. 24 25 according to Brush and Anderson (Lappin et al., 1989, p. A-10). The reactions depend on such factors as what electron donors are available, the solubility of CO₂, interaction with 26 products of corrosion, pH, and Eh. It is not known at this time what effect biodegradation 27 has on water (brine) inventory, so it is assumed to have no net effect, neither consuming 28 water nor producing it. Some of the postulated reactions produce gas; others consume it. 29 At present, we know that some gas (CO₂ and some H₂, H₂S, and CH₄) may be produced and 30 31 that cellulose (CH_2O) will be consumed. Using the stoichiometry recommended in Lappin et 32 al. (1989, Supplement to Appendix A.1, p. A-30) that yields the maximum gas generation 33 per unit of cellulose $(5/3 \text{ mol gas/mol CH}_2O)$, the biodegradation reaction may be written

34 35

36

 $CH_2O + unknowns + microbes = 5/3 gas + unknowns$ (3.3-14)

However, in view of the wide variety of reactions that may occur, together with our current lack of knowledge as to precisely which reactions do occur, it is prudent to sample on the stoichiometric coefficient for gas in reaction 3.3-14. If the assumption is also made that any CO₂ that is produced will dissolve in the WIPP brine, then of the reactions presented in Lappin et al., (1989) only one reaction will consume gas, that one being

(3.3 - 15)

1

$$CH_2O + O_2 = H^+ + HCO^{3-}$$

This reaction requires oxygen, which will be present initially in air and will be produced by radiolysis. Neither source of oxygen is sufficient to oxidize all of the cellulose in the inventory, and oxic corrosion will compete strongly for this oxygen, so this reaction is expected to be of minor importance. None of the other reactions consumes gas, whereas most produce gas, with the net gas production ranging from 0 to 5/3 mol gas/mol CH₂O. Therefore, the stoichiometric coefficient is sampled from a uniform distribution ranging from 0 to 5/3.

10

16

24 25

26 27

28901223

34

35 36

37 38

39 40

41 42

Model Usage. As with corrosion, the rate of gas generation from the biodegradation of cellulosics differs depending on whether inundated or humid conditions exist in the repository. In BRAGFLO an effective rate of biodegradation is calculated, as described in the previous corrosion rate discussion, from a weighted average of the inundated and humid rates.

There are insufficient data available at this time to quantify any biodegradation kinetics other than zero-order kinetics with respect to the concentration of cellulosic in the waste panel (rate is independent of the concentration of cellulosics). One might expect the reaction rate to depend in some way on the concentration of the reactants (organisms and cellulose) and perhaps on the concentration or partial pressure of the products as well as the gas composition, all of which vary with time. However, until such data become available, we use the zero-order assumption.

The kinetic expression for inundated biodegradation assuming zero-order kinetics with respect to the concentration of cellulosics in the waste panel is

$$k_{BI} = -\frac{\partial C_{c}}{\partial t} = n_{BI} = -n_{c}$$
(3.3-16)

where

 k_{BI} = rate constant for biodegradation under inundated conditions [mol/(m³•s)]

 $-\hbar_c$ = consumption rate of cellulosics [mol/(m³•s)]

 \hat{n}_{BI} = Reaction rate for biodegradation under inundated conditions [mol/(m³•s)]

 C_c = Concentration of cellulosics (mol/m³ of panel)

43 A similar expression results for the humid biodegradation kinetics.

44

The amount of cellulosics consumed and the rate of gas production follow from a development similar to that outlined in the corrosion section, Eqs. 3.3-17 and 3.3-18, respectively.

- 48
- 49

ENGINEERED BARRIERS Parameters for Contaminants Independent of Waste Form

$$(C_{c}^{k+1} - C_{c}^{k}) = (k_{BI} \phi s_{\ell} + k_{BH} \phi s_{g}) \Delta t \qquad (3-3.17)$$

$$q_{BH_2} = (k_{BI} \phi s_{\ell} + k_{BH} \phi s_{g}) (s_{BH_2}) (M_{wc})$$
(3-3.18)

where

 q_{BH_2} = rate of H₂ produced from biodegradation per unit volume [kg/(m³•s)]

$$^{s}BH_{2} = \frac{^{biodegradation stoichiometry for H_{2} (moles H_{2} produced/moles cellulosics consumed)}{^{biodegradation stoichiometry for H_{2} (moles H_{2} produced/moles cellulosics consumed)}$$

(See Section 3.3.8 for definitions of remaining variables.)

Because some potential biodegradation reactions consume water while others produce water and in absence of any experimental data, we currently assume that biodegradation does not impact brine inventory. The reaction rates, cellulosics concentration, and the rates of production and consumption of the various species are calculated in BRAGFLO as described above.

Parameter:	Radiolysis of brine
Median:	1 x 10 ⁻⁴
Range:	1 x 10 ⁻⁷
-	1 x 10 ⁻¹
Units:	mol/drum/yr
Distribution:	Constant
Source(s):	Brush, L. H. 1991. "Current Estimates of Gas Production Rates, Ga
	Production Potentials, and Expected Chemical Conditions Relevan
	to Radionuclide Chemistry for the Long-Term WIPP Performanc
	Assessment," Internal memo to D.R. Anderson (6342), July 8
	1991. Albuquerque, NM: Sandia National Laboratories. (Ir
	Appendix A of this volume)

3.3.10 Radiolysis

1 17 18

1

Early indications from experimental data that are currently being collected show that the rate 19 of gas production from radiolysis is very small compared to that from corrosion and 20 biodegradation. A current study is investigating gas production at low pressures by alpha 21 radiolysis of WIPP Brine A as a function of dissolved plutonium concentration (Brush, July 8, 22 1991, Memo [Appendix A]). Small linear pressure increases from the solution with the 23 highest dissolved plutonium concentration, 1×10^{-4} M, have been observed but there are not 24 enough data to convert these rates to moles of gas per drum per year. Pressure increases 25 were not observed with lower dissolved plutonium concentrations (1 x 10^{-6} and 1 x 10^{-8} M). 26 Two-month runs with a dissolved plutonium concentration of 1 x 10⁻⁴ M in other WIPP 27 brines are planned. 28

29

Until results are available from longer term studies, the radiolytic gas production rates are the 30 same as those proposed by Brush and Lappin (1990): minimum, 1 x 10⁻⁷ 31 mole/gases/drum/yr; best estimate, 1 x 10^{-4} mol/drum/yr, and maximum of 1 x 10^{-1} 32 mol/drum/yr. 33

34

The PA calculations do not separately break out the radiolysis reaction, but will include its 35 contribution to gas generation in the biodegradation reaction. Furthermore, we neglect the 36 consumption of brine by radiolysis. 37

2 3.4 Parameters for Unmodified Waste Form Including Containers

3

As of 1990, the currently stored CH-TRU waste that will be disposed of in the WIPP, if 5 authorized, is estimated to be about 60,000 m³ (2.1 x 10⁶ ft³), which is about 34% of the 6 design storage volume of 170,000 m³ (6.2 x 10^6 ft³). The stored waste consists of about 7 110,000 0.21-m³ (55-gal) drums, 5,000 1.8-m³ (64 ft³) Standard Waste Boxes (SWBs), and 8 7,000 3.2-m³ (113-ft³) miscellaneous containers, mostly steel and fiberglass reinforced wood 9 boxes. Drums and SWBs are the only containers that can currently be transported in a 10 11 TRUPACT-II. If the waste in boxes other than SWBs were repackaged into SWBs, it was estimated that 533,000 0.21-m³ (55-gal) drums and 33,500 1.8-m³ (64-ft³) SWBs could be 12 emplaced in the WIPP repository containing 170,000 m³ (6.2 x 10⁶ ft³) of waste, the design 13 volume for CH-TRU waste. 14

15

The volume of RH-TRU waste is limited by the agreement between DOE and the State of New Mexico to 7,079 m³ (0.25 x 10^6 ft³) (U.S. DOE and NM, 1984). RH waste will likely be placed in 0.89-m³ (31.4-ft³) canisters in the walls of the rooms and access drifts. (Placement of canisters is discussed in Section 3.1.6.)

20

21 The parameter values for unmodified waste that is expected to be shipped (i.e., to meet the current waste acceptance criteria discussed below) are provided in Table 3.4-1. The basis for 22 these values is provided in the tables included in this section (see Tables 3.4-3 through 23 3.4-14). However, the significant figures for masses that are reported in these tables should 24 not be interpreted as known accuracy. (Indeed, the majority of waste to be emplaced in the 25 WIPP has not been generated; hence, the amounts are uncertain.) The significant figures in 26 the tables for masses are presented as a means to trace the work until a report detailing the 27 assumptions and calculations pertaining to these amounts has been prepared. On the other 28 hand, the significant figures on design volumes are important since the limits on volumes 29 agreed upon by the DOE and the State of New Mexico (U.S. DOE and NM, 1984) were in 30 31 English units and are an exact conversion.

32

All CH- and RH-TRU waste must meet the WIPP Waste Acceptance Criteria (WEC, 1989). 33 This criteria includes requirements for the waste form. For example, the waste material shall 34 (1) include only residual liquids in well-drained containers and limit this waste to less than 35 1% (volume), (2) not permit explosives or compressed gases, and (3) limit radionuclides in 36 pyrophoric form to less than 1% by weight in each waste package. There also are limitations 37 on the curie content in a drum, SWB, and canister based on transportation considerations 38 (Table 3.4-2). These criteria were summarized from a draft of the TRU Waste Acceptance 39 Criteria for the Waste Isolation Pilot Plant, Revision 4, WIPP-DOE-069. 40

L De L L L L V C	Vaste olecular weight Cellulose Iron ensity, grain (ρg) Metal/glass Combustibles Sludge Salt backfill Steel, cold-drawn Air @ 300.15K, 1 atn olumes of IDB Categ Metal/glass fraction		Rang		Units kg/mol kg/mol kg/m ³	Type Constant Constant	Source CH ₂ ; Weast and Astle, 1981 Fe; Weast and Astle, 1981
Ma De I Vc	olecular weight Cellulose Iron ensity, grain (ρg) Metal/glass Combustibles Sludge Salt backfill Steel, cold-drawn Air @ 300.15K, 1 atn olumes of IDB Categ Metal/glass fraction	0.05585 3.44 x 10 ³ 1.31 x 10 ³ 2.15 x 10 ³ 2.14 x 10 ³ 7.83 x 10 ³ n 1.177			kg/moi kg/m ³	Constant	—
L De L L L L V C	Cellulose Iron ensity, grain ($ ho_g$) Metal/glass Combustibles Sludge Salt backfill Steel, cold-drawn Air @ 300.15K, 1 atn olumes of IDB Categ Metal/glass fraction	0.05585 3.44 x 10 ³ 1.31 x 10 ³ 2.15 x 10 ³ 2.14 x 10 ³ 7.83 x 10 ³ n 1.177			kg/moi kg/m ³	Constant	—
L De L L L L V C	Iron ensity, grain (ρ _g) Metal/glass Combustibles Sludge Salt backfill Steel, cold-drawn Air @ 300.15K, 1 atn olumes of IDB Categ Metal/glass fraction	0.05585 3.44 x 10 ³ 1.31 x 10 ³ 2.15 x 10 ³ 2.14 x 10 ³ 7.83 x 10 ³ n 1.177			kg/moi kg/m ³	Constant	—
De I S Vc	ensity, grain ($ ho_{g}$) Metal/glass Combustibles Sludge Salt backfill Steel, cold-drawn Air @ 300.15K, 1 atn olumes of IDB Categ Metal/glass fraction	3.44 x 10 ³ 1.31 x 10 ³ 2.15 x 10 ³ 2.14 x 10 ³ 7.83 x 10 ³ n 1.177			kg/moi kg/m ³		—
l (((((((((((((((((((Metal/glass Combustibles Sludge Salt backfill Steel, cold-drawn Air @ 300.15K, 1 atn olumes of IDB Categ Metal/glass fraction	1.31 x 10 ³ 2.15 x 10 ³ 2.14 x 10 ³ 7.83 x 10 ³ n 1.177					
l (((((((((((((((((((Metal/glass Combustibles Sludge Salt backfill Steel, cold-drawn Air @ 300.15K, 1 atn olumes of IDB Categ Metal/glass fraction	1.31 x 10 ³ 2.15 x 10 ³ 2.14 x 10 ³ 7.83 x 10 ³ n 1.177				-	
ve Ve I	Combustibles Sludge Salt backfill Steel, cold-drawn Air @ 300.15K, 1 atn olumes of IDB Categ Metal/glass fraction	1.31 x 10 ³ 2.15 x 10 ³ 2.14 x 10 ³ 7.83 x 10 ³ n 1.177				Constant	Butcher, 1990, Table 2
vc I	Salt backfill Steel, cold-drawn Air @ 300.15K, 1 atn olumes of IDB Categ Metal/glass fraction	2.14 x 10 ³ 7.83 x 10 ³ n 1.177			kg/m ³	Constant	Butcher, 1990, Table 2
: Vc I	Steel, cold-drawn Air @ 300.15K, 1 atn olumes of IDB Categ Metal/glass fraction	7.83 x 10 ³ n 1.177			kg/m ³	Constant	Butcher, 1990, Table 2
ہ Vc ا	Air @ 300.15K, 1 atn plumes of IDB Categ Metal/glass fraction	n 1.177			kg/m ³	Constant	See Table 2.3-1
Vo	olumes of IDB Categ Metal/glass fraction				kg/m ³	Constant	Perry et al., 1969, Table 3-137
I	Metal/glass fraction	ories			kg/m ³	Constant	Vennard and Street, 1975, p. 70
I	Metal/glass fraction	,					
			2.76 x 10 ⁻¹	4.76 x 10 ⁻¹	none	Normal	See Table 3.4-10
	Combustibles						
	fraction	3.84 x 10 ⁻¹	2.84 x 10 ⁻¹	4.84 x 10 ⁻¹	none	Normal	See Table 3.4-10
;	Salt backfill	1.712 x 10 ⁵			m ³	Constant	See Figure 3.1-3
1	Air @ 300.15K, 1 atn	n 8.908 x 10 ⁴			m ³	Constant	See Figure 3.1-3
A١	verage per Drum						
1	Metal/glass	6.44 x 10 ¹	3.05 x 10 ¹	9.83 x 10 ¹	kg/drum	Normal	Butcher, 1989, Table 7
,	Combustibles	4.00 x 10 ¹	1.73 x 10 ¹	6.26 x 10 ¹	kg/drum	Normal	Butcher, 1989, Table 6
	Sludge	2.25 x 10 ²			kg/drum	Constant	See Table 3.4-10
М	lass of IDB Categori				0,		
	Metal/glass	1.984 x 10 ⁷					See Tables 3.4-10 and 3.4-12
	Combustibles	1.348 x 10 ⁷					See Tables 3.4-10 and 3.4-12
M	lass of Steel Contair	ners in IDB Cat	egories				
	Metal/glass	1.076 x 10 ⁷			kg	Constant	See Table 3.4-10
	Combustibles	1.178 x 10 ⁷			kg	Constant	See Table 3.4-10
	Sludge	3.598 x 10 ⁶			kg	Constant	See Table 3.4-10
M	lass of Steel Contair	ners and Liners	in IDB Categ	gories			
	Metal/glass	4.458 x 10 ⁶		-	kg	Constant	See Table 3.4-10
	Combustibles	1.214 x 10 ⁷			kg	Constant	See Table 3.4-10
	Sludge	1.329 x 10 ⁷			kg	Constant	See Table 3.4-10
Μ	lass of Contents				-		
	Iron, steel,						
	paint cans,						
	shipping cans	1.431 x 10 ⁷			kg	Constant	See Table 3.4-12
	Steel in containers	2.613 x 10 ⁷			kg	Constant	See Table 3.4-10
	Cellulosics, + 50%				-		
	gloves, Hypalon,						
	Neoprene, rubber	7.475 x 10 ⁶			kg	Constant	See Table 3.4-12
Capi	llary pressure (p _c) a		meability (k <i>e</i>	-)	5		
	hreshold displacem		, , ,	,			
	pressure (pt)	2.02 x 10 ³	2.02 x 10 ¹	2.02 x 10 ⁵	Pa	Lognormal	Davies, 1991; Davies, June
	F (F()						1991, Memo (see Appendix A)
B	esidual Saturations						
	Wetting phase						
	(S _{ℓr})	2.76 x 10 ⁻¹	1.38	5.52 x 10-1	none	Cumulative	Brooks and Corey, 1964
	Gas phase (S _{gr})	7 x 10 ⁻²	3.5 x 10 ⁻²	1.4 x 10 ⁻¹	none	Cumulative	•
	Brooks-Corey	7 × 10	0.0 x 10 -		none	Cumulative	brooks and corey, 1904
	Exponent (n)	2.89	1.44	5.78	none	Cumulative	Brooks and Corey, 1964

2 Table 3.4-1. Parameter Values for Unmodified TRU Waste Categories, Containers, and Salt Backfill

(page date: 15-NOV-91)

ENGINEERED BARRIERS Parameters for Unmodified Waste Form Including Containers

					Distribution	
Parameter	Median	Rang	e	Units	Туре	Source
Drilling Erosion Parame	ters					
Absolute						
roughness (ϵ)	2.5 x 10 ⁻²	1 x 10 ⁻²	4 x 10 ⁻²	m	Uniform	Streeter and Wylie, 1975 Figure 5.32.
Shear strength ($ au_{fail}$)) 1	1 x 10 ⁻¹	1 x 10 ¹	Pa	Cumulative	-
Partition Coefficient for	clays in salt ba	ickfill				
Am	1 x 10 ⁻⁴			m ³ /kg	Constant	Lappin et al., 1989, Table D (K _{dclav} /1000)
Np	1 x 10 ⁻⁵			m ³ /kg	Constant	Lappin et al., 1989, Table D
Pb	1 x 10 ⁻⁶			m ³ /kg	Constant	(K _{dclay} /1000) Lappin et al., 1989, Table D
Pu	1 x 10 ⁻⁴			m ³ /kg	Constant	(K _{dclay} /1000) Lappin et al., 1989, Table D
Ra	1 x 10 ⁻⁶			m ³ /kg	Constant	(K _{dclay} /1000) Lappin et al., 1989, Table D
Th	1 x 10 ⁻⁴			m ³ /kg	Constant	(K _{dclay} /1000) Lappin et al., 1989, Table D
U	1 x 10 ⁻⁶			m ³ /kg	Constant	(K _{dclay} /1000) Lappin et al., 1989, Table D
						(K _{dclay} /1000)
Permeability (k)	12			0	_	
Average	1 x 10-13	15	10	m ²	Constant	Lappin et al., 1989, Table 4-6
Combustibles	1.7 x 10 ⁻¹⁴	2 x 10 ⁻¹⁵	2 x 10 ⁻¹³	m ²	Cumulative	
Metals/glass	5 x 10 ⁻¹³	4 x 10 ⁻¹⁴	1.2 x 10-12	m ²	Cumulative	Butcher et al., 1991
Sludge Porosity (φ)	1.2 x 10 ⁻¹⁶	1.1 x 10 ⁻¹⁷	1.7 x 10-16	m ²	Cumulative	Butcher et al., 1991
Average	1.9 x 10 ⁻¹				Constant	Or a daude Dudahar 1000 La
Average	1.9 × 10 ·			none	Constant	See text; Butcher, 1990; Lapp et al., 1989, Table 4-6
Combustibles	1.4 x 10 ⁻²	8.7 x 10 ⁻²	1.8 x 10 ⁻¹	none	Data	Butcher et al., 1991
Metals/glass	4 x 10 ⁻¹	3.3 x 10 ⁻¹	4.4 x 10 ⁻¹	none	Data	Butcher et al., 1991
Sludge	1.1 x 10 ⁻¹	1 x 10 ⁻²	2.2 x 10 ⁻¹	none	Data	Butcher et al., 1991
Saturation, initial (S $_{\ell i}$)	1.38 x 10 ⁻¹	0	2.76 x 10 ⁻¹		Uniform	See text.

Table 3.4-1. Parameter Values for Unmodified TRU Waste Categories, Containers, and Salt Backfill (Concluded)

Table 3.4-2. Summary of Waste Acceptance Criteria and Requirements Applicable to Performance Assessment

Description	Waste Type	WAC Criterion or Requirement
Particulates	СН	Immobilize if greater than 1% by weight below 10 microns
	RH	Immobilize if greater than 15% by weight below 200 microns
Liquids	CH & RH	Liquids that result from liquid residues remaining in well-draine containers; condensation moisture; and liquid separation from sludges resin settling shall be less than 1% by volume of the waste container
Pyrophoric	СН	Radionuclides in pyrophoric form are limited to less than 1% by weight in
Materials	RH	each waste package. No non-radionuclide pyrophorics permitted.
Explosives and	CH & RH	No explosives or compressed gases are permitted.
compressed gas		
Specific Activity	СН	The specific activity shall be greater than 100 nCi/g TRU radionuclide excluding the weight of added shielding, rigid liners, and wast containers.
	RH	The specific activity shall be greater than 100 nCi/g TRU radionuclide excluding the weight of external shielding, rigid liners, and the was containers. The container average maximum activity concentration shinot exceed 23 curies/liter.
Nuclear Criticality* (Pu-239 FGE)**	СН	The fissile or fissionable radionuclide content shall be less than 200 FGE for a 55-gallon drum. The fissile or fissionable radionuclide content sha be less than 325 FGE for a SWB. The fissile or fissionable radionuclid content shall be less than 325 FGE for a TRUPACT-II
	RH	The fissile or fissionable radionuclide content shall be less than 325 FGE
Pu-239 Activity*	CH & RH	Waste packages shall not exceed 1000 Ci to Pu-239 equivalent activity.
* Transportation requirem ** Fissile gram equivalent		

3.4.1 Composition of CH-TRU Contaminated Trash (Non-Radionuclide/ Non-RCRA Inventory)

4

6 TRU waste destined for the WIPP is generated or currently stored by ten DOE nuclear weapon facilities. Although we know that this TRU waste consists in general of laboratory 7 and production line trash, such as glassware, metal pipes, solvents, disposal laboratory 8 clothing, cleaning rags, and solidified sludges, the precise composition of the trash (e.g., 9 percentages by weight and volume) is not well defined. Estimates of metals/glass combustible 10 and sludge reported here were made based on information on volumes submitted annually to 11 12 the IDB by the generator sites and therefore are from the same source as the radionuclide inventory. (A potential source in the future is the data collected specifically for the PA 13 14 Division from the generators.)

Volumes of Various Categories of CH-TRU Contaminated Trash 1 2 Parameter: Volume fraction, combustibles 8 Median: 3.84 6 Range: 2.84 7 8 4.84 Units: Dimensionless 9 **Distribution:** Normal 10 Source(s): See text and Table 3.4-10. 11 12 13 Parameter: Volume fraction, metals/glass 16 Median: 3.76 17 18 Range: 2.76 4.76 19 20 Units: Dimensionless 21 **Distribution:** Normal Source(s): See text and Table 3.4-10. 22 23 24 Parameter: Volume, backfill 25 1.712 x 10⁵ 28 Median: Range: None 29 Units: m³ 30 **Distribution:** Constant 31 See Figure 3.1-3 and text. 32 Source(s): 33 34 Parameter: Air @ 300.15 K, 1 atm 36 8.908 x 10⁴ Median: 38 39 Range: None Units: m³ 40 **Distribution:** 41 Constant Source(s): See Figure 3.1-3 and text. 42 43 44 45 Figure 3.4-1 indicates CH waste volumes by site and status. 48 48

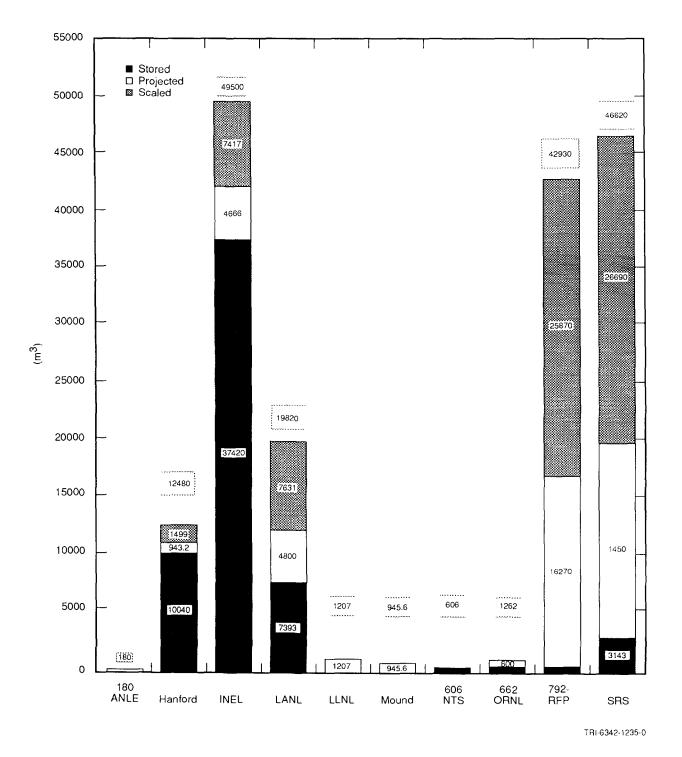


Figure 3.4-1. Estimates of CH Waste Volumes by Site and Status

2 Discussion:

3

Estimates of the masses and volumes of the constituents of TRU waste that affect gas 4 generation, transport, and room properties are required for performance assessment. Since 5 the majority of the waste to be emplaced in the WIPP has not been generated, the waste 6 characterization is an estimate with a potentially large uncertainty. The estimated waste 7 characterization is used as a base for analyses that include the uncertainty in waste 8 characterization. The following discussion presents the method that was used to estimate the 9 characterization of the waste. The intent was to use available information and to use a 10 reasonable method to scale it up to a design volume, which was used in performance 11 assessment. This method resulted in estimates of volumes and masses of waste by generator 12 site; however, these results should not necessarily be considered as indicative of the actual 13 14 masses and volumes that the sites will generate.

15

The total anticipated volume (stored waste and projected annual volumes) of the TRU waste calculated from information reported in the yearly IDB has been decreasing over the last four years (Table 3.4-3 and Figure 3.4-2). The most significant change from 1987 to 1990 is the percentage of concreted or cemented sludge; the estimated volume decrease was about 30%. Furthermore, the information contained in the 1990 IDB indicates that generators anticipate there will be less volume of absorbed sludges and more volume of concreted and cemented sludges in the projected waste than is contained in the stored waste.

23

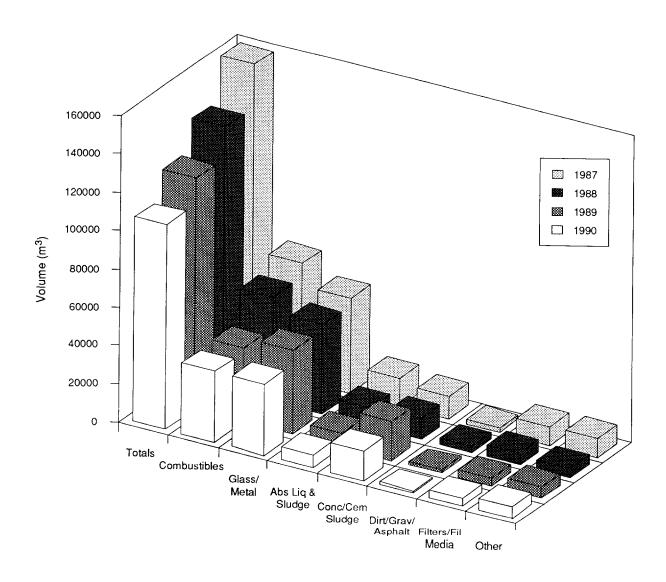
The 1990 IDB was used as the basis for the estimate of the total volume of CH-TRU waste for the 1991 PA calculations. Table 3.4-4 lists the stored and projected (generated in the future) waste volume by generator site listed in the 1990 IDB. The IDB uses the terms "stored" and "newly generated" waste. In the discussion that follows, the term "projected" is used in place of "newly generated."

29

For performance assessment calculations, we assume that a design volume of $175,564 \text{ m}^3$ (6.2 30 $x \ 10^6 \ ft^3$) will be emplaced in the WIPP. The following discussion presents the method that 31 was used to estimate the volumes of the waste types if the current design volume of waste 32 was emplaced. To estimate the volume of waste by generator site to fill the WIPP, it was 33 assumed that the five largest generators^{*} of projected waste would provide the additional 34 volume. The percentage of the total projected waste for each site was calculated and, based 35 on this percentage, volumes for the five sites were calculated to provide an additional 69,105 36 m^3 (2.4 x 10⁶ ft³). The scaled volume for the five sites is shown in Table 3.4-4. 37

Details of the volumes and physical composition of CH waste as calculated from the information from the 1990 IDB (Tables 3.5, 3.7, and 3.10) are listed in Table 3.4-5.

41


38

^{45 *} These five DOE defense facilities for 1990 are Hanford Reservation (HANF), Washington; Idaho National Engineering 46 Laboratory (INEL), Idaho; Los Alamos National Laboratory (LANL), New Mexico; Rocky Flats Plant (RFP), Colorado; and 47 Savannah River Site (SRS), South Carolina. In 1991, INEL was reclassified as a storage site rather than a generator site because 48 a project that would generate waste was indefinitely delayed/cancelled.

For performance assessment calculations, room properties are required. To estimate the 1 volume fraction of the sludges, combustibles, and metals and glass in CH waste, it was 2 assumed the volume of the sludges included the absorbed liquid and sludges, concreted or 3 cemented sludges, and dirt, gravel and asphalt categories of Table 3.4-5. The volume of 4 filter, filter media, and "other" categories of Table 3.4-5 were distributed into the volume of 5 sludges, combustibles, and metals and glass based on the relative volume of the initial 6 amounts of each of these categories. Estimates for the volume fraction of stored; projected; 7 projected plus scaled; and stored, projected, and scaled are tabulated in Table 3.4-6. The 8 9 $\pm 10\%$ ranges on the volume fractions for the various categories in Table 3.4-6 were based on the historical change observed in the categories over the past 4 yr (Table 3.4-3; Figure 3.4-2). 10 11

	Combustibles (%)	Metal and Glass (%)	Absorbed Liquid and Sludge (%)	Concrete/ Cemented Sludge (%)	Dirt/ Gravel/ Asphalt (%)	Filters/ Filter Media (%)	Other (%)	Total Volume* (m ³)
1987	38.87	31.53	8.99	7.37	1.33	5.81	6.11	158,526
1988	39.84	34.18	7.28	8.00	2.44	4.53	3.73	136,402
1989	32.01	36.41	6.09	16.41	1.31	3.00	4.78	120,243
1990	34.24	34.31	6.28	14.43	1.30	3.67	5.77	106,459

2 Table 3.4-3. Estimated Composition by Volume of CH-TRU Contaminated Trash from 1987 to 1990.

TRI-6342-1236-0

Figure 3.4-2. Changes in Volume Estimates of CH-TRU Contaminated Trash Between 1987 and 1990.

	Site	Stored Volume (1990 IDB) (m ³)	Projected Volume (1990 IDB) (m ³)	Total Volume (1990 IDB) (m ³)	Scaled Volume* (m ³)	Estimated Design Volume (m ³)
_	ANL-E		180	180		180
	HANF	10,041	943	10,984	1,499	12,484
	INEL	37,420	4,666	42,086	7,417	49,503
	LANL	7,393	4,800	12,193	7,631	19,824
	LLNL		1,207	1,207		1,207
	MOUND		945	945		945
	NTS	606		606		606
	ORNL	662	600	1,262		1,262
	RFP	792	16,272	17,064	25,869	42,933
	SRP	3,143	16,788	19,931	26,689	46,620
	Total	60,057	46,402	106,459	69,105	175,564

Table 3 4-4 Estimate of a Design Volume for CH-TBU Waste

Assuming that HANF, INEL, LANL, RFP, and SRP provide the difference between the current total inventory and the design volume. The difference between the total volume of 106,458 m³ in the 1990 IDB and the design volume of 175,564 m³ ($6.2x10^{6}$ ft³) was ratioed between the five sites based on their estimated annual generation rates. These five sites provide 94% of the estimated total annual volume of 1,993.4 m³ per year.

Category	ANL-E	HANF	INEL	LANL	LLNL	NTS	MOUND	ORNL	RFP	SRS	Percent	Total t (m ³)	Percent of Total
STORED													
Absorbed Liquid and Sludge		0.0	4490.4	1626.5		0.0		0.0	122.8	0.0	10.39		
Combustibles		4317.6	9355.0	961,1		312.2		390.3	287.5	2200.1	29.68		
Concreted or Cemented Sludge		602.5	4864.6	2217.9		6.1		0.0	5.5	0.0	12.82		
Dirt, Gravel, or Asphalt		301.2	0.0	0.0		0.0		6.6	5.5	0.0	0.52		
Filters or Filter Media		0.0	1871.0	369.7		0.0		33.1	327.1	0.0	4.33		
Glass/Metal/Similar Noncombustible	es	4819.7	13097.0	2217.9		288.0		231.6	43.6	942.9	36.03		
Other		0.0	3742.0	0.0		0.0		0.0	0.0	0.0	6.23		
TOTAL		10041.0	37420.0	7393.1		606.3		661.6	792.0	3143.0			
Percent of Total		9.43	35.15	6.94		0.57		0.62		2.95			
PROJECTED													
Absorbed Liquid and Słudge	64.8	0.0	0.0	48.0	0.0		0.0	0.0	0.0	335.8	0.97	6688.2a	6
Combustibles	57.6	377.3	2020.2	1944.0	881.3		9.5	72.0	2522.2	10744.3	40.15	36452.2	34
Concreted or Cemented Sludge	0.0	132.0	737.2	864.0	12.1		9.5	0.0	5906.7	0.0	16.51	15358.1	14
Dirt, Gravel, or Asphalt	0.0	113.2	0.0	0.0	0.0		841.6	6.0	113.9	0.0	2.32	1388.1	1
Filters or Filter Media	0.0	94.3	23.3	120.0	84.5		0.0	30.0	113.9	839.4	2.81	3906.3	3
Glass/Metal/Similar Noncombustible	s 57.6	226.4	681.2	1824.0	181.1		85.1	492.0	6720.3	4616.7	32.08	36525.0	34
Other	0.0	0.0	1203.7	0.0	48.3		0.0	0.0	895.0	251.8	5.17	6140.8	5
TOTAL	180.0	943.2	4665.6	4800.0	1207.2		945.6	600.0	16272.0	16788.0		106458.6	100
Percent of Total	0.17	0.89	4.38	4.51	1.13		0.89	0.56	15.28	15.77		100.00	
PROJECTED PLUS SCALED													
Absorbed Liquid and Sludge	64.8	0.0	0.0	124.3	0.0	0.0	0.0	0.0	0.0	869.5	0.92	7298.3b	4
Combustibles	57.6	977.1	5231.9	5034.5	881.3	0.0	9.5	72.0		27825.3	40.36	64444.8	36
Concreted or Cemented Studge	0.0	342.0	1909.1	2237.6	12.1	0.0	9.5	0.0	15297.1	0.0	17.15	27503.8	15
Dirt, Gravel, or Asphalt	0.0	293.1	0.0	0.0	0.0	0.0	841.6	6.0	295.0	0.0	1.24	1749.1	1
Filters or Filter Media	0.0	244.3	60.4	310.8	84.5	0.0	0.0	30.0	295.0	2173.9	2.77	5799.6	3
Glass/Metal/Similar Noncombustible		586.2	1764.1	4723.7	181.1	0.0	85.1			11956.2	32.25	58890.8	33
Other	0.0	0.0	3117.4	0.0	48.3	0.0	0.0	0.0	2317.7	652.2	5.31	9877.5	5
TOTAL	1 8 0.0	2442.7		12430.9	1207.2	0.0	945.6		42140.7			175564.0	100
Percent of Total	0.1	1.39	6.88	7.08	0.69	0.0	0.54	0.34	24.00	24.76		100.00	

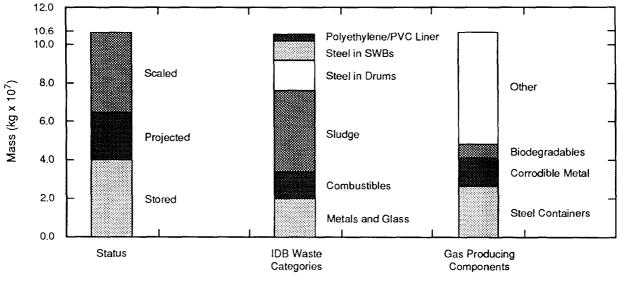
Table 3.4-5. Estimated Composition of CH-TRU Contaminated Trash in 1990 by Generator (IDB, 1990, Tables 3.5, 3.7, 3.10)

48 ^b Stored, plus projected, plus scaled 59

		Distributed Amount of Filter and	
Category	Initial	Filter Media	Total
Stored		······	
Sludge**	0.2373	0.0280	0.265
Combustible	0.2968	0.0350	0.332
Glass/Metal	0.3603	0.0425	0.403
Total	0.8944		1.000
Projected			
Sludge**	0.1980	0.0171	0.215
Combustible	0.4015	0.0348	0.436
Glass/Metal	0.3208	0.0278	0.349
Total	0.9203		1.000
Stored plus Projected			
Sludge**	0.2201	0.0229	0.243
Combustible	0.3424	0.0357	0.378
Glass/Metal	0.3431	0.0358	0.379
Total	0.9056		1.000
Stored, Projected, plus	Scaled		
Sludge**	0.2083	0.0204	0.229
Combustible	0.3671	0.0360	0.403
Glass/Metal	0.3354	0.0328	0.368
Total	0.9108		1.000

Table 3.4-6. Calculation of Constituent Volume Distribution in CH Waste*

35


36

2

* The values for the initial volume percents were obtained from Table 3.4-5.
 ** Total of absorbed liquid and sludge, concreted and cemented sludge, and dirt, gravel, or asphalt.

Masses of Various Categories of CH-TRU Contaminated Trash

Figure 3.4-3 shows the breakdown of CH waste mass by status, IDB waste categories, and gas-producing components.

CH Waste

TRI-6342-1237-0

Figure 3.4-3. Breakdown of CH Waste Masses by Status, IDB Waste Categories, and Gas-Producing Components.

2 Discussion:

3

The PA calculations require an estimate of the mass of the major constituents of CH-TRU waste that affect gas generation. Because the PA analyses are based on a design volume, the mass of the waste constituents for a design volume were estimated. The generator sites provided estimates of the number, total volume, and mass of stored and projected waste to the 1990 IDB. Based on the number of containers, the masses of container steel, PVC liners, polyethylene liners, fiberglass reinforced wood, and plywood were estimated. Drez (May 9, 1989, Letter [Appendix A]) provided masses for these components.

11

Since detailed information was not available, it was assumed that each drum had one 4-kg polyvinyl chloride liner bag and each standard waste box (SWB) had one high-density 6.8-kg polyethylene liner. Masses for the larger boxes and bins were estimated by volume scaling to the mass of a 1.2 x 1.2 x 2.1 m (4 x 4 x 7 ft) box, which was obtained from Drez (May 9, 1899, Letter [Appendix A]). The empty mass of a drum was estimated to be 29.5 kg (65 lbm); a SWB, 310.7 kg (685 lbm). Table 3.4-7 summarizes the estimated masses.

18

19 Since currently only drums and SWBs can be transported in a TRUPACT II, excluding test bins, an estimate was made of the number of SWBs that would be required if the bins and 20 boxes were repackaged in SWBs. The details of the masses and volumes of the waste in boxes 21 and bins other than SWBs are summarized in Table 3.4-8. A total of 12,152 SWBs would be 22 required to repackage the waste in the bins and boxes. Because of the mass of the SWBs, this 23 repackaging would significantly increase the amount of steel emplaced in the WIPP. The 24 calculations for repackaging in SWBs show (1) number of SWBs (1.9 m³ volume), 12,150; (2) 25 mass of SWB steel, 3.776 Gg (8.3 x 10⁶ lbm); (3) mass of SWB PVC, 0.0486 Gg (1.1 x 10⁵ 26 lbm); (4) mass of waste, 5.591 Gg (1.2 x 10^7 lbm); and (5) total repackaged mass of about 9.0 27 Gg (2.0 x 10⁷ lbm). 28

29

30 To obtain an estimate of the number of drums and SWBs that could be emplaced in the WIPP. 31 the number of drums and SWBs at each generator site listed in Table 3.4-4 for stored and 32 projected waste was calculated. Since the estimated volume for each generator from the number of containers was not consistent with the volume in Table 3.4-4, the number of 33 34 containers for both stored and projected waste was adjusted to the volume of Table 3.4-4. To calculate this adjustment, the ratio of the volume of waste in each type of container in 35 36 Table 3.4-7 was calculated and the number of containers increased or decreased to make the total volume consistent with the values in Table 3.4-4. The results of this estimate are 37 summarized in Table. 3.4-9. Based on these assumptions, and assuming that the waste that 38 cannot be currently transported is repackaged into SWBs, the inventory would contain 532,600 39 drums and 33,540 SWBs. 40

Estimates of the mass fractions were made based on the volume fractions tabulated in Table 1 3.4-6. Since the information that was available was the total mass of the waste and the 2 volume fraction of sludge, combustibles, and glass/metals, other information was required to 3 make estimates of the mass fraction. For these estimates, it was assumed that the combustible 4 and metal and glass components had the average density listed in Butcher, 1989. An average 5 mass of 40 kg (88.2 lbm) per drum for the combustibles and 64.5 kg (142.2 lbm) per drum 6 for metals and glass was assumed. The mass of combustibles and metals/glass was estimated 7 by calculating the number of drums in each category and multiplying by the average mass. 8 The difference between the total mass of 30.18 Gg (6.6 x 10^7 lbm) of stored waste from 9 Table 3.4-7 and the mass of the combustibles, metals/glass, polyethylene/PVC liners, and 10 container steel was assumed to be the mass of the sludge, which resulted in the average mass 11 12 of a sludge drum being 282.8 kg (623.6 lbm). A similar estimate was made for projected waste. The total mass of projected waste was estimated to be 17.48 Gg (3.9 x 10^7 lbm) as 13 shown in Table 3.4-7. The estimated average mass of a drum of sludge of projected waste 14 was 190.7 kg (420.5 lbm). 15

16

For the mass fraction for the design volume estimate, the mass of the sludge was estimated from the average masses of stored and projected waste. The volume of stored sludge and of projected and scaled sludge was estimated. Based on these volumes and the average masses, an average mass of 225 kg (496.1 lbm) per drum was calculated. The mass of sludge was estimated by calculating the number of drums of sludge and multiplying by the average mass. The same average mass of combustibles and metals/glass was assumed for the design volume as for the stored and projected volumes.

24

The calculated mass fractions for stored waste, projected waste, combined stored and 25 projected waste, and combined stored, projected, and scaled waste are shown in Table 3.4-10. 26 These results indicate the range of mass fractions that could be emplaced in the WIPP. As 27 28 expected, the mass fraction for sludge is considerably less for projected waste than for stored waste. Note that the mass fraction for combined stored and projected waste has a somewhat 29 higher mass fraction for sludge than was used in Lappin et al., 1989. As indicated in Table 30 3.4-6, the volume fraction of sludges has increased somewhat from 1987, on which earlier 31 estimates were made, to 1990. 32

Description	Volume (m ³)	Number	Total Mass (Gg)	Total Volume (m ³)	Mass Steel (kg)	Mass PVC (kg)	Mass Polyethelene (kg)	Mass Fiberglass Reinforced Wood (kg)	Mass Plywod (kg)
Stored CH Inv	/entory				 ,,			· · · · · · · · · · · · · · · · · · ·	
Drums	0.208	110120	25.060	23125	3.249	0.7488			
SWBs	1.9	5327	5.198	10121	1.655		0.0213		
Boxes	3.17	5925	6.819	18782	0.360	0.0296		1.3759	0.2899
Bins	3.4	415	0.421	1411	0.097	0.0022			
Boxes	3.8	672	0.600	2554	0.175	0.0040			
Boxes	3.9	35	0.036	137	0.009	0.0002			
Boxes	5.9	23	0.047	136	0.009	0.0002			
Boxes	6.35	11	0.025	70	0.005	0.0001			
TOTALS			38.206	56335	5.559	0.7852	0.0213	1.3759	0.2899
Estimated ma	ass of stor	ed waste (G	g) 30.18						
Projected CH	I Inventory								
Drums	0.208	155420	18.882	32638	4.585		1.057		
SWBs	1.9	6105	6.166	11600	1.897	0.2442			
TOTALS			25.046	44238	6.489	0.2442	1.057		
Estimated ma	ass of proj	ected waste				0.2772			
TOTALS		ected waste							
TOTALS Total Mass (G	 3g)	ected waste		63.252					
TOTALS Total Mass (G Total Volume	3g) (m ³)	ected waste							
TOTALS Total Mass (G	3g) (m ³)	ected waste		63.252					
TOTALS Total Mass (G Total Volume	Gg) (m ³) teel (Gg)	ected waste		63.252 0.101 12.04					
TOTALS Total Mass (C Total Volume Total Mass St Total Mass P	Gg) (m ³) teel (Gg) VC (Gg)			63.252 0.101 12.04 0.810					
TOTALS Total Mass (C Total Volume Total Mass S Total Mass P Total Mass Fi Total Mass Fi	Gg) (m ³) teel (Gg) VC (Gg) olyethylen iberglass	e (Gg)		63.252 0.101 12.04 0.810 1.078					
TOTALS Total Mass (C Total Volume Total Mass S Total Mass P Total Mass P	Gg) (m ³) teel (Gg) VC (Gg) olyethylen iberglass	e (Gg)		63.252 0.101 12.04 0.810					
TOTALS Total Mass (C Total Volume Total Mass S Total Mass P Total Mass Fi Total Mass Fi	Gg) (m ³) teel (Gg) VC (Gg) olyethylen iberglass Wood (Gg	e (Gg))		63.252 0.101 12.04 0.810 1.078					
TOTALS Total Mass (C Total Volume Total Mass S Total Mass P Total Mass Fi Reinforced V	Gg) (m ³) teel (Gg) VC (Gg) olyethylen iberglass Wood (Gg lywood (G	e (Gg)) g)	e (Gg) 17.48	63.252 0.101 12.04 0.810 1.078 1.376					
TOTALS Total Mass (C Total Volume Total Mass Pi Total Mass Pi Total Mass Fi Reinforced V Total Mass Pi	Gg) (m ³) teel (Gg) VC (Gg) olyethylen iberglass Wood (Gg lywood (G	e (Gg)) g)	9 (Gg) 17.48	63.252 0.101 12.04 0.810 1.078 1.376 0.29					
TOTALS Total Mass (C Total Volume Total Mass Si Total Mass Pi Total Mass Fi Reinforced V Total Mass Pi Estimated To	Gg) (m ³) teel (Gg) VC (Gg) olyethylen iberglass Wood (Gg lywood (G	e (Gg)) g)	9 (Gg) 17.48	63.252 0.101 12.04 0.810 1.078 1.376 0.29 47.658					
TOTALS Total Mass (C Total Volume Total Mass St Total Mass Pi Total Mass Fi Reinforced V Total Mass Pi Estimated To Total Drums	Gg) (m ³) teel (Gg) VC (Gg) olyethylen berglass Wood (Gg lywood (G otal Mass o	e (Gg)) g)	9 (Gg) 17.48	63.252 0.101 12.04 0.810 1.078 1.376 0.29 47.658					

Table 3.4-7. Estimated Inventory of Containers in 1990

ENGINEERED BARRIERS Parameters for Unmodified Waste Form Including Containers

Description	Volume (m ³)	Number	Total Mass (Gg)	Container Volume (m ³)	Mass Steel (Gg)	Mass PVC (Gg)	Mass Fiberglass Reinforced Wood (Gg)	Mass Plywoo (Gg)
Description	(11-)	Number	(Gg)	(11-)	(ug)	(ug)	(ug)	(ag)
Boxes	3.17	5925	6.8193	18782.2	3.60	0.0296	1.3759	0.2899
Bins (1)	3.4	415	0.4210	1411.0	0.96	0.0022		
Boxes (2)	3.8	672	0.6000	2553.6	1.75	0.0040		
Boxes (3)	3.9	35	0.0362	136.5	0.09	0.0002		
Boxes (4)	5.9	23	0.0468	135.7	0.09	0.0002		
Boxes (5)	6.35	11	0.0254	69.9	0.05	0.0001		
TOTALC			7.0407	00000 0	<i></i>	0.0004	1 0750	
TOTALS			7.9487	23088.9	6.55	0.0364	1.3759	0.2899
Estimated m	etal box masse							
(1) 233.5 kg	al DUX masse	55.						
(1) 200.0 kg								
(3) 268 kg								
(4) 405 kg								
(5) 436 kg								
(0) 400 Ng								
Calculations f	for repackagin	g in SWBs:						
Number of C	MDa /1 0	-0	0.010					
Mass of SWB	NBs (1.9 m ³ v staal (Ga)	01)	0.012 3.776					
Mass of SWB			3.776 0.049					
Mass of SWB	(U)		0.049 5.591					
	iged mass (Go		9.379					

Table 3.4-8. Summary of Bins and Boxes

Category	Volume	Total	Adjusteo Total
	volumo		10101
Stored Drums	23113	110064	121113
Stored SWBs	10121	5327	6007
Adjustment to stored* Drums	2320	11049	
Adjustment to stored * SWBs	1425	750	
Projected Drums	32717	155795	161294
Projected SWBs	12132	6385	6595
Adjustment to Projected* Drums	1155	5499	
Adjustment to Projected* SWBs	399	210	
Scaled Drums	52534	250164	250164
Scaled SWBs	16566	8719	8719
Repackaged SWBs**	23089	12152	12152
Total Drums	532571		
Total SWBs	33543		

Table 3.4-9. Estimate of the Number of Drums and SWBs in a Design Volume

Adjusted to make total volume equal volume in Table 3.4-3.
 ** Assumed volume in Bins and Boxes were repackaged into SWBs.

2 Table 3.4-10. Estimated Composition of CH-TRU Contaminated Trash Including Containers in 1990

	Mass (Gg)	Volume (m ³)	Volume Fraction	Steel Containers (Gg)	SWB Steel (Gg)	Poly/ PVC (Gg)	Total Mass (Gg)	Mass Fractior
Stored Inventory								
Sludgea	20.106	14,928.9	0.265	2.300		0.217	22.623	0.570
Metals and Glass ^b	5.745	18,703.4	0.332	2.881		0.272	8.898	0.224
Combustibles ^C	4.324	22,703.2	0.403	3.498		0.330	8.152	0.205
Steel Containers	8.679							
Polyethylene/PVC								
liner	0.819							
Total	39.673	56,335.4		8.679		0.819	39.673	
Projected								
Sludge	8.618	9,511.1	0.215	1.394		0.227	10.239	0.409
Metals and Glass ^b	5.924	19,287.6	0.436	2.826		0.461	9.211	0.368
Combustibles ^C	2.941	15,439.0	0.349	2.262		0.369	5.572	0.223
Steel Containers	6.482							
Polyethylene/PVC								
liner	1.057							
Total	25.022	44,237.7		6.482		1.057	25.022	
Stored and Projected								
Sludge	28.717	24,444.1	0.243	3.684		0.462	32.863	0.508
Metals and Glass ^b	11.679	38,024.2	0.378	5.731		0.718	18.128	0.280
Combustibles ^C	7.262	38,124.8	0.379	5.746		0.720	13.728	0.212
Steel Containers	15.161							
Polyethylene/PVC								
liner	1.900							
Total	64.719	100,593.1		15.161		1.900	64.719	
Stored, Projected, and	Scaled							
Sludge ^d	43.076	40,204.2	0.229	3.598		0.860	47.534	0.447
Metals and Glassb	19.844	40,204.2 64,607.6	0.229	5.782	4.974	1.382	31.982	0.301
Combustibles ^C	13.477	70,752.3	0.403	6.331	5.447	1.513	26.769	0.252
Steel in drums	15.711	10,152.5	0.400	0.001	0.447	1.515	20.709	0.202
Steel in SWBs	10.422							
Polyethylene/	10.722							
PVC liner	3.755							
Total	106.285	175,564.0		15.711	10.422	3.755	106.285	
	100.200	170,004.0		10.7 11	10.722	5.755	100.200	

a The mass of sludge is the difference between a total estimated mass of 30.18 Gg for the total waste package and the mass of the combustibles and metals and glass.

^b The mass of metals and glass is based on an average mass of 64.5 kg per drum (Butcher, 1989).

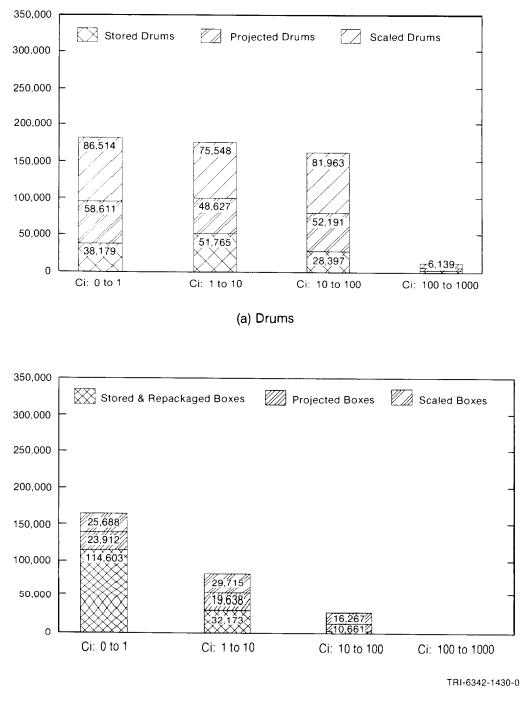
^C The mass of combustibles is based on an average mass of 40 kg per drum (Butcher, 1989).

⁵⁹^d The mass of sludge is based on the ratio of the 14,929 m³ of stored waste with an average mass of 282.8 kg per drum and the 25,275 m³ of projected and scaled waste with an average mass of 190.7 kg per drum. This ratio results in an average mass of 225 kg per drum for sludge.

62 68 65

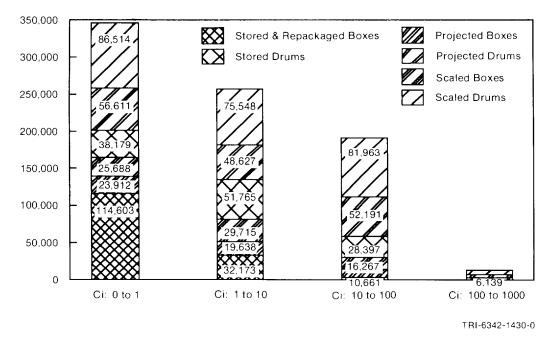
52

53


54

55 56

1 Estimated Curie Content of Drums and Standard Waste Boxes


2

Submittals from the generator sites to the 1990 IDB included estimates of the number of з stored and projected waste containers in a range of total initial plutonium curie content. The 4 current analyses were based on the design volume of waste emplaced in the WIPP. To 5 estimate the number of drums and SWBs in the four ranges of total plutonium curie content 6 used in the analyses, the estimates from the ranges from the generators were combined and 7 estimates were made for total quantity of drums and SWBs for a design volume based on the 8 quantities from Table 3.4-9. The estimated number of drums and SWBs for the stored, 9 projected, and scaled inventory are shown in Figure 3.4-4 and listed in Table 3.4-11. Since 10 it was assumed for the current analyses that the waste in bins and boxes would be 11 repackaged, an estimate for the repackaged boxes was also made. The current analyses 12 further combined the number of drums and boxes in the range of curie content. It was 13 assumed for the removal of cuttings during drilling for human intrusion that the surface area 14 encountered by the drill for a SWB was about 8.2 times the surface area of a drum. 15 Therefore, the curies removed by drilling into a SWB would be about 8.2 times less than for a 16 drum in the same range. To combine them into an equivalent number of drums, the total 17 number of SWBs was increased by a factor of 8.22 and the curie range was decreased by a 18 factor of ten. This results in no contribution of SWBs in the range above 100 curies and the 19 total SWBs in the 0-to-1 and 1-to-10 range being combined in the 0-to-1 curie category for 20 the combined drums and SWBs shown in Table 3.4-11. 21 22

(b) SWBs

Figure 3.4-4. Estimated Number of Drums and SWBs for Stored, Projected, and Scaled Inventory in Each Activity Range.

(c) Total, Drums and Boxes

Figure 3.4-4. Estimated Number of Drums and SWBs for Stored, Projected, and Scaled Inventory in Each Activity Range (Concluded).

2

	0 to 1 (Ci)	1 to 10 (Ci)	10 to 100 (Ci)	100 to 1000 (Ci)	Total (Ci)
Stored Drums					
Totals	38179	51765	28397	2772	121113
Percent	31.5	42.7	23.4	2.3	
Projected Drums					
Totals	56611	48627	52191	3865	161294
Percent	35.1	30.1	32.4	2.4	
Scaled Drums					
Totals	86514	75548	81963	6139	250164
Percent	34.6	30.2	32.8	2.5	
Total Drums					
Totals	181304	175940	162551	12776	532571
Percent	34.0	33.0	30.5	2.4	
Stored Boxes					
Totals	4070	1222	596	189	6077
Percent	67.0	20.1	9.8	3.1	
Projected Boxes					
Totals	1234	1675	2389	1297	6595
Percent	18.7	25.4	36.2	19.7	
Scaled Boxes					
Totals	775	2350	3615	1979	8719
Percent	8.9	27.0	41.5	22.7	
Dependenced (Oter 1)	Paulas				
Repackaged (Stored)		7040	2210	104	10157
Totals Percent	1608 13.2	7042 57.9	3318 27.3	184 1. 5	12152
. c. bon	, <u>c</u> .,				
Total Boxes					
Totals	7687	12289	9918	3649	33543
Percent	22.9	36.6	29.6	10.9	
Combination of Drum	ns and Boxes (Equivale	ent Drums)			
Totals	345507	257466	192546	12776	808294
Percent	42.7	31.9	23.8	1.6	

Table 3.4-11. Estimate of Curie Content of Drums and Standard Waste Boxes in a Design Volume

(page date: 15-NOV-91)

2 Gas Generation Potential

3

Without a detailed knowledge of the mechanisms by which gas may be produced, the gas generation potentials can only be calculated based on the amount of waste received at the WIPP. Based on information in 1988 (IDB, 1988; Lappin et al., 1989, p. A-119), Sandia estimated a gas generation potential from corrosion of about 900 mole/drum equivalent and from microbial degradation of about 600 mole/drum equivalent. Because estimates of the volume of CH waste are decreasing, but the volume of RH waste is increasing, these values have changed.

11

An estimate of the amounts of waste that contribute to gas generation are required for PA 12 calculations. The masses of the constituents in combustible and metals/glass were estimated 13 in Drez (May 9, 1989, Letter [Appendix A]). The results of these estimates are shown in 14 column 2 of Table 3.4-12. The total volume for the current PA analysis is based on the 15 design volume of 175,564 m³ (6.2 x 10⁶ ft³). The total volume on which the estimates in 16 Drez (May 9, 1989, Letter [Appendix A]) were made was 95,111 m³ (3.4 x 10⁶ ft³). Volume 17 scaling the masses from 95,111 m³ (3.4 x 10^6 ft³) to a design volume of 175,564 m³ (6.2 x 10^6 18 ft³), a factor of 1.846, results in the masses listed in column 4 of Table 3.4-12. Butcher 19 (1989) reported estimates of the percentage of various components of combustible and 20 metals/glass. Based on these percentages and volume scaling the masses to a design volume 21 results in the masses listed in column 6. 22

23

Another method for estimating the masses is to base the total mass of the combustibles and 24 metals and glass on the mass estimated in Table 3.4-10 for the stored, projected, and scaled 25 estimates. Scaling the masses of the combustibles in column 1 by the ratio of the total 26 combustible mass of 8.593 Gg (1.9 x 10⁷ lbm) to 13.467 Gg (3.0 x 10⁷ lbm) from Table 27 3.4-10, a factor of 1.567, the estimated masses shown in columns 7 and 8 were calculated. A 28 similar scaling was calculated for the metals and glass based on the total mass of metals and 29 glass in Table 3.4-10 and are also tabulated in columns 7 and 8. The significant figures in 30 Table 3.4-12 should not be interpreted as an indication of the accuracy of the estimates. 31 These are estimates with a potentially large uncertainty and were made as a base for 32 uncertainty analyses. The significant figures were included only for consistency with Table 33 3.4-10. The results listed in column 8 of Table 3.4-12 were used as the estimates of these 34 constituents in the PA calculations because they are the same as were used in the estimates of 35 the mass fractions for a design volume in Table 3.4-10. Figure 3.4-3 displays the breakdown 36 of the CH waste mass including the gas-producing components. Not all of the components 37 listed in Table 3.4-12 were included as gas-producing components. The components for 38 microbial activity included the total cellulosics mass and one-half of the mass of surgeon's 39 gloves, Hypalon, Neoprene, and other undefined rubber. The components for corrosion 40 included iron, paint cans, steel, and shipping cans. 41

	Source 1 ^b (kg)	Source 1 (%)	Design (kg)	Source 2 ^c (%)	Source 2 (kg)	Source 2 ^d (kg)	Design ^C (kg)
COMBUSTIBLES							
Cellulosics							
Paper/Kimwipes	3,890,000	45.27	7,223,730	24.0	3,829,619	3,234,390	6,100,964
Cloth	226,000	2.63	419,682	4.0	638,270	539,065	354,452
Other paper	51	0.00	95				80
Lumber (untreated)		0.85	135,747				114,648
Lumber (treated)	36,700	0.43	68,152				57,559
Plywood	98,400	1.15	182,729				154,328
Other wood (rulers) Other wood		0.00	0				0
(all types) Other cellulose	23,700	0.28	44,011				37,170
(phenolic binder)	1,720	0.02	3194				2,698
Cellulosics subtotal	4,349,671	50.62	8,077,339	28.0	4,467,888	3,773,456	6,821,898
Plastics				38.0	6,063,563	5,121,118	
Polyethylene	1,540,000	17.92	2,859,780				2,415,291
PVĆ	1,040,000	12.10	1,931,280				1,631,106
Surgeon's gloves							
(latex) Leaded rubber	582,000	6.77	1,080,774	15.0	2,393,512	2,021,494	912,792
gloves	596,000	6.94	1,106,772	2.0	319,135	269,533	934,749
(Lead-Hypalon-							
Neoprene)		0.00	0				0
Hypalon	114,000	1.33	211,698				178,794
Neoprene	129,000	1.50	239,553				202,320
Viton	133	0.00	247				209
Teflon	41,000	0.48	76,137				64,303
Plexiglass	18,900	0.22	35,097				29,642
Styrofoam	330	0.00	613				518
Plastic prefilters	33,600	0.39	62,395				52,697
Polystyrene	2,560	0.03	4,754				4,015
Conwed pads	2,030	0.02	3,770				3,184
Other plastics	75,500	0.88	140,204				118,412
Other rubber (kalre	z)	0.00	0				(
Other rubber							
	7,530	0.09	13,983				11,81(
undefined		48.68	7,767,057	55.0	8,776,209	7,412,145	6,559,842

Table 3.4-12. Estimates of Masses for a CH Design Volume^a

^b Drez. P. 1989. "Preliminary Nonradionuclide Inventory of CH-TRU waste," letter to L. Brush, May 9, 1989 (Appendix A).

^c Butcher, B. 1989. <u>Waste Isolation Pilot Plant Simulated Waste Compositions and Mechanical Properties</u>. SAND89-0372. Albuquerque, NM: Sandia National Laboratories. 60

d For these estimates, the percentages were assumed to be correct and the total mass was based on combustibles having an average mass of 40 kg per drum for a total mass of 13.477 Gg; the metals and glass having an average mass of 64.5 kg per drum for a total mass of 19.844 Gg.

64 65 66

57 58

59

61

62 63

	Source 1 ^b (kg)	Source 1 (%)	Design (kg)	Source 2 ^C (%)	Source 2 (kg)	Source 2 ^d (kg)	Design' (kg)
Other	*/,,-				<u></u>		
Blacktop	18,800	0.22	34,912				29,485
Other	41,700	0.49	77,437	17.0	2,712,647	2,291,027	65,401
Other subtotal	60,500	0.70	112,349	17.0	2,712,647		94,886
Total Combustible	8,592,754		15,956,744		15,956,744	13,476,627	13,476,62
METALS							
Aluminum	666,000	5.44	1,229,436	14.0	3,164,476	2,778,125	1,079,334
Beryllium	8,640	0.07	15,949				14,002
Cadmium	5	0.00	9				
Chromium	5	0.00	9				
Copper	300,000	2.45	553,800	11.0	2,486,374	2,182,812	486,18
Iron	2,620,000	21.40	4,836,520				4,246,02
Lead		0.00	0	7.0	1,582,238	1,389,062	
Metallic	513,000	4.19	946,998				831,37
Glass (including							
glass mass)	1,120,000	9.15	2,067,520				1,815,09
Glove (including							
glove mass)	596,000	4.87	1,100,216				965,89
Lithium	1,030	0.01	1,901				1,66
Mercury	120	0.00	222				19
Paint cans	547,000	4.47	1,009,762				886,48
Platinum	1,500	0.01	2,769				2,43
Selenium	5	0.00	9				
Silver	5	0.00	9				
Steel	5,580,000	45.57	10,300,680	64.0	14,466,174	12,699,999	9,043,07
Shipping cans	217	0.00	401				35
Tantalum	125,000	0.02	230,750	4.0	904,136	793,750	202,57
Tungsten	20,000	0.16	36,920				32,41
Other	146,000	1.19	269,516				236,61
Total Metals	12,244,527		22,603,397		22,603,397	19,843,748	19,843,74
a The estimated m							

Table 3.4-12. Estimates of Masses for a CH Design Volume (Concluded)^a

The volume of the inventory for the estimates from Drez (1989) was based on 283,298 drums, 0.21 m³, 5,541 4x4x7 boxes, 3.17 m³, and 9,502 SWBs 1.9 m³. Using this estimate results in the volume as 95,111 m³. The ratio between the estimated volume and the design volume is 1.846.

^b Drez. P. 1989. "Preliminary Nonradionuclide Inventory of CH-TRU waste," letter to L. Brush, May 9, 1989 (Appendix A).

^c Butcher, B. 1989. <u>Waste Isolation Pilot Plant Simulated Waste Compositions and Mechanical Properties.</u> SAND89-0372. Albuquerque, NM: Sandia National Laboratories.

d For these estimates, the percentages were assumed to be correct and the total mass was based on combustibles having an average mass of 40 kg per drum for a total mass of 13.477 Gg; the metals and glass having an average mass of 64.5 kg per drum for a total mass of 19.844 Gg.

57 58 59

47 48

49

50 51

52 53

54

1 Comparison with Other Estimates

The estimates that were made and discussed for the combustibles and the metals and glass for 3 Table 3.4-10 used the average mass from Butcher (1989) for these components. The total 4 5 volume for the stored and projected waste in Table 3.4-10 was 100,593 m³ (3.6 x 10⁶ ft³). The estimates from Drez (May 9, 1989, Letter [Appendix A]) were based on a total waste 6 volume of 95,111 m³ (3.4 x 10⁶ ft³). A comparison of the results of the two estimates 7 indicates some consistency. The total mass of combustibles was 8.59 Gg (1.9 x 10^7 lbm) in 8 Drez (May 9, 1989, Letter [Appendix A]) and the estimates in Table 3.4-10 were about 7.30 9 Gg (1.6 x 10^7 lbm). The mass of the metals and glass in Table 3.4-10 is about 11.60 Gg (2.6 10 x 10⁷ lbm). The estimate in Drez (1989) was a total mass of 15.80 Gg (3.5 x 10⁷ lbm). This 11 estimate included the mass of the containers for the INEL and LANL. If the estimated mass 12 of the INEL and LANL containers in Table 3.4-7 (3.59 Gg [7.9 x 106 lbm] is subtracted from 13 the total in Drez (1989), the estimated mass of the glass and metal waste is 12.21 Gg (2.7 x 14 10⁷ lbm). 15

3.4.2 Composition of RH-TRU Contaminated Trash (Non-Radionuclide/ Non-RCRA Inventory)

4 5

volumes of Various Categories of RH-TRU Contaminated Waste

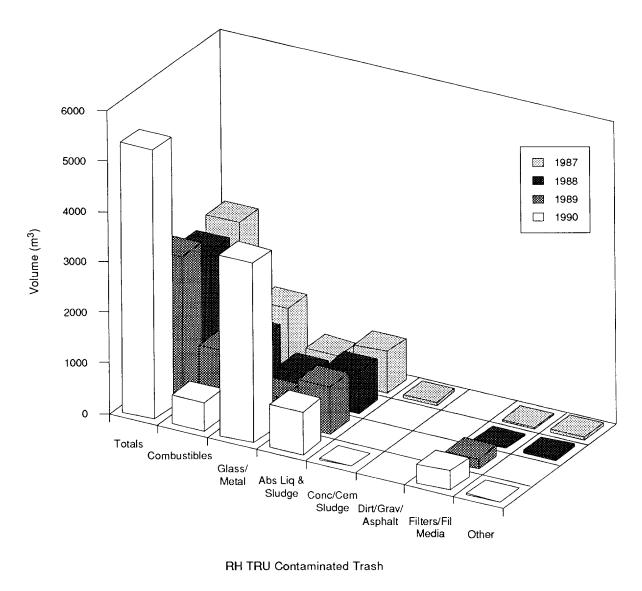
8

Estimates of the weights and volumes of RH-TRU constituents that affect gas generation, 10 transport, and room properties are required for performance assessment. However, the 11 weight of RH inventory was not included in the current analyses. The total RH inventory 12 has changed considerably in the last several years. The following discussion presents a 13 method that was used to estimate the characterization of the RH inventory. The method 14 resulted in estimates of the volume and weights of waste by generator site; however, these 15 results should not be interpreted as indicative of the weights and volumes that a specific site 16 may generate. 17

18

From the information in the IDBs, an estimate of the total volume and the percentage of selected constituent forms may be identified. Table 3.4-13 summarizes the information for the last four years and shows that the estimated total volume increase from 2,500 m³ (8.83 x 10^4 ft³) in 1988 to about 5,300 m³ (1.87 x 10^5 ft³) in 1990 (Figure 3.4-5). The reasons for the large increase are discussed in the 1990 IDB.

24


For the current PA calculations, it was assumed that the maximum allowed RH volume of 25 7,079 m³ (0.25 x 10⁶ ft³) will be emplaced in the WIPP. The following discussion presents 26 27 the method that was used to estimate the total volumes of the waste constituents if the maximum volume of RH waste was emplaced. Input to the 1990 IDB was used as the basis 28 for these estimates. The IDB presents estimates of the stored volume and projected (newly 29 30 generated) volume for each generator site. The stored and projected volumes for the five sites that have or will generate RH waste are tabulated in Table 3.4-14. To estimate the 31 additional volume required to reach the maximum volume, it was assumed that the generators 32 of projected waste would provide the additional volume. The percentage of projected waste 33 for each site was calculated and, based on this percentage, volumes for the five sites were 34 calculated to provide an additional 1,735 m³ (6.13 x 10^4 ft³). The scaled volumes for the five 35 36 sites are shown in Table 3.4-14.

37

The stored and newly generated (projected) RH volume in the 1990 IDB sum to about 5,300 38 m^3 (8.83 x 10⁴ ft³). The containers that will be placed in an RH canister have a different 39 volume depending on the generator site. Therefore, a canister may not contain 0.89 m³ (31.4 40 ft³) of RH waste. U.S. DOE (1991) indicates that the submittals to the 1990 IDB total 7,622 41 canisters. The total volume based on this number of canisters is 6,784 m³ (2.4 x 10⁵ ft³). 42 U.S. DOE (1991) also discusses the number of uncertainties in the projection of the RH 43 inventory and acknowledges that the details of the RH-TRU waste canister design should be 44 revisited for re-evaluation. Because of the uncertainty in the RH inventory and the 45 discussion in U.S. DOE (1991) on canister design, the smaller total stored plus projected 46 47 volume of waste --- not the volume of the canisters --- was used as a scaling factor to estimate the RH radionuclide inventory for an RH design volume. 48

	Combustibles (%)	Metal and Glass (%)	Absorbed Liquid and Sludge (%)	Concrete/ Cemented Sludge (%)	Dirt/ Gravel/ Asphalt (%)	Filters/ Filter Media (%)	Other (%)	Total Volume ^s (m ³)
1987	45.10	19.00	30.60	2.2	0.0	0.7	2.3	2690
1988	41.20	21.80	33.00	0.0	0.0	1.4	2.5	2500
1989	41.40	17.40	33.60	0.0	0.0	7.6	0.0	2812
1990	10.50	66.50	15.70	0.1	0.0	7.1	0.3	5344

2 Table 3.4-13. Estimated Composition by Volume of RH-TRU Contaminated Trash from 1987 to 1990

TRI-6342-1238-0

Figure 3.4-5. Changes in RH Waste Volume Estimates Between 1987 and 1990.

Site	Stored Volume (1990 IDB) (m ³)	Projected Volume (1990 IDB) (m ³)	Total Volume (1990 IDB) (m ³)	Scaled Volume* (m ³)	Estimated Design Volume (m ³)
ANL-E		81.6	81.6	36.8	118.4
HANF	137	3535.2	3672.2	1,596.0	5,268.2
INEL	29.5	76.8	106.3	34.7	141.0
LANL	28.4	4.8	33.2	2.2	35.4
ORNL	1307	144.0	1,451.0	65.0	1,516.0
Total	1,501.9	3,842.4	5,344.3	1,734.7	7,079
the desig	g that ANL, HANF, INE gn volume. The differ m ³ (0.25x10 ⁶ ft ³) was	ence between the t	otal volume of 5,344	m ³ in the 1990 IDE	and the design

Table 3.4-14. Estimate of a Design Volume for RH-TRU Waste

1 3.4.3 Inventory of Organic RCRA Contaminants

Hazardous materials are not regulated under 40 CFR 191, but are regulated separately by the
EPA and New Mexico. Some trace organic chemicals could affect the ability of radionuclides
to migrate out of the repository, at least initially, until microbial activity destroyed them.

A major RCRA constituent of CH-TRU waste is lead that is present as incidental shielding,
glovebox parts, and linings of gloves and aprons (U.S. DOE, 1990d). Trace quantities of
mercury, barium, chromium, and nickel have also been reported in some sludges (U.S. DOE,
1990d).

11

6

Two RH-TRU waste forms contain hazardous chemical constituents. A solid waste containing mixtures of combustibles and noncombustibles was removed from a hot cell facility at Oak Ridge National Laboratory. This waste will not contain free liquids or particulates. In addition, fuel sludges and process sludges will be solidified. This waste will be a solid monolith (U.S. DOE, 1990d). Quantities of the above-mentioned RCRA constituents are being compiled for calculations necessary for the No-Migration Variance Petition but are not available at this time.

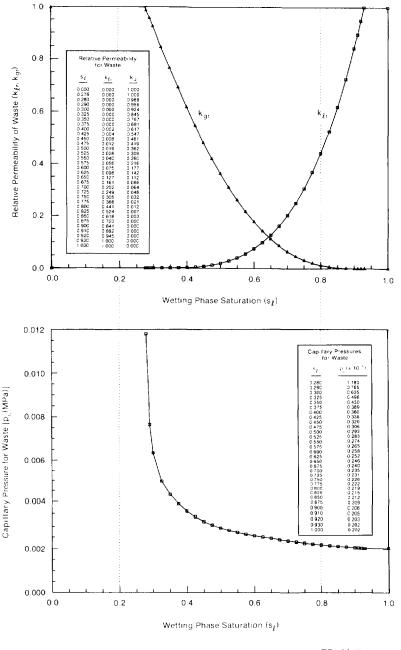
3.4.4 Capillary Pressure and Relative Permeability

Threshold Displacement Pressure, pt

Parameter:	Threshold displacement pressure (p _t)
Median:	2.02×10^3
Range:	2.02×10^2
	2.02×10^5
Units:	Pa
Distribution:	Lognormal
Source(s):	Davies, P. B. 1991. Evaluation of the Role of Threshold Pressure i
	Controlling Flow of Waste-Generated Gas into Bedded Salt at th
	Waste Isolation Pilot Plant. SAND90-3246. Albuquerque, NM
	Sandia National Laboratories.
	Davies, P. B. 1991. "Uncertainty Estimates for Threshold Pressur
	for 1991 Performance Assessment Calculations Involving Waste
	Generated Gas." Internal memo to D. R. Anderson (6342), June 2
	1991. Albuquerque, NM: Sandia National Laboratories. (I
	Appendix A of this volume)

2 Residual Saturations

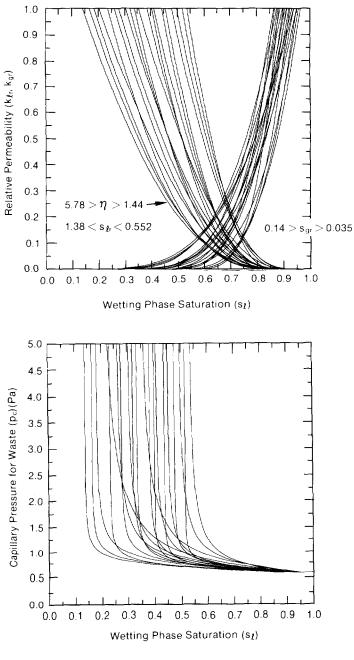
Parameter:	Residual wetting phase (liquid) saturation (S $_{\ell r}$)
Median:	2.76×10^{-1}
Range:	5.52×10^{-1}
	1.38
Units:	Dimensionless
Distribution:	Cumulative
Source(s):	Brooks, R. H. and A. T. Corey. 1964. "Hydraulic Properties o
	Porous Media," Hydrology Papers, No. 3. Fort Collins, CO
	Colorado State University
	Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data fo
	Characterizing 2-Phase Flow Behavior in Waste-Generated Ga
	Simulations and Pilot Point Information for Final Culebra 2-I
	Model," Memo 11 in Appendix A of Rechard et al., 1990. Data
	Used in Preliminary Performance Assessment of the Wast
	Isolation Pilot Plant. SAND89-2408. Albuquerque, NM: Sandi
	National Laboratories
Parameter:	Residual gas saturation (S _{gr})
Median:	7 x 10 ⁻²
Range:	3.5×10^{-2}
in anger	1.4×10^{-1}
Units:	1.4 x 10 ⁻¹ Dimensionless
Units:	
-	Dimensionless Cumulative
Units: Distribution:	Dimensionless Cumulative Brooks, R. H. and A. T. Corey. 1964. "Hydraulic Properties o
Units: Distribution:	Dimensionless Cumulative Brooks, R. H. and A. T. Corey. 1964. "Hydraulic Properties o
Units: Distribution:	Dimensionless Cumulative Brooks, R. H. and A. T. Corey. 1964. "Hydraulic Properties o Porous Media," Hydrology Papers, No. 3. Fort Collins, CC Colorado State University
Units: Distribution:	Dimensionless Cumulative Brooks, R. H. and A. T. Corey. 1964. "Hydraulic Properties o Porous Media," Hydrology Papers, No. 3. Fort Collins, CC Colorado State University Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data for
Units: Distribution:	 Dimensionless Cumulative Brooks, R. H. and A. T. Corey. 1964. "Hydraulic Properties of Porous Media," Hydrology Papers, No. 3. Fort Collins, CC Colorado State University Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data for Characterizing 2-Phase Flow Behavior in Waste-Generated Gate
Units: Distribution:	 Dimensionless Cumulative Brooks, R. H. and A. T. Corey. 1964. "Hydraulic Properties of Porous Media," Hydrology Papers, No. 3. Fort Collins, CC Colorado State University Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data for Characterizing 2-Phase Flow Behavior in Waste-Generated Ga Simulations and Pilot Point Information for Final Culebra 2-1
Units: Distribution:	 Dimensionless Cumulative Brooks, R. H. and A. T. Corey. 1964. "Hydraulic Properties of Porous Media," Hydrology Papers, No. 3. Fort Collins, CC Colorado State University Davies, P. B. and A. M. LaVenue. 1990b. "Additional Data for Characterizing 2-Phase Flow Behavior in Waste-Generated Ga Simulations and Pilot Point Information for Final Culebra 2-1 Model," Memo 11 in Appendix A of Rechard et al., 1990. Date Used in Preliminary Performance Assessment of the Waste
Units: Distribution:	Dimensionless Cumulative Brooks, R. H. and A. T. Corey. 1964. "Hydraulic Properties o Porous Media," Hydrology Papers, No. 3. Fort Collins, CC


Parameter:	Brooks and Corey exponent (η)
Median:	2.89
Range:	1.44
	5.78
Units:	Dimensionless
Distribution:	Cumulative
Source(s):	Based on information in Brooks, R. H. and A. T. Corey. 1964. "Hydraulic Properties of Porous Media," Hydrology Papers, No. 3 Fort Collins, CO: Colorado State University.

Brooks and Corev Exponent

2 Capillary Pressure and Relative Permeability

3 4


Figures 3.4-6a and 3.4-6b show the assumed values for capillary pressure and relative
permeability, respectively. Figure 3.4-7 is an example of the variation in relative
permeability and capillary pressure when Brooks and Corey parameters are varied.

TRI-6342-1441-0

Figure 3.4-6. Estimated Capillary Pressure and Relative Permeability for Unmodified Waste.

(page date: 15-NOV-91)

TRI-6342-1467-0

Figure 3.4-7. Example of Variation in Relative Permeability and Capillary Pressure for Unmodified Waste When Brooks and Corey Parameters Are Varied.

2 Discussion:

3 The correlations for these values were developed as discussed in the Chapter 2 section,

- 4 "Hydrologic Parameters for Halite and Polyhalite within the Salado Formation." Preliminary
 5 parameter values were obtained from Brooks and Corey (1964). Their experimental data for a
 6 "poorly sorted, fragmented mixture of granulated clay, fragmented sandstone, and volcanic
- 7 sand" were used as the natural analog.
- 8

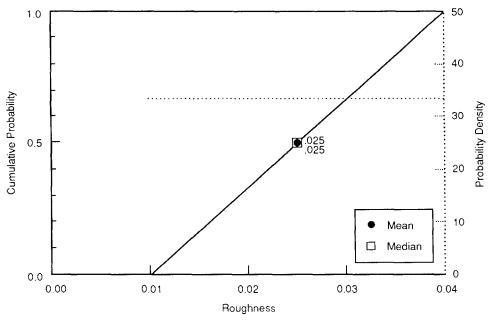
9 An initial range was selected for the purpose of being able to run sensitivity parameter 10 studies. The ranges shown for the parameters are quite arbitrary, corresponding to a simple 11 doubling and halving of the median values.

12

Because the threshold displacement pressure (p_t) is so small, current PA calculations set the value to zero (only in the waste). This allows pressure to equilibrate faster within the waste by permitting the easy movement of phases throughout the waste and thereby reducing the computational burden of codes modeling the two-phase phenomenon.

3.4.5 Drilling Erosion Parameters

Two waste-dependent parameters influencing the amount of material that erodes from the
borehole wall during drilling are shear stress generated by the drilling fluid (mud) and waste
shear strength.


Absolute Roughness

Parameter:	Absolute roughness of waste (c)
Median:	2.5×10^{-2}
Range:	1×10^{-2}
5	4×10^{-2}
Units:	m
Distribution:	Uniform
Source(s):	Streeter, V. L., and E. B. Wylie. 1975. Fluid Mechanics. Sixth
	Edition. New York, NY: McGraw-Hill Book Co. (Figure 5.32)

24 Discussion:

For turbulent flow, the shear stress of the drilling fluid (mud) acting on the borehole wall is dependent upon the relative surface roughness (ε/d) at the repository level, where ε is the absolute roughness or the average depth of well irregularities, and for flow within an annulus d is the hydraulic diameter. The variable, d, is defined as the difference in borehole diameter and collar diameter. As erosion increases the borehole diameter, the relative roughness decreases if ε is fixed. The current value chosen for PA calculations exceeds that of riveted steel piping, one of the roughest pipes for which data is frequently given (Moody diagram) (Streeter and Wylie, 1975, Figure 5.32).

35 Figure 3.4-8 provides the distribution for waste absolute roughness.

TRI-6342-1272-0

Figure 3.4-8. Estimated Distribution (pdf and cdf) for Waste Absolute Roughness.

2 Effective Shear Strength for Erosion

3	r	
6	Parameter:	Effective shear strength for erosion (au_{fail})
7	Median:	1
8	Range:	1 x 10 ⁻¹
9		1×10^{1}
10	Units:	Pa
11	Distribution:	Cumulative
12	Source(s):	Sargunam, A., P. Riley, K. Arulanadum, and R. B. Krone. 1973.
13		"Physico-Chemical Factors in Erosion of Cohesive Soils." Journal
14		of the Hydraulics Division, American Society of Civil Engineers 99:
15		555-558.
16		Henderson, F. M. 1966. Open Channel Flow. New York: Macmillan
17		Publishing Co. (Figure 10-5)

18 19

20

21

Discussion:

The effective shear strength for erosion (allowable tractive force) equals the threshold^{*} value of fluid shear stress required to sustain general erosion at the borehole wall. Parthenaides and Paaswell (1970), in discussing investigations on the erosion of seabed sediments and in channels, has noted that this effective soil shear strength is not related to the soil shear strength as normally determined from conventional soil tests. The effective shear strength for erosion is smaller by several orders of magnitude than the macroscopic soil shear strength.

28 29 Fol

Following the experimental work of Sargunam et al. (1973) on erosion of cohesive soils (see Figure 4.2-6 in Chapter 4), the PA Division assumed an effective shear strength for erosion 30 (τ_{fail}) for the unmodified waste of 1 Pa (1.45 x 10⁻⁴ psi), a value at the low end of the range 31 for loose (uncompacted) montmorillonite clay. The erodible shear strength of a noncohesive, 32 fine sand (diameter near 2.5 x 10^{-4}) is also about 1 Pa (1.45 x 10^{-4} psi) (Henderson, 1966, 33 Figure 10-5). Because the erodibility of the material at any given velocity is highly 34 dependent on the effective diameter of the material-and for cohesive materials, its degree of 35 compaction and plasticity index (Henderson, 1966)-the upper limit can be quite large 36 (greater than 100 Pa). However, PA calculations assume only an order-of-magnitude range 37 since values much greater than 10 Pa preclude erosion. 38

39 40

^{42 *} The threshold of sediment movement (erosion) cannot be defined with absolute precision, because as the fluid shear stress

gradually increases (due to velocity increase) there is no precise point at which sediment movement suddenly becomes
 general. Rather, at first only a few grains are dislodged every few seconds, then grain movement becomes more frequent

⁴⁶ until it affects the entire bed.

3.4.6 Partition Coefficients for Clays in Salt Backfill

Table 3.4-15 provides assumed partition coefficients for salt backfill.

6	-	•	
8		Table 3 4-15 Partition	Coefficients for Salt Backfill
9			ng Trace (0.1%) Amounts of
10			r Lappin et al., 1989, Table D-
11		5)	••
12			
14			Partition Coefficient*
15		Radionuclide	(m ³ /kg)
18			
18		Am	1 × 10 ⁻⁴
19		Np	1 x 10 ⁻⁵
20		Pb	1 × 10 ⁻⁶
21		Pu	1 × 10 ⁻⁴
22		Ra	1 × 10 ⁻⁶
23		Th	1 × 10 ⁻⁴
24		U	1 × 10 ⁻⁶
25			
27		* Assumed cons	stant
29			
30			
31			
32	Discussion:		

35 See discussion in Section 3.2.4.

36

Permeability (k), combustibles

3.4.7 Permeability

Parameter:

2
3
6
7
8
9
10
11
12
13
14
15
16
19
20
21
22
23
24
25

1

26 27

28 29

r arameter.	remeability (k), combustions					
Median:	1.7×10^{-14}					
Range:	2×10^{-15}					
	2×10^{-13}					
Units:	m² Cumulative					
Distribution:						
Source(s):	Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti. 1991. Mechanical Compaction of WIPP Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National Laboratories.					
Parameter:	Permeability (k), metals/glass					
Median:	5×10^{-13}					
Range:	4 x 10 ⁻¹⁴					
	1.2×10^{-12}					
Units:	m^2					
Distribution:	Cumulative					
Source(s):	Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. P 1991. Mechanical Compaction of WIPP Simulated Wa SAND90-1206. Albuquerque, NM: Sandia National Laboratorie					
Parameter:	Permeability (k), sludge					
Median:	1.2×10^{-16}					
Range:	1.1×10^{-17}					
	1.7×10^{-16}					
Units:	m ²					
Distribution:	Cumulative					
Source(s):	Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti. 1991. Mechanical Compaction of WIPP Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National Laboratories.					

41 42

1 Discussion:

2

The permeability for the combustibles was estimated from a few tests on simulated waste 3 (Butcher, 1990). After crushing a mixture of 60% by weight of pine cubes and 40% of rags 4 for 30 days at 14 MPa, the permeability started at 2 x 10^{-13} m² (200 mD) and dropped to 2 x 5 10^{-15} m² (2 mD), which defined the maximum range for combustibles. (A similar test had a 6 steady permeability of $1.3 \times 10^{-14} \text{ m}^2$ (13 mD); two tests on a mixture of 40% plastic bottles, 7 40% PVC parts, and 20% gloves had permeabilities of 0 and 2.5 x 10⁻⁴ m² [0 and 25 mD].) 8 The median permeability of $1.7 \times 10^{-14} \text{ m}^2$ (17 mD) for combustible waste was estimated 9 from the average of two tests on a simulated waste mixture consisting of 45% of the above 10 plastics and 37% of the above wood mixture plus 9% 1-inch metal parts and 9% dry Portland 11 cement. 12

13

The maximum and median values for permeability of the metals and glass component of the waste were estimated using 50% 1-inch metal parts and 50% magnetite that were crushed for one day. The latter material represented the corroded metal. One test had an initial permeability of 5.0 x 10⁻¹³ m² (500 mD) (used as the median value), but dropped to 4 x 10⁻¹⁵ m² (4 mD) (used as the minimum value). (A second test had a steady permeability of 1.1 x 10⁻¹⁴ m² [11 mD].) The maximum permeability is the value estimated for uncorroded metal waste in Lappin et al. (1989, p 4-56).

21

28

Mean Permeability of Drum. For computational ease, the PA Division assumed that the permeabilities of each component were uniformly distributed from the minimum to the maximum values given above in evaluating the permeability of an average drum. Consequently, the distribution of local permeability (i.e., the effective permeability of a collapsed drum) was the weighted sum of uniform distributions, the weights being percent by volume of each component.

Assuming that the volume fractions of the components are 40% combustibles, 40% metals/glass, and 20% sludge (values reported in Table 3.4-1 rounded to one significant digit), it is easily calculated that the expected permeability on the scale of a drum (0.27 m³ or 9.5 ft³) is

33

$$E(k) = \mu_{perm} = \int kf(\eta) d\eta = 1.7 \times 10^{-13} m^2$$
 (3.4-1)

48

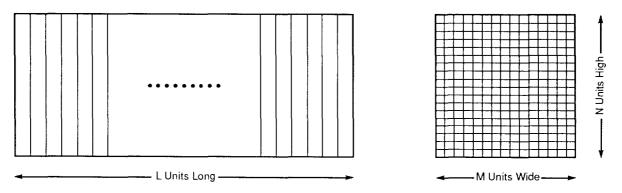
49

50 51

$$([V(k)]^{1/2}/E(k)^2 = (\sigma/\mu_{perm})$$

and the coefficient of variation $[V(k)]^{1/2}/E(k)$ is

$$= (\int m^2 f(\eta) d\eta)^{1/2} / \mu_{\text{perm}} = E(k - \mu)^2]^{1/2} / \mu_{\text{perm}} = 1.22 \qquad (3.4-2)$$


where

E(k) = expectation of kV(k) = variance of k

The foregoing estimates establish the statistical properties of the permeability of a single, 1 typical collapsed waste drum. These properties are next used to estimate the distribution of 2 the material-property parameter: effective hydraulic conductivity of an entire, collapsed 3 WIPP room. To estimate distribution of effective hydraulic conductivity of a room, we must 4 make further assumptions about the way waste drums are sorted and placed into particular 5 rooms: in the absence of any firm plans for sorting waste drums, we are forced to assume 6 that any waste drum is equally likely to be placed in any of the (approximately) 120 rooms. 7 Hence, there is no spatial correlation between two adjacent drums in the same room, and the 8 "cookie cutter" autocorrelation function (see Chapter 1) is applicable with a correlation 9 volume, a³, of the order of the volume of a collapsed waste drum. 10

11

Model of WIPP Room. The collapsed WIPP room is modeled as a rectangular parallelopiped composed of many, small rectangular parallelopipeds (the collapsed drums) (Figure 3.4-9).

TRI-6342-1136-0

Figure 3.4-9. Model of Collapsed WIPP Room 18 19 20 The collapsed drums will be called "units." In Figure 3.4-8 above, LMN = 6804, or 22 23 number of replications of the unit down length of a room (~ 162 , Figure 3.1-3) 24 L = number of replications of the unit across a room (~14, Figure 3.1-3) 25 M = number of replications of the unit verifically (3, Figure 3.1-3). 26 N = 27 With each unit is associated a local porosity 28 29 010045078000100 300000000000004444 ϕ_{lmn} - local porosity (assumed isotropic) and a local hydraulic conductivity *klmn* - local hydraulic conductivity (assumed isotropic) As previously stated, it is assumed that $\phi_{\ell mn}$ and $k_{\ell mn}$ are independent, identically distributed random variables; i.e., the $\phi_{\ell mn}$ have a density function f(c) and the $k_{\ell mn}$ have 44 density function g(k). 45 46

Effective Permeability. The first problem is to find the distribution of k_{eff} , where

$$J = k_{\text{eff}} \frac{\Delta h}{x},$$

 Δh being the applied pressure-head difference across the room in the x-direction. Now, from Freeze & Cherry (1979, p. 34, Eq. 2.32), the effective permeability, k_{ℓ} , of the ℓ^{th} slab follows (flow parallel to layering):

$$k_{\ell} = \frac{1}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} k_{\ell m n}$$
(3.4-3)

Thus, viewing the slabs $\ell = 1, 2, ...L$ as layers and the flow being perpendicular to these layers, we have from Freeze & Cherry (1979, p. 34, Eq. 2.31)

$$k_{\text{eff}} = \frac{1}{\frac{L}{\frac{1}{L} \sum_{\ell=1}^{L} \frac{1}{k_{\ell}}}}$$
(3.4-4)

Now if $E[k_{\ell mn}] = \mu$ and Var $[k_{\ell mn}] = \sigma^2$ (i.e., it is assumed that the $k_{\ell mn}$ are independent, identically distributed [iid] random variables with mean μ and variance σ^2), and if MN >> 1, then by the Central Limit Theorem (Ross, 1985, p. 70), the random variable K_{ℓ} is approximately normally distributed, i.e.,

$$\Pr(k_{\ell} \leq x) \rightarrow \Phi\left(\frac{\sqrt{MN}(x-\mu)}{\sigma}\right) \text{ as } MN \rightarrow \infty$$

where

$$\Phi(\mathbf{y}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\mathbf{y}} e^{-\mathbf{x}^2/2} d\mathbf{x} \text{ (the standard normal distribution)}$$

In other words, k_{ℓ} is approximately normally distributed with mean μ and variance $\sigma_k^2 = \sigma^2/MN$.

Gauss' approximation formulae (Blom, 1989, p. 125) are next used to estimate the mean and variance of the distribution of k_{eff} , given that the mean and variance of the k_{ℓ} are respectively μ and σ^2/MN . Using these formulae and Eq. 3.4-4 gives, for the mean value,

$$E\left[k_{eff}\right] \sim \frac{1}{\frac{L}{L}} = \mu \qquad (3.4-5)$$

$$\frac{1}{L} \sum_{\ell=1}^{L} \frac{1}{\mu}$$

(page date: 15-NOV-91)

and for the variance,

2 345678901123

1

$$\operatorname{Var}\left[k_{eff}\right] \sim \sum_{\ell=1}^{L} \operatorname{Var}\left[k_{\ell}\right] \cdot \left[\left(\frac{\delta k_{eff}}{\delta k_{\ell}}\right)_{k_{\ell}=\mu}\right]^{2} = \sum_{\ell=1}^{L} \frac{\sigma^{2}}{MN} \cdot \frac{1}{L^{2}} = \frac{\sigma^{2}}{MNL}$$

$$(3.4-6)$$

Magnitudes of these quantities can be estimated using the preliminary permeability estimates (Eqs. 3.4-1 and 3.4-2),

16 17 18

19 20

21 22 23

24

25 26

14

15

$$\mu_{\text{perm}} = 1.7 \text{ x } 10^{-13} \text{ m}^2 (1.25 \text{ x } 10^{-6} \text{ m/s})$$

$$\sigma_{\text{perm}} = 2.07 \text{ x } 10^{-13} \text{ m}^2 (1.52 \text{ x } 10^{-6} \text{ m/s}),$$

and taking L = 162, M = 14, and N=3. The results are

$$E[k_{eff}] \sim \mu = 1.7 \text{ x } 10^{-13} \text{ m}^2 (1.25 \text{ x } 10^{-6} \text{ m/s})$$

and coefficient of variation of

$$\frac{E(k_{eff})}{V(k_{eff})} \sim [(MNL)^{-1/2}] \cdot (\sigma/\mu) = 1.48 \times 10^{-2}.$$

The small coefficient of variation suggests that the distribution of k_{eff} is highly concentrated about the mean value, μ . The mean varies only slightly with the permeability estimate in 34 Lappin et al., 1989. To be consistent with this and other previous work, the PA Division 35 used a value of 1 x 10^{-13} m² (100 mD). 36

37

Because the coefficient of variation is so small, the PA Division did not sample on waste 38 permeability nor adjust its value according to the waste composition as was done for porosity. 39 The waste permeability was so high that a large decrease (~4 orders of magnitude) would be 40 required to have a noticeable effect on results (Rechard et al., 1989, Figure 4-2), too large a 41 decrease to be obtained from the currently assumed variation in waste composition. (The 42 variance of the volume fraction of waste components adds directly [not reduced by the 43 Central Limit Theorem] to the waste unit variance.) 44

45

1 3.4.8 Porosity

Parameter:	Porosity (ϕ), combustibles					
Median:	0.014					
Range:	0.087					
	0.18					
Units:	Dimensionless					
Distribution:	Data					
Source(s):	Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti.					
	1991. Mechanical Compaction of WIPP Simulated Waste					
	SAND90-1206. Albuquerque, NM: Sandia National Laboratories.					
Parameter:	Porosity (ϕ), metals/glass					
Median:	0.40					
Range:	0.33					
	0.44					
Units:	Dimensionless					
Distribution:	Data					
Source(s):	Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti.					
	1991. Mechanical Compaction of WIPP Simulated Waste					
	SAND90-1206. Albuquerque, NM: Sandia National Laboratories.					
Parameter:	Porosity (ϕ), sludge					
Median:	0.11					
Range:	0.01					
	0.22					
Units:	Dimensionless					
Distribution:	Data					
Source(s):	Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti.					
	1991. Mechanical Compaction of WIPP Simulated Waste					
	SAND90-1206. Albuquerque, NM: Sandia National Laboratories.					

Discussion: 1

2

The objective of the procedure described here for calculating panel porosity is to enable 3 4 Performance Assessment to determine initial and final porosities of the panel in a manner that is consistent with the estimated actual inventory of the repository and with the need to 5 6 vary the composition of the waste in PA calculations. First, the initial porosity will be calculated based on the design capacity of the repository and the design waste inventory 7 8 estimates discussed in Section 3.4.1. Then the final porosity of a perfectly sealed panel (no gas escapes) will be determined. Finally, the procedure will be extended to variable waste 9 compositions. 10

11

12 Initial Porosity. The waste inventory is broken down into three IDB categories: metals and glass, combustibles, and sludge. In Section 3.4.1, a volume fraction of each of these 13 categories, $f_m = 0.368$, $f_c = 0.403$, and $f_s = 0.229$, respectively, was estimated from which the 14 volume of each category is calculated: 15

16

17

18

 $V_m = f_m V_w = 64,610 m^3$ $V_c = f_c V_w = 70,750 m^3$

19
$$V_{g} = f_{g}V_{w} = 40,200 \text{ m}$$

20 21

22

where $V_w = 175,600 \text{ m}^3$ (6.2 x 10⁶ ft³), the design capacity of the repository.

23 The mass of each category is then computed assuming a fixed average mass of waste category in each drum and the known volume of a drum, $V_d = 0.21$ m³. The average mass of each 24 category per drum (not including the containers), as used in Table 3.4-9, is: 25

26 $M_{dm} = 64.5 \text{ kg/drum}$ 27 $M_{dc} = 40.0 \text{ kg/drum}$ 28 $M_{ds} = 225. \text{ kg/drum}$ 29

30

A fixed average mass of container is also assumed to be portioned to each category, the 31 values obtained from Table 3.4-9 being: 32

33 34 $M_{cm} = 12.40 \text{ Gg}$ $M_{cc} = 13.29 \text{ Gg}$ 35 $M_{cs} = 4.458 \text{ Gg}$ 36 37 The total mass of each category, including containers, in the full repository is then: 38 39 $M_m = M_{dm}V_m/V_d + M_{cm} = 31.98 \text{ Gg}$ 40 $M_{c} = M_{dc}V_{c}/V_{d} + M_{cc} = 26.77 \text{ Gg}$ 41

 $M_{s} = M_{ds}V_{s}/V_{d} + M_{cs} = 47.53 \text{ Gg}$ 42 43

```
The total mass of waste, including containers, is the sum of the masses of these three
1
     categories:
2
3
         M_w = M_m + M_c + M_s = 106.3 \text{ Gg}
4
5
     These figures can all be found in Table 3.4-9 (under the heading "Stored, Projected, and
6
     Scaled") and in Table 3.4-1, which summarizes the data.
7
8
     In addition to the waste, the repository will also contain salt backfill and an air gap between
9
     the top of the backfill and the ceiling of the repository. The masses of backfill and the
10
     initial air gap are:
11
12
          M_b = \rho_{bb}V_b = 219.2 \text{ Gg}
M_a = \rho_a V_a = 0.1051 \text{ Gg}
13
14
15
     where \rho_{bb} and \rho_a are, respectively, the bulk density of backfill and the density of air (ideal
16
     gas with molecular weight 0.02897 kg/mol at atmospheric pressure [101.3 kPa] and 300.15 K):
17
18
          \rho_{\rm bb} = 1280 \ \rm kg/m^3
19
          \rho_{\rm a} = 1.18 kg/m<sup>3</sup>
20
21
     and the volume of salt backfill and air gap initially present when the repository is filled are
22
     (see Section 3.1.6):
23
24
          V_{\rm b} = 171,200 \, {\rm m}^3
25
26
          V_{2} = 89,080 \text{ m}^{3}
27
28
29
      The total mass of waste, backfill, and air gap initially present in the repository is:
30
31
          M_t = M_w + M_h + M_a = 325.6 \text{ Gg}
32
33
      The bulk density of each category (including containers) and of the waste are:
34
          \rho_{\rm bm} = M_{\rm m}/V_{\rm m} = 495 kg/m<sup>3</sup>
35

ho_{\rm bc} = M_{\rm c}/V_{\rm c} = 378 \ {\rm kg}/{\rm m}^3
36
          \rho_{\rm bs} = M_{\rm s}/V_{\rm s} = 1182 \ {\rm kg}/{\rm m}^3
37
          \rho_{\rm bw} = V_{\rm w}
                           = 605 \text{ kg/m}^3
38
39
      The initial porosity of each category (including containers) and of the backfill are calculated
40
      from the above bulk densities and assumed values for the solid (grain) densities of each
41
      category (Butcher et al., 1991):
42
43
```

 $\rho_{\rm m} = 3440 \ {\rm kg/m^3}$ 1 $\rho_{\rm c} = 1310 \ {\rm kg}/{\rm m}^3$ 2 $\rho_{\rm s} = 2150 \ \rm kg/m^3$ з $\rho_{\rm b} = 2140 \ \rm kg/m^3$ 4

5

The solid densities of the three waste categories presumably include containers; this enables 6 calculation of porosities in which a bulk density (including containers) is divided by a solid 7 density (also including containers). The solid density of salt includes a 1% irreducible 8 porosity that remains in compacted halite. To be fully consistent, the true grain density, 9 2,160 kg/m³, should be used. This minor inconsistency will be corrected in the 1992 PA 10 11

12

calculations. The porosities are then $\phi_{\rm m} = 1 - \rho_{\rm bm} / \rho_{\rm m} = 0.856$ 13 $\phi_{\rm c} = 1 - \rho_{\rm bc} / \rho_{\rm c} = 0.711$ 14 $\phi_{\rm s} = 1 - \rho_{\rm bs} / \rho_{\rm s} = 0.450$ 15 $\phi_{\rm b} = 1 - \rho_{\rm bb}/\rho_{\rm b}$ = 0.402 16 17 Now the initial pore volumes of each category can be determined: 18 19 $V_{pm} = \phi_m V_m = 55,310 \text{ m}^3$ 20 $V_{pc} = \phi_c V_c = 50,320 \text{ m}^3$ 21 $V_{ps} = \phi_s V_s = 18,100 \text{ m}^3$ 22 $V_{pb} = \phi_b V_b = 68,820 \text{ m}^3$ $V_{pa} = V_a = 89,080 \text{ m}^3$ 23 24 25 Summing, the net waste pore volume (including containers) is 26 27 $V_{pw} = V_{pm} + V_{pc} + V_{ps} = 123,700 \text{ m}^3$ 28 29 and the pore volume of the entire repository is initially 30 31 $V_{pt} = V_{pw} + V_{pb} + V_{pa} = 281,600 \text{ m}^3$ 32 33 The initial porosity of the repository for the design inventory is then 34 35 $\phi_{\rm t} = V_{\rm pt}/V_{\rm t} = 0.646$ 36 37 where V_t is the initial excavated volume of the repository, excluding seals (Table 3.1-1) 38 39 $V_t = 436,000 \text{ m}^3.$ 40 41 A number also of interest, though not needed for PA calculations, is the porosity of the waste 42 alone, including containers, but excluding backfill and air gap: 43 44 $\phi_{\mathbf{w}} = \mathbf{V}_{\mathbf{p}\mathbf{w}}/\mathbf{V}_{\mathbf{w}} = 0.705$ 45 46 Table 3.4-16 summarizes the calculation of initial porosity of the repository. 47 48 49

Waste Volume Fraction	Initial Volume (m ³)	Initial Mass (ka)	Bulk Density (kg.(m3)	Solid Density (kg (m3)	Initial Porosity	Pore Volume (m3)	Solids Volume (m ³)
raction	(111)	(rg)	(vg/11°)	(rg/11°)		(110)	((1)9)
0.368	64,608	31,981,774	495	3,440	0.856	55,311	9,297
0.403	70,752	26,769,084	378	1,310	0.711	50,318	20,434
0.229	40,204	47,533,716	1,182	2,150	0.450	18,095	22,109
1.000	175,564	106,284,574	605	2,050	0.705	123,724	51,840
	171,241	219,188,480	1,280	2,140	0.402	68,816	102,425
	89,081	105,116	1		1.000	89,081	
	436,023	325,578,170	747	2,109	0.646	281,621	154,265
	Volume Fraction 0.368 0.403 0.229	Volume Fraction Volume (m ³) 0.368 64,608 0.403 70,752 0.229 40,204 1.000 175,564 171,241 89,081	Volume Fraction Volume (m ³) Mass (kg) 0.368 64,608 31,981,774 0.403 70,752 26,769,084 0.229 40,204 47,533,716 1.000 175,564 106,284,574 171,241 219,188,480 89,081 105,116	Volume Fraction Volume (m ³) Mass (kg) Density (kg/m ³) 0.368 64,608 31,981,774 495 0.403 70,752 26,769,084 378 0.229 40,204 47,533,716 1,182 1.000 175,564 106,284,574 605 171,241 219,188,480 1,280 89,081 105,116 1	Volume Fraction Volume (m ³) Mass (kg) Density (kg/m ³) Density (kg/m ³) 0.368 64,608 31,981,774 495 3,440 0.403 70,752 26,769,084 378 1,310 0.229 40,204 47,533,716 1,182 2,150 1.000 175,564 106,284,574 605 2,050 171,241 219,188,480 1,280 2,140 89,081 105,116 1	Volume Fraction Volume (m ³) Mass (kg) Density (kg/m ³) Density (kg/m ³) Porosity (kg/m ³) 0.368 64,608 31,981,774 495 3,440 0.856 0.403 70,752 26,769,084 378 1,310 0.711 0.229 40,204 47,533,716 1,182 2,150 0.450 1.000 175,564 106,284,574 605 2,050 0.705 171,241 219,188,480 1,280 2,140 0.402 89,081 105,116 1 1.000	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 3.4-16. Summary of Initial Porosity Calculations

23 Note: Figures for waste categories and subtotal include containers.

Final Porosity. The final porosity is calculated by assuming that no gas leaks from the repository and that the final gas pressure is equal to lithostatic pressure, 14.9 MPa. It is also assumed that the volume of solids in the repository is conserved. Knowing the corrodible metal content of the waste and the amount of biodegradables enables the total gas potential to be calculated. Adjusting for lithostatic pressure, this final potential gas volume, together with the air initially present (both in the air gap and in the initial pore spaces), constitutes the final pore volume of the repository.

The initial solids volume is the difference between the bulk volume and the pore volume of each category:

- 40 $V_{sm} = V_m - V_{pm} = 9,297 \text{ m}^3$ 41 42 $V_{sc} = V_c - V_{pc} = 20,430 \text{ m}^3$ 43 44 $V_{ss} = V_s - V_{ps} = 22,110 \text{ m}^3$ 45 46 47 The initial solids volume in the waste is: 48 $V_{sw} = V_w - V_{pw} = 51,840 \text{ m}^3$ 49 50 and the initial backfill solids volume is: 51 52 $V_{sb} = V_b - V_{pb} = 102,400 \text{ m}^3$ 53
- 54

1 2

1 The total solids volume is the sum of waste solids volume and backfill solids volume:

2 3 4

$$V_{st} = V_{sw} + V_{sb} = 154,300 \text{ m}^3$$

5 Additional assumptions concerning the composition of the waste are needed. In the metals 6 and glass category, only a portion of the total mass is corrodible and thus capable of 7 producing gas. Of the metals listed in Table 3.4-11 (Design column), the following are 8 considered corrodible: Iron, paint cans, steel, and shipping cans. The total mass of these 9 materials in the Design inventory is

10

$$M_{Few} = 14.31 \text{ Gg}$$

11 12

and for gas potential calculations, the materials are assumed to be pure iron (Fe). The waste
 containers contain an even greater amount of corrodible metal. From Table 3.4-8, the
 container steel in the repository Design volume is

- 16
- $M_{Fec} = 26.13 \text{ Gg}$
- 17 18

19 This mass is also assumed to be pure iron for gas potential purposes. The total iron in the 20 repository is

21 22

23

 $M_{Fet} = M_{Few} + M_{Fec} = 40.44 \text{ Gg}$

In the Combustibles category, only a portion is believed to be biodegradable. This portion includes all cellulosics and 50% of certain rubbers, including surgeon's gloves (latex), hypalon, neoprene, and other rubber undefined. The total mass of biodegradables in the Design inventory, from Table 3.4-11, is

28 29

30

 $M_{Bio} = 7.475 \text{ Gg}$

Details of the gas potential from iron corrosion are discussed in Section 3.3.8. It is assumed that corrosion and biodegradation reactions produce hydrogen gas. The median stoichiometric coefficient for hydrogen using the average corrosion reaction, Eq. 3.3-4, is

 $s_{Fe} = 7/6 = 1.167 \text{ mol H2/mol Fe}$

and the molecular weight of iron is

 $M_{Fe} = 0.055 \ 85 \ kg/mol \ Fe$

41 Then the gas potential from corrosion is

$$M_{H_2Fe} = M_{Fet} s_{Fe} / M_{Fe} = 844.8 \text{ Mmol } H_2$$

1 Details of the gas potential from biodegradation are discussed in Section 3.3.9. The median

stoichiometric coefficient for hydrogen using the average biodegradation reaction, Eq. 3.3-6,
is

$$s_{Bio} = 0.835 \text{ mol } H_2/\text{mol cellulose is}$$

and the molecular weight of cellulose is

 $M_{cell} = 0.030 \text{ kg/mol cellulose}$

Then the gas potential from corrosion is

$$m_{H_2Bio} = M_{Bio} s_{Bio} / M_{cell} = 208 \text{ Mmol } H_2$$

The total gas potential using the design inventory and median reaction parameters is

$$m_{H_{2}t} = m_{H_{2}Fe} + m_{H_{2}Bio} = 1.053 \text{ Gmol } H_{2}$$

Using a molar volume for H_2 of 1.822 x 10⁻⁴ m³/mol H_2 (see Section 4.1.4), the volume of this hydrogen at 14.9 MPa and 300.15 K is

$$V_{H_2} = 191,800 \text{ m}^3$$

In addition, the air initially present in the repository both in the air gap and in pore space is compressed from initial pressure, p_i , of 101.325 kPa to final lithostatic pressure, p_f , of 14.9 MPa, resulting in a volume (assuming ideal gas behavior) of

$$V_{af} = V_{pt}p_i/p_f = 1,915 \text{ m}^3$$

The total gas volume in the final repository at 14.9 MPa is

$$V_{g} = V_{H_{2}} + V_{af} = 193,700 \text{ m}^{3}$$

Then the final porosity of a gas-tight repository containing the full amount of gas that is potentially producible is

$$\phi_{\rm f} = V_{\rm g}/(V_{\rm g} + V_{\rm st}) = 0.557$$

Final Porosity for Variable Waste Composition. The porosity of a room or panel will vary with time as salt creep compresses the pore spaces while gas generation creates a timedependent resistance to creep closure. These phenomena cannot yet be simulated accurately within the PA calculations, so some simplifying assumptions must be made. The first is that the porosity will not change over time, but instead will immediately attain the final porosity.

Second, it is assumed that the final porosity is the porosity of a gas-tight, perfectly sealed 1 repository. Although this second assumption appears somewhat arbitrary, since almost any 2 porosity between a sealed-room porosity and a completely open porosity (i.e., all gas escapes 3 and causes no additional resistance to creep closure beyond what the solids impose) might be 4 justified, preliminary calculations indicated that, barring any pressure release resulting from 5 intrusions, the pressure in the repository generally reaches a value close to lithostatic, quite 6 rapidly, and stays there for the duration of the 10,000-yr period. Furthermore, the 7 permeabilities of the likeliest gas flow paths (the anhydrite layers and Marker Bed 139) are 8 so low that little gas will escape over the 10,000 yr. Therefore, the repository will generally 9 behave more like a gas-tight enclosure than like a very leaky one, so assuming it is gas-tight 10 is reasonable. 11

12

Because the composition of the waste that will ultimately fill the repository is not known with complete certainty, it is varied in the 1991 PA calculations. Variations in the composition of the waste result in different final porosities, because the gas potential changes, depending on how much corrodible metal and biodegradable material is present. In addition to the volume fractions of metals and glass and of combustibles, two other parameters that effect the final porosity are also varied in the PA calculation: the stoichiometric coefficients x_{Fe} and x_{Bio} .

20

The procedure described above is used to calculate the final porosity. Three additional assumptions are required. First, the mass of containers is assumed to remain fixed; in particular, the mass of iron in the containers, M_{cm} , is assumed constant. Second, the mass fraction of metals and glass that is corrodible metal is assumed to be constant. This fraction is

26

 $f_{mc} = M_{Few}/(M_m - M_{cm}) = 14.31 \text{ Gg}/19.84 \text{ Gg} = 0.721$

Third, the mass fraction of combustibles that is biodegradable is assumed to be constant. This fraction is

31 32

33

 $f_{cb} = M_{Bio}/(M_c - M_{cc}) = 7.475 Gg/13.48 Gg = 0.555$

34 Then the total iron content in the repository is

35 36

37

 $M_{Fet} = f_{mc}M_{dm}V_m/V_d + M_{Fec}$

38 and the total biodegradable mass is

39 40

41

 $M_{Bio} = f_{cb}M_{dc}V_c/V_d + M_{Bioc}$

where M_{Bioc} , the mass of biodegradable container material, is currently zero. The rest of the porosity calculation is the same as described above (except that the stoichiometric coefficients vary).

Brine saturation will also affect the final porosity. This effect has not been taken into
account in these calculations because the brine saturation varies greatly during the 10,000 yr,
and a consistent and accurate way to incorporate this effect has not been developed.

4

9

11

12

5 Final room or panel height is calculated from the initial and final porosity. It is assumed 6 that creep closure occurs only in the vertical direction, not horizontally. While not correct, 7 this assumption has little effect on the results, except to make calculation of the final panel 8 height much easier, since the floor area does not change.

10 Assuming solids volume is conserved during closure,

 $(1 - \phi_i)Ah_i = (1 - \phi_f)Ah_f$

where A is the floor area, h_i is the initial panel height, and h_f is the final panel height. The final panel height is then

16 17

18

27

29

30120345

39

40 41 $h_f = h_i(1 - \phi_i)/(1 - \phi_f)$

19 **Panel Averaging.** Some PA calculations, done on a panel scale, require that certain properties be averaged over the entire panel. This is particularly true for the two-phase 20 flow calculations, which, because of time and size constraints, must be done using two-21 dimensional cylindrical geometry. This necessitates using properties for a full panel that 22 combine properties of the waste and backfill with those of the intact salt pillars that 23 separate rooms in a panel. Properties used in the models are generally area-weighted 24 averages of the waste properties and the pillar properties. (A notable exception is 25 26 permeability; waste permeability is used as the average permeability of a panel.)

28 The average porosity of a panel is calculated from

$$\phi_{\text{pav}} = \frac{\phi_{\text{f}}^{\text{A}}_{\text{panx}} + \phi_{\text{p}}^{\text{A}}_{\text{pil}}}{A_{\text{panx}} + A_{\text{pil}}}$$

where A_{panx} is the excavated floor area of a panel (11,640 m², from Table 3.1-1), ϕ_p is the constant median porosity of an undisturbed halite pillar (0.01, from Table 2.3-1), and A_{pil} is the area of the pillars in a panel,

 $A_{\text{pil}} = A_{\text{pann}} - A_{\text{panx}} = 17,780 \text{ m}^2$

where A_{pann} is the enclosed area of a panel (29,420 m², from Table 3.1-1). Note that the height of the panel does not enter into the equation. This is true because of the assumption the salt creep occurs only vertically.

The average initial brine saturation of a panel is calculated from S_{bw} , the initial brine saturation of the waste (a varied parameter), and the fixed brine saturation of undisturbed halite, S_{bpil} (1.0, i.e., fully saturated):

49 50

45

$$S_{bpav} = (S_{bw}\phi_f A_{panx} + S_{bpil}\phi_p A_{pil})/(\phi_f A_{panx} + \phi_p A_{pil})$$

(page date: 15-NOV-91)

(database version: X-2.19PR)

1 Minimum Porosity. The minimum porosity is the porosity of the waste that is reached within 2 about 200 yr without gas generation and sometime later (perhaps after 10,000 yr) with gas 3 generation.

4

5 Similar to the calculations presented for permeability, the porosity of the overall waste was 6 estimated by combining, by volume, the estimated individual porosities (on the scale of a 7 drum) of combustibles (plastic, gloves, pine wood, and rags), metal/glass (including corroded 8 and uncorroded steel), and sludges (liquid waste mixed with cement). Estimates for the 9 individual components from estimates of the density at 15 MPa (148 atm) are shown above (Butcher et al., 1991).

11

Performance Assessment assumed that the porosities of each component were uniformly distributed between the minimum and maximum values given above. Consequently the distribution of local porosity (i.e., the porosity of a collapsed drum) was the weighted sum of uniform distributions.

16

The resulting mean porosity depends on the final volume fraction of the individual components, which varies in the current PA calculations. For example, we may assume that the initial volume fractions are 40% combustibles, 40% metals/glass, and 20% sludge.

20

Using the ranges of component porosity (Table 3.4-9), the pdf for porosity of a collapsed drum becomes

29

30 31

34

48

49

$$p(\phi) d\phi = f_c \frac{d\phi}{0.093} + f_m \frac{d\phi}{0.11} + f_s \frac{d\phi}{0.21}$$

where

 f_c, f_m, f_s = volume fractions of combustibles, metals/glass, and sludges, respectively

Holding these fractions fixed, the expected value of porosity of a collapsed drum, μ_e , can be calculated:

$$\mu_{e} = \frac{f_{c}}{0.093} \int_{0.087}^{0.18} \phi d\phi + \frac{f_{m}}{0.11} \int_{0.33}^{0.44} \phi d\phi + \frac{f_{s}}{0.21} \int_{0.01}^{0.22} \phi d\phi \qquad (3.4-7)$$
$$= 0.134 f_{c} + 0.385 f_{m} + 0.115 f_{s}$$

If the waste-component volume fractions are those given in Table 3.4-1, then

$$\mu_{e} = 0.134 (.40) + 0.385(.40) + 0.115 (.20) = 0.23$$

(page date: 15-NOV-91)

The variance of the porosity of a collapsed drum, σ_e^2 , can also be calculated:

$$\sigma_{e}^{2} = \frac{f_{c}}{0.093} \int_{0.087}^{0.18} \phi^{2} d\phi + \frac{f_{m}}{0.11} \int_{0.33}^{0.44} \phi^{2} d\phi + \frac{f_{s}}{0.21} \int_{0.01}^{0.22} \phi^{2} d\phi - \mu_{e}^{2}$$

= 1.85 x 10⁻² f_c + 1.49 x 10⁻¹ f_m + 1.69 x 10⁻² f_s - μ_{e}^{2}
(3.4-8)

If the waste-component volume fractions are those given in Table 3.4-1, $\sigma_e = 0.13$ and the coefficient of variation is 0.56.

Effective Minimum Porosity. The effective porosity of the collapsed WIPP room is given by (see Section 3.4.6, Permeability)

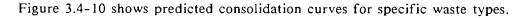
$$\phi_{\text{eff}} = \frac{1}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} \phi_{\ell mn}$$
(3.4-9)

where

M = number of replications of units (waste drums) across a room (~14)

N = number of replications of units vertically (3)

Thus, if $E[\phi_{\ell mn}] = \mu_e$ and Var $[\phi_{\ell mn}] = \sigma_e^2$, the Central Limit Theorem (Ross, 1985, p. 70) guarantees that


$$P_{r} \left\{ \phi_{eff} \leq x \right\} \rightarrow \Phi \left[\frac{\sqrt{MN} \left(x - \mu_{e} \right)}{\sigma_{e}} \right] \text{ as } MN \rightarrow \infty$$

In other words, ϕ_{eff} is approximately normally distributed with mean μ_e and variance = σ_e^2/MN .

The coefficient of variation of the effective porosity is therefore

$$(MN)^{-1/2}\sigma_{\rm e}^{\mu}\mu_{\rm e} \tag{3.4-10}$$

where μ_e and σ_e are given respectively by Eqs. 3.4-7 and 3.4-8. Numerical exploration of Eq. 3.4-10 with M=14 and N=3, using several possible values of f_c and f_m will show that the coefficient of variation of the effective porosity is small enough (less than 10%) to justify not sampling on it. Instead, in the 1991 preliminary comparison, the PA Division sampled on the waste component volume fractions, f_c , f_m , and f_s .

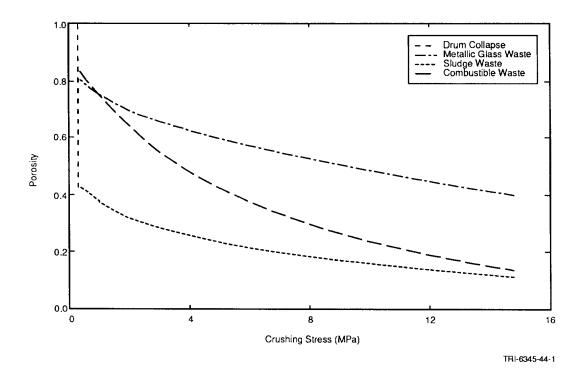


Figure 3.4-10. Predicted Consolidation Curves for Specific Waste Types, including Combustibles, Metals/Glass, and Sludge Wastes (after Butcher et al., 1991, Figure 4-1).

1 3.4.9 Saturation

Parameter:	Saturation, initial $(s_{\ell i})$
Median:	1.38×10^{-1}
Range:	0
_	2.76×10^{-1}
Units:	Dimensionless
Distribution:	Uniform
Source(s):	See text.

12 13

14 Discussion:

15

The initial fluid saturation $(s_{\ell i})$ of the waste (trash, containers, and backfill) could conceivably vary from 0 up to the residual saturation $(s_{r\ell})$ assumed for the waste provided no fluid is purposefully added. Although these endpoints are probably less

19 likely than some intermediate point, the PA Division did not attempt to more preceisely

20 define this distribution and thus used a uniform distribution.

2 3.5 Parameters for Salt-Packed Waste Form

3

Preliminary calculations suggest compliance with 40 CFR 191, Subpart B can be achieved for A. the repository as currently designed (Volume 1 of this report; Bertram-Howery et al., 1990; 6 7 Bertram-Howery and Swift, 1990). However, potential modifications to the present design of the repository and waste are being explored. In last year's PA calculations, waste 8 9 modification was simulated using modified values for waste permeability, porosity, and shear strength (Table 3.5-1). These values correspond to hypothetical properties of combustible and 10 metallic waste that has been shredded, mixed with crushed salt to reduce void space, and 11 repackaged in new containers. All other parameters for the modified waste remained 12 identical to those of the unmodified waste (Table 3.4-1). 13

14 15

16

Table 3.5-1	Paramotor	Values for	Salt-Packed Waste
Table 3.5-1.	Farameter	values for	Sall-Packed waste

Parameter	Median	Range	Units	Distribution Type	Source
			·····		9
Drilling Erosion Parameter	-		Ρ.	0	0
Shear strength (τ_{fail})	5		Pa	Constant	Sargunam et al., 1973
Permeability(k)	2.4 x 10 ⁻¹⁷		m ²	Constant	See text
r onnoubling (ii)	8.5 x 10 ⁻²				

3**8** 35

(page date: 15-NOV-91)

3.5.1 Drilling Erosion Parameter

4 Effective Shear Strength for Erosion

Parameter:	Effective shear strength for erosion (au_{fail})
Median:	5
Range:	None
Units:	Pa
Distribution:	Constant
Source(s):	Sargunam, A., P. Riley, K. Arulanadum, and R. B. Krone. 1973
	"Physico-Chemical Factors in Erosion of Cohesive Soils." Journal
	of the Hydraulics Division, American Society of Civil Engineers 99
	555-558.

17 18

20

1 2 3

19 Discussion:

The PA Division assumed a shear strength for erosion (τ_{fail}) for the modified waste of 5 Pa (49 atm), a value at the upper end of the range for montmorillonite clay (Sargunam et al., 1973).

24

25 (See also Section 3.4.5.)

Parameter: Porosity (\$) Median: 8.5 x 10 ⁻² Range: None Units: Dimensionless Distribution: Constant Source(s): See text. Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti. 1991. Mechanical Compaction of WIPP Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National Laboratories. In preparation. Discussion: Effective permeability and porosity of a collapsed WIPP room filled with modified waste (Section 3.4.7, Porosity); i.e., the Central Limit Theorem (Ross, 1985, p. 70) wasted to show that the distributions of effective permeability and porosity are high concentrated about the mean values of permeability and porosity that apply to a waste un (collapsed waste drum). (collapsed waste drum). Hypothetical distributions of permeability and porosity for modified waste unit are tabulated in Table 3.5-2. Table 3.5-2. Table 3.5-2. Table 3.5-2. Estimated Permeability and Porosity Distributions 10 ⁻¹⁶ 0.12 1.0 10 ⁻¹⁶ 0.08 0.5	Permeability						
Range: None Units: m ² Distribution: Constant Source(s): See text. Porosity Parameter: Porosity (\$) Median: 8.5 x 10 ⁻² Range: None Units: Dimensionless Distribution: Constant Source(s): See text. Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti. 1991. Mechanical Compaction of WIPP Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National Laboratories. In preparation. In preparation. Discussion: Effective permeability and porosity of a collapsed WIPP room filled with modified wast (Section 3.4, Permeability; Section 3.4.7, Porosity); i.e., the Central Limit Theorem (Ross, 1985, p. 70) wused to show that the distributions of effective permeability and porosity are high concentrated about the mean values of permeability and porosity that apply to a waste un (collapsed waste drum). Hypothetical distributions of permeability and porosity for modified waste unit are tabulated in Table 3.5-2. Table 3.5-2. Table 3.5-2. Estimated Permeability and Porosity Distributions Permeability Porosity Probability 10-16 0.12 1.0 10-16 0.12	Parameter:	Permeability ((k)	· · · · · · · · · · · · · · · · · · ·			
Units: m ² Distribution: Constant Source(s): See text. Porosity Parameter: Porosity (\$) Median: 8.5 x 10 ⁻² Range: None Units: Dimensionless Distribution: Constant Source(s): See text. Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti. 1991. Mechanical Compaction of WIPP Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National Laboratories. In preparation. In preparation. Discussion: Effective permeability and porosity of a collapsed WIPP room filled with modified waste Section 3.4.7, Porosity); i.e., the Central Limit Theorem (Ross, 1985, p. 70) wasted to show that the distributions of effective permeability and porosity are high concentrated about the mean values of permeability and porosity that apply to a waste ui collapsed waste drum). Hypothetical distributions of permeability and porosity for modified waste unit are tabulated in Table 3.5-2. Table 3.5-2. Estimated Permeability and Porosity Distributions Permeability Probability 10-16 0.12 1.0 10-19 0.08 0.5 <th>Median:</th> <th>2.4 x 10⁻¹⁷</th> <th></th> <th></th>	Median:	2.4 x 10 ⁻¹⁷					
Distribution: Constant Source(s): See text. Porosity Parameter: Porosity (\$\$) Median: 8.5 x 10 ⁻² Range: None Units: Dimensionless Distribution: Constant Source(s): See text. Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti. 1991. Mechanical Compaction of WIPP Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National Laboratories. In preparation. Discussion: Effective permeability and porosity of a collapsed WIPP room filled with modified was were calculated in a manner similar to the calculations for unmodified waste (Section 3.4, Permeability; Section 3.4.7, Porosity); i.e., the Central Limit Theorem (Ross, 1985, p. 70) w used to show that the distributions of effective permeability and porosity are high poncentrated about the mean values of permeability and porosity are high poncentrated about the mean values of permeability and porosity that apply to a waste un collapsed waste drum). Hypothetical distributions of permeability and porosity for modified waste unit are tabulated in Table 3.5-2. Table 3.5-2. Estimated Permeability and Porosity Distributions Permeability Porosity 10-16 0.12 1.0 10-15 0.08 0.5	-						
Source(s): See text. Porosity Parameter: Porosity (\$) Median: 8.5 x 10^{-2} Range: None Units: Dimensionless Distribution: Constant Source(s): See text. Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti. 1991. Mechanical Compaction of WIPP Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National Laboratories. In preparation. Discussion: Effective permeability and porosity of a collapsed WIPP room filled with modified wast were calculated in a manner similar to the calculations for unmodified waste (Section 3.4 Permeability; Section 3.4.7, Porosity); i.e., the Central Limit Theorem (Ross, 1985, p. 70) wased to show that the distributions of effective permeability and porosity are high concentrated about the mean values of permeability and porosity that apply to a waste us (collapsed waste drum). Hypothetical distributions of permeability and porosity for modified waste unit are tabulated in Table 3.5-2. Table 3.5-2. Estimated Permeability and Porosity Distributions Permeability Porosity Probability 10-16 0.12 1.0 10-19 0.08 0.5							
Porosity Parameter: Porosity (\$) Median: 8.5 x 10^{-2} Range: None Units: Dimensionless Distribution: Constant Source(s): See text. Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti. 1991. Mechanical Compaction of WIPP Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National Laboratories. In preparation. Sandia National Laboratories. Discussion: Effective permeability and porosity of a collapsed WIPP room filled with modified waste Were calculated in a manner similar to the calculations for unmodified waste (Section 3.4 Permeability: Section 3.4.7, Porosity); i.e., the Central Limit Theorem (Ross, 1985, p. 70) wused to show that the distributions of effective permeability and porosity are high concentrated about the mean values of permeability and porosity that apply to a waste u (collapsed waste drum). Hypothetical distributions of permeability and porosity for modified waste unit are tabulated in Table 3.5-2. Table 3.5-2. Estimated Permeability and Porosity Distributions Permeability Porosity Probability 10-16 0.12 1.0 10-16 0.12 1.0 10-16 0.08 0.5 </td <td></td> <td></td> <td></td> <td></td>							
Parameter: Porosity (\$) Median: 8.5 x 10 ⁻² Range: None Units: Dimensionless Distribution: Constant Source(s): See text. Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti. 1991. Mechanical Compaction of WIPP Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National Laboratories. In preparation. Discussion: Effective permeability and porosity of a collapsed WIPP room filled with modified waste (Section 3.4 Permeability; Section 3.4.7, Porosity); i.e., the Central Limit Theorem (Ross, 1985, p. 70) wassed to show that the distributions of effective permeability and porosity are high concentrated about the mean values of permeability and porosity that apply to a waste u collapsed waste drum). Hypothetical distributions of permeability and porosity for modified waste unit are tabulated in Table 3.5-2. Table 3.5-2. Table 3.5-2. Estimated Permeability and Porosity Distributions Permeability Porosity Probability 10 ⁻¹⁶ 0.12 1.0 10 ⁻¹⁹ 0.08 0.5	Source(s):	See text.					
Median: 8.5 x 10 ⁻² Range: None Units: Dimensionless Distribution: Constant Source(s): See text. Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti. 1991. Mechanical Compaction of WIPP Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National Laboratories. In preparation. In preparation. Discussion: Effective permeability and porosity of a collapsed WIPP room filled with modified waste (Section 3.4 Permeability; Section 3.4.7, Porosity); i.e., the Central Limit Theorem (Ross, 1985, p. 70) wased to show that the distributions of effective permeability and porosity are high concentrated about the mean values of permeability and porosity that apply to a waste u collapsed waste drum). Hypothetical distributions of permeability and porosity for modified waste unit are tabulated in Table 3.5-2. Table 3.5-2. Table 3.5-2. Table 3.5-2. Table 3.5-2. Bermeability Porosity Probability 10 ⁻¹⁶ 0.12 1.0 10 ⁻¹⁹ 0.08 0.5	Porosity						
Range: None Units: Dimensionless Distribution: Constant Source(s): See text. Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti. 1991. Mechanical Compaction of WIPP Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National Laboratories. In preparation. In preparation. Discussion: Effective permeability and porosity of a collapsed WIPP room filled with modified waste (Section 3.4 Permeability; Section 3.4.7, Porosity); i.e., the Central Limit Theorem (Ross, 1985, p. 70) wasted to show that the distributions of effective permeability and porosity are high concentrated about the mean values of permeability and porosity that apply to a waste up collapsed waste drum). Hypothetical distributions of permeability and porosity for modified waste unit are tabulated in Table 3.5-2. Table 3.5-2. Estimated Permeability and Porosity Distributions 10 ⁻¹⁶ 0.12 1.0 10 ⁻¹⁹ 0.08 0.5	Parameter:	Porosity (<i>φ</i>)					
Units: Dimensionless Distribution: Constant Source(s): See text. Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti. 1991. Mechanical Compaction of WIPP Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National Laboratories. In preparation. In preparation. Discussion: Effective permeability and porosity of a collapsed WIPP room filled with modified wast were calculated in a manner similar to the calculations for unmodified waste (Section 3.4.7, Porosity); i.e., the Central Limit Theorem (Ross, 1985, p. 70) wased to show that the distributions of effective permeability and porosity are high concentrated about the mean values of permeability and porosity that apply to a waste un collapsed waste drum). Hypothetical distributions of permeability and porosity for modified waste unit are tabulated in Table 3.5-2. Table 3.5-2. Estimated Permeability and Porosity Distributions Permeability Porosity Probability 10-16 0.12 1.0 10-19 0.08 0.5		8.5 x 10 ⁻²					
Distribution: Constant Source(s): See text. Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti. 1991. Mechanical Compaction of WIPP Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National Laboratories. In preparation. Discussion: Effective permeability and porosity of a collapsed WIPP room filled with modified waste Generation Discussion: Effective permeability and porosity of a collapsed WIPP room filled with modified waste Generation Discussion: Effective permeability and porosity of a collapsed WIPP room filled with modified waste Section 3.4.7, Porosity); i.e., the Central Limit Theorem (Ross, 1985, p. 70) wasted to show that the distributions of effective permeability and porosity are high concentrated about the mean values of permeability and porosity that apply to a waste unit collapsed waste drum). Hypothetical distributions of permeability and porosity for modified waste unit are tabulated in Table 3.5-2. Table 3.5-2. Table 3.5-2. Estimated Permeability and Porosity Distributions Permeability Porosity Probability 10-16 0.12 1.0 10-19 0.08 0.5	-						
Source(s): See text. Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti. 1991. Mechanical Compaction of WIPP Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National Laboratories. In preparation. Discussion: Effective permeability and porosity of a collapsed WIPP room filled with modified waste Were calculated in a manner similar to the calculations for unmodified waste (Section 3.4 Permeability; Section 3.4.7, Porosity); i.e., the Central Limit Theorem (Ross, 1985, p. 70) wasted to show that the distributions of effective permeability and porosity are high concentrated about the mean values of permeability and porosity that apply to a waste up collapsed waste drum). Hypothetical distributions of permeability and porosity for modified waste unit are tabulated in Table 3.5-2. Table 3.5-2. Table 3.5-2. Estimated Permeability and Porosity Distributions 10 ⁻¹⁶ 0.12 1.0 10 ⁻¹⁶ 0.12 1.0 10 ⁻¹⁹ 0.08 0.5							
Butcher, B. M., T. W. Thompson, R. G. Van Buskirk, and N. C. Patti. 1991. Mechanical Compaction of WIPP Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National Laboratories. In preparation. Discussion: Effective permeability and porosity of a collapsed WIPP room filled with modified waste were calculated in a manner similar to the calculations for unmodified waste (Section 3.4 Permeability; Section 3.4.7, Porosity); i.e., the Central Limit Theorem (Ross, 1985, p. 70) wased to show that the distributions of effective permeability and porosity are high concentrated about the mean values of permeability and porosity that apply to a waste u (collapsed waste drum). Hypothetical distributions of permeability and porosity for modified waste unit are tabulated in Table 3.5-2. Table 3.5-2. Estimated Permeability and Porosity Distributions Permeability 10 ⁻¹⁶ 0.12 10 ⁻¹⁹ 0.08							
1991. Mechanical Compaction of WIPP Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National Laboratories. In preparation. Discussion: Effective permeability and porosity of a collapsed WIPP room filled with modified waste varies calculated in a manner similar to the calculations for unmodified waste (Section 3.4 Permeability; Section 3.4.7, Porosity); i.e., the Central Limit Theorem (Ross, 1985, p. 70) wased to show that the distributions of effective permeability and porosity are high concentrated about the mean values of permeability and porosity that apply to a waste u is collapsed waste drum). Hypothetical distributions of permeability and porosity for modified waste unit are tabulated in Table 3.5-2. Table 3.5-2. Estimated Permeability and Porosity Distributions 10 ⁻¹⁶ 0.12 1.0 10 ⁻¹⁹ 0.08 0.5	Source(s):						
Effective permeability and porosity of a collapsed WIPP room filled with modified was were calculated in a manner similar to the calculations for unmodified waste (Section 3.4. Permeability; Section 3.4.7, Porosity); i.e., the Central Limit Theorem (Ross, 1985, p. 70) v used to show that the distributions of effective permeability and porosity are high concentrated about the mean values of permeability and porosity that apply to a waste u collapsed waste drum). Hypothetical distributions of permeability and porosity for modified waste unit are tabulated in Table 3.5-2. Table 3.5-2. Estimated Permeability and Porosity Distributions Permeability Porosity Probability 10 ⁻¹⁶ 0.12 1.0 10 ⁻¹⁹ 0.08 0.5		SAND90-	1206. Albuquerque, 1	-			
Permeability Porosity Probability 10 ⁻¹⁶ 0.12 1.0 10 ⁻¹⁹ 0.08 0.5							
10 ⁻¹⁶ 0.12 1.0 10 ⁻¹⁹ 0.08 0.5	Effective perme were calculated i Permeability; Sec used to show t concentrated abo (collapsed waste	in a manner sim ction 3.4.7, Poros that the distribut the mean val e drum). Hypo	sity of a collapsed W ilar to the calculation ity); i.e., the Central 1 utions of effective p ues of permeability a thetical distributions	s for unmodified waste (Section 3. Limit Theorem (Ross, 1985, p. 70) permeability and porosity are hig nd porosity that apply to a waste w			
10 ⁻¹⁹ 0.08 0.5	Effective perme were calculated i Permeability; Sec used to show t concentrated abo (collapsed waste	in a manner sim ction 3.4.7, Poros that the distribu- put the mean val- e drum). Hypo unit are tabulated	sity of a collapsed W ilar to the calculation ity); i.e., the Central I utions of effective p ues of permeability a thetical distributions in Table 3.5-2.	s for unmodified waste (Section 3. Limit Theorem (Ross, 1985, p. 70) permeability and porosity are hig nd porosity that apply to a waste of permeability and porosity fo			
10 ⁻¹⁹ 0.08 0.5	Effective perme were calculated i Permeability; Sec used to show t concentrated abo (collapsed waste modified waste u	in a manner sim ction 3.4.7, Poros that the distribu- out the mean val e drum). Hypo unit are tabulated Table 3.5-2. Estir	sity of a collapsed W ilar to the calculation ity); i.e., the Central I utions of effective p ues of permeability at thetical distributions in Table 3.5-2. nated Permeability and F	s for unmodified waste (Section 3. Limit Theorem (Ross, 1985, p. 70) permeability and porosity are hig nd porosity that apply to a waste of permeability and porosity fo Porosity Distributions			
10 ⁻²¹ 0.06 0.0	Effective perme were calculated i Permeability; Sec used to show t concentrated abo (collapsed waste modified waste u	in a manner sim etion 3.4.7, Poros that the distribu- put the mean value drum). Hypo unit are tabulated Table 3.5-2. Estir Permeability 10-16	sity of a collapsed W ilar to the calculation ity); i.e., the Central I utions of effective p ues of permeability a thetical distributions in Table 3.5-2. nated Permeability and F Porosity	s for unmodified waste (Section 3. Limit Theorem (Ross, 1985, p. 70) bermeability and porosity are hig nd porosity that apply to a waste w of permeability and porosity fo Porosity Distributions Probability			

1 Using information in Table 3.5-2, it is easily verified that expected permeability (μ_{perm}) and 2 porosity (μ_{por}) on the scale of a drum (0.27 m³ or 9.4 ft³) are

$$\mu_{\text{perm}} = 2.4 \text{x} 10^{-17} \text{ m}^2 \tag{3.5-1}$$

$$\mu_{\rm por} = 0.085 \tag{3.5-2}$$

and the coefficients of variation (σ/μ) are approximately 0.20.

The effective porosity of a collapsed WIPP room filled with modified waste is therefore (Section 3.4.7) approximately normally distributed with mean $\mu_{por} = 0.085$ and coefficient of variation $\sim 0.20(MN)^{-1/2} = 2.7 \times 10^{-2}$; the effective permeability is also approximately normally distributed (Section 3.4.6) with mean $\mu_{perm} = 2.4 \times 10^{-17} \text{ m}^2$ and coefficient of variation $\sim 0.20(LMN)^{-1/2} = 2.2 \times 10^{-3}$.

Because the coefficients of variation are so small, the PA Division did not sample on either effective waste permeability or porosity.

23

20

3

45678901112

1 3.5.3 Solubility

2

3

5 Discussion:

6

7 The solubility and leachability of the radionuclides will likely change, because the repository 8 conditions (e.g., pH, Eh) will change. However, quantifying this change is difficult and has 9 not yet been attempted for the PA calculations. Consequently, as with the unmodified, 10 reference waste, the overall solubility ranges are the same as the extreme local scale 11 (subregions within the drum) solubility; the leach rate from the contaminated material is 12 assumed infinite.

3 4

5

4. PARAMETERS OF GLOBAL MATERIALS AND AGENTS ACTING ON DISPOSAL SYSTEM

This chapter contains parameters for fluid properties, climate variability, and intrusion
 characteristics.

¹⁰ 12 4.1 Fluid Properties

13

17 18

20 22

9

The fluid parameters tabulated in Table 4.1-1 include Salado and Culebra brine, drilling mud,and hydrogen gas.

Table 4.1-1. Fluid Properties

Parameter	Median	Rai	nge	Units	Distribution Type	Source
Brine, Salado (T = 27°	C [300.15 K], p	o = 1 atm [0.101	325 MPa])			
Compressibility	2.5 x 10 ⁻¹⁰	2.4 x 10 ⁻¹⁰	2.6 x 10-10	Pa-1	Normal	McTigue et al., March 14, 1991, Memo (see Appendix A).
Density (ρ _f)	1.23 x 10 ³	1.207 x 10 ³	1.253 x 10 ³	kg/m ³	Normal	McTigue et al., March 14, 1991, Memo (see Appendix A).
Viscosity (µ)	1.8 x 10 ⁻³			Pa∙s	Constant	Kaufman, 1960, p. 622
Brine, Culebra (T = 27	7°C [300.15 K]	. p = 1 atm [0.10)1325 MPa])			
Density (<i>p</i> f)	1.09 x 10 ³	9.99 x 10 ²		kg/m ³	Spatial	Cauffman et al., 1990, Table E.1
Viscosity (μ)	1 x 10 ⁻³			Pa∙s	Constant	Haug et al.,1987, p.3-20
Brine, Castile (T = 27°	C [300.15 K], p	o = 1 atm [0.101	325 MPa])			
Compressibility	9 x 10-10			Pa ⁻¹	Constant	Popielak et al., 1983, p. H-32
Density	1.215 x 10 ³			kg/m ³	Constant	Popielak et al., 1983, Table C-2
Hydrogen (T = 27°C [•				
Density	1.1037 x 10 ¹	8.1803 x 10 ⁻²	-		Table	See text (Density and Formation Volume Factor)
Viscosity (µ)	9.2 x 10 ⁻⁶	8.92 x 10 ⁻⁶	9.33 x 10 ⁻⁶		Table	Vargaftik, 1975, p. 39.
Solubility in brine (χ)	3.84 x 10 ⁻⁴	6.412 x 10 ⁻⁶	4.901 x 10 ⁻⁴	none	Table	See text (Hydrogen Solubility).
						Cygan, 1991.
Drilling Mud Properties	• -					
Density (pf)	1.211 x 10 ³	1.139 x 10 ³	1.378 x 10 ³		Cumulative	Pace, 1990
Viscosity	9.17 x 10 ⁻³	5 x 10 ⁻³	3 x 10 ⁻²	Pa•s	Cumulative	Pace, 1990
Yield stress	4	2.4	1.92 x 10 ¹	Pa	Cumulative	Fredrickson, 1960, p.252; Savins et al., 1966; Pace, 1990

4.1.1 Salado Brine

```
2
3
4
     Salado Brine Compressibility
5
                         Compressibility @ 27°C (300.15 K)
       Parameter:
Ø
                         2.5 x 10<sup>-10</sup>
       Median:
9
                         2.4 x 10<sup>-10</sup>
       Range:
10
                         2.6 x 10<sup>-10</sup>
11
                         Pa-1
       Units:
12
       Distribution:
                         Normal
13
       Source(s):
                         McTigue, D. F., S. J. Finley, J. H. Gieske, and K. L. Robinson.
14
                             "Compressibility Measurements on WIPP Brines." Internal
15
                             memorandum to Distribution, March 14, 1991. Albuquerque, NM:
16
                             Sandia National Laboratories. (In Appendix A of this volume)
17
18
```

Discussion:

20 21

31

37

42

43

47

19

1

McTigue et al. (March 14, 1991, Memo [Appendix A]) measured the compressibility of Salado 28 Formation brines over a temperature range of 20 to 40°C. They found that brine 24 compressibility exhibits no significant dependence on temperature over this range. The 25 compressibilities of six Salado brines ranged from 2.40 x 10^{-10} Pa⁻¹ to 2.54 x 10^{-10} Pa⁻¹, with 26 the error in each measurement estimated at 0.6%. They found a strong correlation with brine 27 density, in that compressibility decreased with increasing density. The following linear 28 relationship correlates well for the data for Salado brines over the small range of densities 29 tested. 30

$$\beta_{\rm f} = 7.662 \times 10^{-10} - 4.217 \times 10^{-13} \rho_{\rm f}$$
 (4.1-1)

36 where

 $\beta_{\rm f}$ = the compressibility (Pa⁻¹) (defined as $\frac{1}{\rho} \frac{\partial \rho_{\rm f}}{\partial p}$ $\rho_{\rm f}$ = the brine density (kg/m³).

The correlation coefficient is $r^2 = 0.91$. McTigue et al. also developed a quadratic relationship that gives β_f for densities that include pure water and lower-concentration NaCl brines as well as Salado brines:

$$\beta_{f} = 4.492 \times 10^{-10} - 1.138 \times 10^{-12} (\rho_{f} - 1000) + 1.155 \times 10^{-15} (\rho_{f} - 1000)^{2}$$
(4.1-2)

For a Salado brine density of 1230 kg/m³ (see Salado Brine Density discussion), both Eqs. 4.1-1 and 4.1-2 give a compressibility of 2.5 x 10^{-10} Pa⁻¹.

1 Salado Brine Formation Volume Factor

The formation volume factor is the ratio of the volume at reservoir conditions to the volume at reference conditions (300.15 K [27°C], 0.101325 MPa [1 atm]). Equivalently, it is the ratio of density at reference conditions to the density at reservoir conditions. Assuming the temperature and brine compressibility do not vary, the pressure dependence of Salado brine can be obtained from the definition of compressibility:

$$\beta_{f} = \frac{1}{\rho_{f}} \quad \frac{\partial \rho_{f}}{\partial p} \tag{4.1-3}$$

Integrating

 $\int \frac{\mathrm{d}\rho_{\mathrm{f}}}{\rho_{\mathrm{f}}} = \int \beta_{\mathrm{f}} \mathrm{d}p$

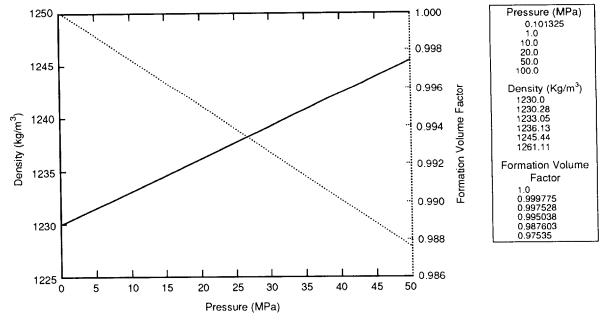
gives the brine density, ρ_f , as a function of pressure, p:

$$\rho_{f} = \rho^{o} e^{\beta_{f}(p - p^{o})}$$
(4.1-4)

where

 ρ° = brine density at reference condition (1,230 kg/m³) (see Salado Brine Density discussion)

 p° = reference pressure (0.101325 MPa)


 $\beta_{\rm f}$ = compressibility of Salado brine (2.5 x 10⁻¹⁰ Pa⁻¹) (see Salado Brine Compressibility discussion)

From the definition of formation volume factor, B_b,

$$B_{b} = \frac{\rho^{o}}{\rho_{f}} = e^{-\beta_{f}(p - p^{o})}$$

GLOBAL MATERIALS AND AGENTS Fluid Properties

1 Figure 4.1-1 shows the variation of Salado brine density and formation volume factor with

2 pressure.

TRI-6342-1085-0

Salado Brine Density

Parameter:	Density (ρ _f) @ 0.101325 MPa, 300.15 K
Median:	1.230×10^3
Range:	1.207×10^3
	1.253×10^3
Units:	kg/m ³
Distribution:	Normal
Source(s):	McTigue, D. F., S. J. Finley, J. H. Gieske, and K. L. Robinson.
	"Compressibility Measurements on WIPP Brines." Internal
	memorandum to Distribution, March 14, 1991. Albuquerque, NM:
	Sandia National Laboratories. (In Appendix A of this volume)

1! 16

1

17

19

Discussion: 18

The density of brine in the Salado Formation at the repository level was reported by McTigue 20 et al. (March 14, 1991, Memo [Appendix A]). They measured the density of six samples at 21 22 22°C and 1 atm pressure, with values ranging from 1,224 to 1,249 kg/m³. To determine the precision of the density measurement of each individual sample, they repeated the 23 measurement on one sample 14 times; for that sample, the average brine density was 1,249 24 kg/m^3 with a standard deviation of 2.6 kg/m^3 and a 95% confidence interval on the mean of 25 1,247 to 1,251 kg/m³, based on Student's t distribution. The average density for the six 26 samples was 1,232 kg/m³ at 22°C with an overall range of 1,208 to 1,255 kg/m³ (s = 10.1 27 kg/m^3). These values were corrected to the temperature of the Salado Formation at the 28 repository level, assumed to be a uniform and constant 27°C. McTigue et al. developed the 29 30 following expression to correct the densities measured at 22°C:

$$\frac{\rho_{f}}{\rho_{fo}} = 1 + a_{1}(T - 22) + a_{2}(T - 22)^{2} + a_{3}(T - 22)^{3}$$
(4.1-5)

where

45

39

40

= density at $22^{\circ}C$ ho_{fo} = temperature of interest ($^{\circ}$ C) Т = coefficients ($a_1 = -4.4294 \times 10^{-4}$, $a_2 = -6.3703 \times 10^{-7}$, and $a_3 = -1.3148 \times 10^{-7}$ a_{1}, a_{2}, a_{3} 10-9.

This expression is based on pure saturated NaCl solutions, rather than on WIPP brines; 46 however, McTigue et al. believe the behavior of the brines will not differ significantly from 47 pure NaCl brines. With this correction, the density of Salado brine at 27°C and 1 atm 48 pressure is 1,230 kg/m³ with an overall range of 1,207 to 1,253 kg/m³ (s = 10.0 kg/m³). 49 50

1 Factors Affecting Brine Density

2

Empirical correlations developed for petroleum reservoir brines give the dependence of brine density on salinity, gas content, temperature, and pressure (Numbere et al., 1977; Hewlett Packard, 1984). The correlation of Numbere et al. is valid over the range of conditions (temperature, pressure, and salinity) encountered in the Salado Formation, but does not agree with the measured values discussed above. At 27°C, 1 atm, and 26.5 wt% NaCl, the Numbere correlation gives a density of 1,197 kg/m³, compared with the measured value (corrected to 27°C) of 1,230 kg/m³.

10

Because the composition of Salado brines varies considerably (Krumhansl et al., 1991), simple correlations for the dependence of density on salinity (such as the Numbere and HP correlations) do not offer more accuracy or reliability than assuming that the composition does not vary from that of McTigue et al.'s samples.

15

The effect of dissolved gas on the density of Salado brine cannot be predicted at present. The HP correlations presumably are for natural gas, rather than H_2 , N_2 , and CO_2 , which are relevant to the WIPP. Water (not brine) density is calculated using correlations for either gasfree or gas-saturated water. This density is then corrected for salinity. The effect of salinity on the degree of gas saturation is ignored, yet, as Cygan (1991) shows, the solute composition and concentration both have major effects on the amount of gas that dissolves in the brine, which in turn should affect the density of the brine.

23

The Salado Formation is assumed to have a constant and uniform temperature of 27°C, so the temperature dependence of brine density is not considered.

26

27 The effect of pressure on brine density is discussed under Salado Brine Compressibility.

1 Salado Brine Viscosity

Parameter:	Viscosity (μ) @ 300 K
Median:	1.8×10^{-3}
Range:	None
Units:	Pa•s
Distribution:	Constant
Source(s):	Kaufman, D. W. ed. 1960. Sodium Chloride, the Production and Properties of Salt and Brine, Monograph No. 145. Washington
	DC: American Chemical Society. (p. 622)
	· ·

- 16
- 17 Literature values for brines extrapolating to density of $1,230 \text{ kg/m}^3$ and a temperature of
- 18 300 K yields a viscosity of 1.8 x 10⁻³ Pa•s (3.76 x 10⁻³ lbf•ft/s) (Kauffman, 1960, p. 622).
- 19

1 4.1.2 Culebra Brine

```
2
3
5
     Culebra Brine Density
6
        Parameter:
                          Density (\rho_f) @ 0.101325 MPa, 300.15 K
9
                          1.09 x 10<sup>3</sup>
        Median:
10
                          9.99 x 10<sup>2</sup>
        Range:
11
                          1.154 x 10<sup>3</sup>
12
        Units:
                          kg/m<sup>3</sup>
13
        Distribution:
                          Spatial
14
        Source(s):
                          Cauffman, T. L., A. M. LaVenue, and J. P. McCord. 1990. Ground-
15
                              Water Flow Modeling of the Culebra Dolomite: Volume II - Data
16
                              Base. SAND89-7068/2. Albuquerque, NM: Sandia National
17
                              Laboratories. (Table E.1)
18
19
20
```

Table 4.1-2 provides the brine densities at wells within the Culebra Dolomite Member. Figure 4.1-2 shows the spatial variation of brine densities.

6		Fluid Density*	
7	Well ID	(kg/m^3)	
, 9	Weirib		
0	DOE1	1.088 x 10 ³	
1	DOE2	1.041×10^3	
2	ENGLE	1.001×10^3	
3	H1	1.022×10^3	
, ,	H2	1.006×10^3	
5	H3	1.035×10^3	
6	H4	1.014×10^3	
7	H5	1.102 x 10 ³	
3	H6	1.038 x 10 ³	
- Э	H7B	0.999 x 10 ³	
0	H8B	1 x 10 ³	
1	H9B	1 x 10 ³	
2	HIOB	1.047 x 10 ³	
3	H11	1.078 x 10 ³	
4	H12	1.095 x 10 ³	
5	H14	1.01 x 10 ³	
6	H15	1.154 x 10 ³	
7	H17	1.1 x 10 ³	
В	H18	1.017 x 10 ³	
9	P14	1.018 x 10 ³	
0	P15	1.015 x 10 ³	
1	P17	1.061 x 10 ³	
2	USGS1	1 x 10 ³	
3	USGS4	1 x 10 ³	
4	USGS8	1 x 10 ³	
5	WIPP13	1.046 x 10 ³	
6	WIPP19	1.059 x 10 ³	
7	WIPP25	1.009 x 10 ³	
8	WIPP26	1.009 x 10 ³	
9	WIPP28	1.032 x 10 ³	
0	WIPP30	1.018 x 10 ³	
4		-	
3	* Average of me	asurements from indicated well	
5			

Table 4.1-2.Average Brine Density at Wells within Culebra Dolomite
Member (after Cauffman et al., 1990, Table E.1)

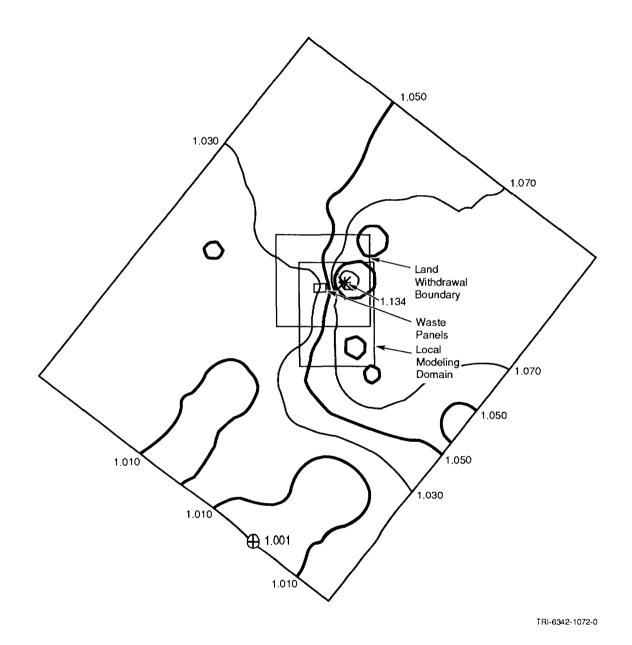


Figure 4.1-2. Variation of Brine Density within Culebra Member Estimated by 10 Nearest Neighbors Using Inverse-Distance-Squared Weighting.

1 Culebra Brine Viscosity

Parameter:	Viscosity (µ)
Median:	1×10^{-3}
Range:	None
Units:	Pa•s
Distribution:	Constant
Source(s):	Haug, A., V. A. Kelley, A. M. LaVenue, and J. F. Pickens. 1987 Modeling of Groundwater Flow in the Culebra Dolomite at the
	Waste Isolation Pilot Plant (WIPP) Site: Interim Report.
	Contractor Report SAND86-7167. Albuquerque, NM: Sandia
	National Laboratories. (p. 3-20)

17 Discussion:

18

Similar to other modeling studies of the Culebra Dolomite (LaVenue et al., 1990, 1988; Haug et al., 1987), PA calculations assume that the Culebra Brine viscosity is identical to pure water, 1.0×10^{-3} Pa•s (2.089 x 10^{-3} lbf•ft/s).

4.1.3 Castile Brine

Castile Brine Compressibility

Parameter:	Compressibility (β_{f})
Median:	9 x 10 ⁻¹⁰
Range:	None
Units:	Pa ⁻¹
Distribution:	Constant
Source(s):	Popielak, R. S., R. L. Beauheim, S. R. Black, W. E. Coons, C. T
	Ellingson, and R. L. Olsen. 1983. Brine Reservoirs in the Castil
	Formation, Southeastern New Mexico, Waste Isolation Pilot Plan
	(WIPP) Project. TME-3153. Carlsbad, NM: U.S. Department o
	Energy.

Discussion:

Popielak et al. (1983) estimated the compressibility,

20

21 22 23

1 2

 $\beta_{f} = \frac{1}{\rho_{f}} \frac{\partial \rho_{f}}{\partial p}$

of Castile Formation brine to be 9 x 10^{-10} Pa⁻¹ (6 x 10^{-6} psi⁻¹) for brine from well WIPP-12. Only a single value is reported with no estimate of its precision. Some indication of accuracy is obtained by comparing the value with the compressibility value cited for the nearby well ERDA-6: 3 x 10^{-10} Pa⁻¹ (2 x 10^{-6} psi⁻¹) (Popielak et al., 1983). (Note, however, that Popielak et al. concluded that there was no hydraulic connection between the Castile brine reservoir encountered by WIPP-12 and ERDA-6.)

1 Castile Brine Formation Volume Factor

Following the discussion and assumptions under Salado Brine Formation Volume Factor, the formation volume factor, B_b , for Castile brine is given by

$$B_{b} = e^{-\beta f(p - p^{o})}$$

where

13 $\beta_f = \text{compressibility} (9 \times 10^{-10} \text{ Pa}^{-1})$ See discussion under Castile Brine Compressibility.

14 p = pressure (Pa)

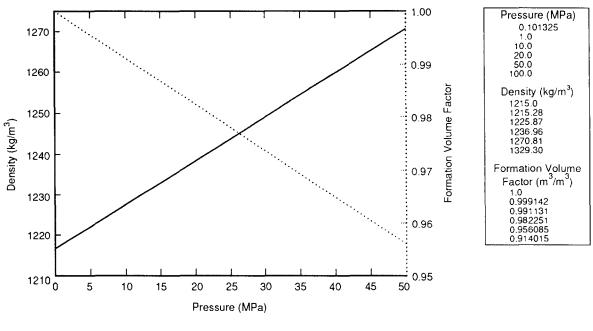
```
15 p^{\circ} = reference pressure (0.101325 MPa)
```

Figure 4.1-3 shows the variation of Castile brine density and formation volume factor with pressure.

19

16

2


5

67 89 10

11

12

- 20
- 21

TRI-6342-1086-0

Figure 4.1-3. Variation of Castile Brine Density and Formation Volume Factor with Pressure.

(page date: 15-NOV-91)

1 Castile Brine Density

2,		
6	Parameter:	Density (p _f) @ 0.101325 MPa, 300.15 K
6	Median:	1.215×10^3
7	Range:	1.209 x 10 ³
8		1.221×10^3
9	Units:	kg/m ³
10	Distribution:	Constant
11	Source(s):	Popielak, R. S., R. L. Beauheim, S. R. Black, W. E. Coons, C. T.
12		Ellingson, and R. L. Olsen. 1983. Brine Reservoirs in the Castile
13		Formation, Southeastern New Mexico, Waste Isolation Pilot Plant
14		(WIPP) Project. TME-3153. Carlsbad, NM: U.S. Department of
15		Energy.
16		

18 Discussion:

19

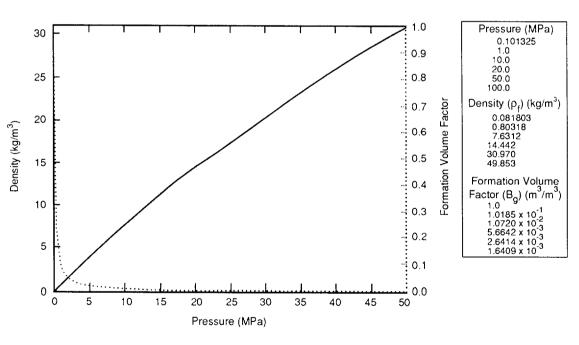
17

20 Popielak et al. (1983) measured the density of 59 flow samples of Castile Formation brine from well WIPP-12. The density at atmospheric pressure ranged from 1,210 to 1,220 kg/m³. 21 At an average temperature of 26.7 °C, the average density was $1,215 \text{ kg/m}^3$ with a standard 22 deviation of 2.4 kg/m³ and a 95% confidence interval, based on Student's t distribution, of 23 1,214 to 1,216 kg/m³. Using the expression discussed under Salado Brine Density, the 24 average density corrected to 27° C is 1,215 kg/m³ at 1 atm (0.101325 MPa) pressure. The 25 26 WIPP-12 brine reservoir is the closest to the disposal region and is assumed representative of Castile brines in any reservoir under the WIPP. Other Castile brine reservoirs have minor 27 differences, e.g., ERDA-6 brine has an average density of 1,216 kg/m³ at 26.7°C and 1 atm 28 pressure (Popielak et al., 1983). 29

4.1.4 Hydrogen Gas

8 Hydrogen Density and Formation Volume Factor

Parameter:	Density	
Median:	11.037 @ 15 MPa	
Range:	0.081803 @ 0.101325 MPa	
	14.442 @ 20 MPa	
Units:	kg/m ³	
Distribution:	Table	
Source(s):	See text.	


16 17

1 2 3

18

Figure 4.1-4 shows the variation with pressure of density (ρ_f) and the formation volume factor for hydrogen gas (B_g) . The formation volume factor, B_g , is the ratio of specific volume of a gas at reservoir conditions to specific volume of the gas at reference or standard conditions (ρ/ρ_f) .

24 26

TRI-6342-1087-0

Figure 4.1-4. Formation Volume Factor for Hydrogen Gas.

(page date: 15-NOV-91)

2 Discussion:

3 4

5

6 7 The formation volume factor is the ratio of the volume at reservoir conditions to the volume at reference conditions (300.15 K [27°C], 0.101325 MPa [1 atm]). The molar volume of hydrogen gas is computed using the Redlich-Kwong-Soave equation of state (Walas, 1985):

$$Z = \frac{p\upsilon}{R^{\star}T} = \frac{\upsilon}{\upsilon \cdot b_{R}} - \frac{a_{R}^{\alpha}R}{R^{\star}T(\upsilon + b_{R})}$$
(4.1-6)

where

8901239456 17

 $b_{R} = 0.08664 R^{*} T_{cr} / p_{cr} (cm^{3} / mol)$ p = pressure (bar) R^* = universal gas constant = 83.1441 (cm³ • bar/mol • K) T = temperature(K) $v = \text{molar volume (cm}^3/\text{mol})$ p_{cr} = critical pressure (bar) T_{cr} = critical temperature (K) $\alpha_{\mathbf{R}} = \begin{bmatrix} 1 + (0.48508 + 1.55171 \,\omega_{\mathbf{R}} \, 0.1561 \,\omega_{\mathbf{R}}) \, (1 - T_{\mathbf{r}}^{0.5} \, 1) \end{bmatrix}^2$ (dimensionless) $\omega_{\mathbf{R}}$ = acentric factor (dimensionless) $T_r = reduced temperature = T/T_{cr}$ (dimensionless) Z = compressibility factor (dimensionless) for hydrogen: $T_{cr} = \frac{43.6}{1 + \frac{21.8}{mr}}$ (K) $p_{cr} = \frac{20.47}{1 + \frac{44.2}{7M}}$ (bar) M = molecular weight = 2.01594 g/mol $\alpha_{\rm R}$ = 1.202 exp (-0.30288 T_r)

 $a_{R} = 0.42747 R^{*} T_{cr}^{2} / p_{cr} (cm^{6} bar/mol^{2})$

(page date: 15-NOV-91)

= 0.0

 $\omega_{\rm R}$

Note that temperature-dependent effective critical properties are used for hydrogen 1 (Prausnitz, 1969). Hydrogen also requires a special expression for (α_R) (Graboski and 2

- Daubert, 1979), and an acentric factor (ω_R) of zero (Knapp et al., 1982). 3
- 4
- Equation 4.1-6 is solved numerically for molar volume, v, at the reference condition and at 5
- reservoir conditions to provide the values used to calculate the formation volume factor 6
- (Figure 4.1-1). At the reference conditions (300.15 K, 0.101325 MPa), the density $(\rho_{\rm H})$ of 70000

 H_2 gas is 0.081803 kg/m³ and the molar volume (v) is 0.024644 m³/mol.

2 Alternative Gas Equation of State

3

9

101123415

6 At pressures near lithostatic, the gas in the repository deviates significantly from the behavior 6 described by the ideal gas law, p V = n R T. The behavior is described accurately by several 7 real gas equations. A simple yet moderately accurate gas law was developed by Iuzzolino 8 (1983):

$$p = \frac{n R T}{V} \frac{(V + b_{I}V_{cr})}{(V - b_{I}V_{cr})} - a_{i}p_{c} (V_{cr}/V)^{2}$$
(4.1-7)

16 where

17 = pressure (Pa) 18 p = number of moles 19 n R^* = gas constant = 8.31441 Pa•m³/mol-K 20 V = volume (m^3) 21 Т = temperature (K) 22 T_c = critical temperature (K) for the gas 23 24 p_c = critical pressure (Pa) for the gas $V_{cr} = n R T_{cr}/p_{cr}$ 25 a_I and b_I = constants. 26 27

The constants a and b are obtained from a least-squared-error fit to standard gas compressibility curves. The results from the original curve fit (1981) were $a_I = 0.4184$ and $b_I = 0.078104$. A recent fit (1990) using more accurate compressibility data gives $a_I = 0.4377$ and $b_I = 0.08186$. The fit is good to within about 5% at temperatures above 1.3 T_{cr} and pressures up to 40 p_{cr}. Near the critical point the errors are about 25%. Since repository gases are at temperatures above 0°C (273 K), they will be significantly above 1.3 T_{cr}, and the fit should be good to within about 5%.

35

The gas equation fits compressibility data with about half the mean-squared error of the standard Redlich-Kwong-Soave equation of state (EOS) (discussed earlier). The error of this gas equation is larger than that of the Redlich-Kwong-Soave EOS near the critical point and smaller at higher temperatures.

40 41

45

447890123

42 **Derivation of the Gas Equation.** Iuzzolino's gas equation is derived from a real-gas 43 modification of the canonical partition function for a gas. The partition function Z for an 44 ideal gas is

$$Z = \frac{1}{N!} \left[\left(\frac{2 \pi m_{A} k^{*} T}{\frac{2}{n} k^{*}} \right)^{3/2} V \right]^{N}$$
(4.1-8)

t where

2

5

6 7

8 9

16

27

35

38

38 39

44

45

46 46

49

50

3 N = number of molecules 4 m_A = atomic mass (kg)

m_A = atomic mass (kg) k^{*} = Boltzmann's constant

 $h^* = Planck's constant.$

The ideal gas equation is derived using the thermodynamic relation

$$p = k^* T \frac{\delta \ln Z}{\delta V}$$
(4.1-9)

14 applying this relation to the partition function gives $p = N k^* T / V$. Since N $k^* = n R$, the 15 usual form p V = n R T is obtained.

Ivzzolino uses two modifications to the partition function. The volume term is multiplied by $(1 - b_I V_{cr}/V)^2$ to provide a quadratic (soft-molecule) correction for the volume taken up by the molecules. The parameter b_I is proportional to the volume of the gas at the critical point and is an excluded-volume correction. Earlier work using a two-constant quadratic correction of the form $1 - b_I V_{cr}/V + c (V_{cr}/V)^2$ indicated that a factor of the form $(1 - b_I V_{cr}/V)^2$ gave the better fit.

A second correction is applied to take into account attractive forces between molecules: the volume term is multiplied by exp ($a_I p_{cr} V_{cr}^2/Nk^*T V$). The form of this correction is the best result of several arbitrary trials. The real-gas partition function is

$$Z = \frac{1}{N!} \left[\left(\frac{2 \pi m_{A} k^{*} T}{(h^{*})^{2}} \right)^{3/2} V(1 - b_{I} V_{cr} / V)^{2} e^{(a_{I} P_{cr} V_{cr} / N k^{*} T V)} \right]^{N}$$
(4.1-10)

Gas Mixtures. To preserve the form of the gas equation for a mixture of gases, the critical pressure of the mixture should be

 $p_{cr} = \sum_{i}^{n} n_{i} p_{cr}$

where

 p_{cr_i} = the critical pressure of the i-th gas n_i = the number of moles of the i-th gas.

51 The summation runs over each gas in the mixture.

 $V_{cr} = \sum_{I} \frac{n_{i} R T_{cr_{i}}}{p_{cr_{i}}}$ = the critical temperature of the i-th gas. $\frac{n R T_{cr}}{P_{cr}} = \sum_{i}^{n_{i}} \frac{P_{cr_{i}}}{P_{cr_{i}}}$ implies that $\frac{T_{cr}}{P_{cr}} = \sum_{i} n_{i} \left(\frac{T_{cr}}{P_{cr}} \right)$

To preserve the concept that V_{cr} is proportional to an excluded volume, for a mixture

so that, for the mixture,

$$T_{cr} = p_{cr} \sum_{i}^{\Sigma} n_{i} \left(\frac{T_{cr}}{p_{cr}} \right)$$
(4.1-14)

48 Quantum Effects. Several gases deviate significantly from the real gas compressibility curves, most notably very light gases and highly polar gases. For H₂ and He, the deviation is 50 primarily a result of quantum effects. For NH₃ the deviation is caused by hydrogen bonding. 51 In both cases the fit to the real gas equation can be improved by using values of p_{cr} and T_{cr} 52 that are not the actual critical constants. For H₂, a good fit results using $T_{cr} = 50$ K and p_{cr} 53 54 $= 2.35 \text{ X} 10^{6} \text{ Pa}.$

(4.1-11)

(4.1-12)

(4.1-13)

47

where

T_{cr.}

Then

Viscosity 1

Parameter:	Viscosity (µ) @ 300.15 K
Median:	9.20 x 10 ⁻⁶ @ 15 MPa
Range:	8.92 x 10 ⁻⁶ @ 0.101325 MPa
	9.33 x 10 ⁻⁶ @ 20 MPa
Units:	Pa•s
Distribution:	Table
Source(s):	Vargaftik, N. B. 1975. Tables on the Thermophysical Properties of Liquids and Gases in Normal and Dissociated States. New York:
	John Wiley & Sons, Inc.

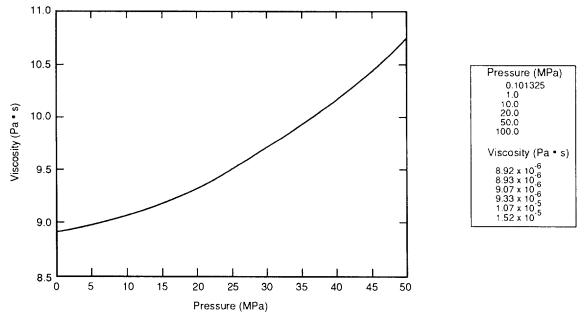
14 15 16

Discussion: 17

18 Vargaftik (1975) tabulates numerous measurements of hydrogen viscosity covering a wide 19 range of temperatures and pressures. At pressures of 0.100 MPa (1 bar) to 0.101325 MPa (1 20 atm), eight independent measurements are reported at 293 to 293.15 K (20°C), with values 21 ranging from 8.73 x 10⁻⁶ to 8.86 x 10⁻⁶ Pa•s. Hydrogen viscosity increases with temperature; 22 two values reported at 300 K are 8.89 x 10⁻⁶ and 8.91 x 10⁻⁶ Pa•s. Vargaftik (1975, p. 39) 23 presents two tables with hydrogen viscosity ranging from -200°C to 1000°C and 0.1 MPa to 24 50 MPa. (The table value of viscosity at 20°C and 0.1 MPa is 8.80 x 10⁻⁶ Pa•s.) Linear 25 interpolation within these tables between 0 and 100°C provides sufficiently precise viscosity 26 values at the temperatures of interest; at 20°C, the viscosity is 8.79 x 10⁻⁶ Pa•s, which is in 27 the middle of the range of measured values cited above. At 300 K, the temperature of the 28 repository, the viscosity at 0.1 MPa is 8.92 x 10⁻⁶ Pa•s. Quadratic interpolation based on 29 table values at pressures of 0.1, 10, and 20 MPa (interpolated linearly to 300.15 K) results in 30 the following expression giving H₂ viscosity at 300.15 K (27°C, 80.6°F) as a function of 31 32 pressure:

34
$$\mu = 8.920074 \times 10^{-6} + 1.020892 \times 10^{-8} p + 5.273692 \times 10^{-10} p^2$$

35 (4.1-15)
36 37 where


```
38
            \mu = \text{viscosity} (Pa \bullet s)
39
            p = pressure (MPa)
40
```

41

37

33

Figure 4.1-5 shows the variation of hydrogen viscosity with pressure. 42

TRI-6342-1089-0

Figure 4.1-5. Variation of Hydrogen Viscosity with Pressure.

Hydrogen Solubility

1
2
8
6
7
8
9
10
11
12
13
14
15
16
17
18
19 20 21
22
23 24
24 25 26
27
28
29
30
31
32
33
34
35
36
37
38
39
4Ŏ 41
42 43
44 45
46
47
48
50
52 53
54 55
00 57
5/ 50
59 59

Parameter: H₂ Solubility in brine Median: 3.84 x 10⁻⁴ Range: 6.412 x 10⁻⁶ 4.901 x 10-4 Units: **Dimensionless Distribution:** Table Source(s): Cygan, R. T. 1991. The Solubility of Gases in NaCl Brine and a Critical Evaluation of Available Data. SAND90-2848. Albuquerque, NM: Sandia National Laboratories.

Discussion:

Cygan (1991) estimated the solubility of H₂ in NaCl solutions at elevated pressure and developed the following correlation relating H₂ mole fraction in solution, χ_{H_2} , to pressure, p, in MPa:

$$\ln \chi_{\rm H_2} = a_0 + a_1 \ln p \tag{4.1-16}$$

where

 $a_0 = -8.8980$ (pure water); -10.0789 (5 N NaCl brine at 298.15 K) $a_1 = 0.9538$ (pure water); 0.8205 (5 N NaCl brine at 298.15 K)

Cygan emphasizes that this correlation is only an "educated estimate," but probably we are justified in applying it to Salado brine at 300.15 K.

Some multiphase flow models, e.g., BOAST and BRAGFLO (Rechard et al., 1989), require gas solubility expressed in terms of gas volume at reference conditions per unit volume of solution (brine), also at reference conditions. This "gas/brine ratio," $r_{g/\ell}$, is calculated from

$$r_{g/\ell} = \chi_{H_2} \frac{V_{H_2}^{\circ}}{V_{b}^{\circ}}$$
 (4.1-17)

where

$$\begin{array}{lll} V_b^\circ &= \mbox{ volume of a mole of brine at reference conditions } (\overline{M/\rho^\circ}) \\ V_{H_2}^\circ &= \mbox{ volume of a mole of } H_2 \mbox{ gas at reference conditions, } 300.15 \ K \ \mbox{and } 0.101325 \ \mbox{MPa} \\ \hline \rho^\circ &= \mbox{ density of Salado brine } (1230 \ \mbox{kg/m^3}) \\ \hline \overline{M} &= \mbox{ molar average molecular weight of brine.} \end{array}$$

For NaCl brine, M is calculated as follows:

$$\overline{M} = \chi_{\text{NaCl}} M_{\text{NaCl}} + \chi_{\text{H}_20} M_{\text{H}_20}$$

$$= \chi_{\text{NaCl}} (M_{\text{NaCl}} - M_{\text{H}_20}) + M_{\text{H}_20}$$
(4.1-18)

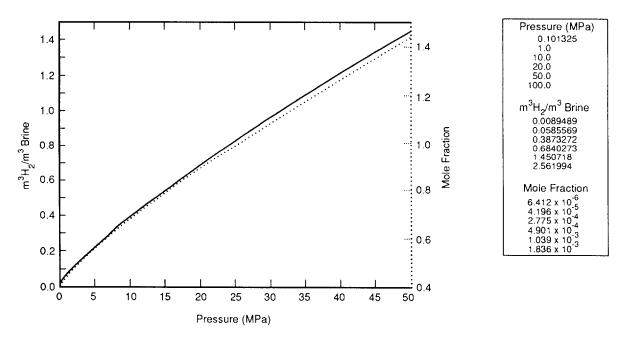
where

 χ = mole fraction of NaCl and H₂O $\chi_{\text{H}_2\text{O}} = 1 - \chi_{\text{NaCl}}$

Molecular weights are $M_{NaCl} = 58.44$ g/mol and $M_{H_2O} = 18.015$ g/mol.

$$\chi_{\text{NaCl}} = \frac{\omega}{\omega + 1} \tag{4.1-19}$$

where


 $\omega = \text{molar ratio of NaCl to H}_2O(M_{H}_2ON/C_w)$ $M = \text{molarity of the solution (5 mol NaCl/<math>\ell$)

 $C_w = \text{total water concentration in the solution}$

 $C_w = 0.01$ water concentration in the solution.

 C_w is obtained by quadratic interpolation from tabulated data relating C_w to molarity for 36 NaCl solutions (Weast and Astle, 1981, p. D-232). For N equals 5 mol NaCl/ ℓ , C_w equals 37 893.53 g H₂O/ ℓ brine, which in turn gives $\omega = 0.10081$ mol NaCl/mol H₂O; $\chi_{NaCl} =$ 38 0.09158 mol NaCl/mol brine; \overline{M} = 21.718 g/mol brine molecular weight; and $V_b^{\circ} = \overline{M}/\rho^{\circ}$ = 38 1.7657 x 10^{-5} m³/mol. The molar volume of H₂ at reference conditions (see discussion 41 under Hydrogen Density) is $V_{H_2}^{\circ} = 0.0246347 \text{ m}^3/\text{mol.}$ Applying Eqs. 4.1-18 and 4.1-19 for 42 43 44 5N NaCl brine results in the following values for gas/brine ratio, $r_{g/\ell}$, at 300.15 K (Figure 45 4.1-6). 46 47

GLOBAL MATERIALS AND AGENTS Fluid Properties

TRI-6342-1088-0

Figure 4.1-6. Variation of Hydrogen Solubility with Pressure.

1 2

4.1.5 Drilling Mud Properties

In assessing the long-term performance of the WIPP containment system, we must predict the 8 transport of radionuclides to the accessible environment during and after a drilling procedure 5 in which a company drills an exploratory drillhole through the underground disposal region in 6 search of resources (40 CFR 191, Appendix B). Given two assumptions -- (1) the resource is 7 either gas or oil and (2) standard rotary drilling equipment in use today will be used in the 8 future -- an important consideration in determining the consequence of the drilling is an 9 estimation of the amount of material brought to the surface during the drilling procedure. 10 The parameters for drilling mud density, viscosity, and yield point are shown below. A 11 discussion of these parameters follows. 12

13

14	Density	
19	Parameter:	Density, mud (ρ_f) @ 225.15 K, p = 0.101325 MPa
17	Median:	1.2×10^3
18	Range:	1.14×10^3
19		1.38×10^3
20	Units:	kg/m ³
21	Distribution:	Cumulative
22	Source(s):	Pace, R. O. 1990. "Letter 1b: Changes to bar graphs," in Rechard et
23		al. 1990. Data Used in Preliminary Performance Assessment of
24		the Waste Isolation Pilot Plant (1990). SAND89-2408.
25		Albuquerque, NM: Sandia National Laboratories.
26 27	Viscosity	
28	Parameter:	Viscosity (μ) @ 225.15 K, p = 0.101325 MPa
30	Median:	9.17 x 10 ⁻³
31	Range:	5×10^{-3}
32		3×10^{-2}
33	Units:	Pa•s
34	Distribution:	Cumulative

36 37 38

39

<u>4</u>0

35

Yield Stress Point

Source(s):

Parameter:	Yield stress point
Median:	4
Range:	2.4
	1.92 x 10 ¹
Units:	Pa
Distribution:	Cumulative
Source(s):	Pace, R. O. 1990. "Letter 1b: Changes to bar graphs," in Rechard et
	al. 1990. Data Used in Preliminary Performance Assessment of
	the Waste Isolation Pilot Plant (1990). SAND89-2408
	Albuquerque, NM: Sandia National Laboratories.

Albuquerque, NM: Sandia National Laboratories.

Pace, R. O. 1990. "Letter 1b: Changes to bar graphs," in Rechard et al. 1990. Data Used in Preliminary Performance Assessment of

the Waste Isolation Pilot Plant (1990). SAND89-2408.

1 Discussion:

2

Standard Rotary Drilling. In standard rotary drilling, a cutting bit is attached to a series of hollow drill pipe and then rotated and directed downward to cut through underlying strata. To remove the cuttings, a fluid ("mud") is pumped down the hollow drill pipe, through the bit, and up the annulus formed by the drill pipe and borehole wall. In addition to removing the cuttings, the mud cools and cleans the bit, reduces drilling friction, and helps to support the borehole. The mud also forms a thin, low-permeability filter cake on the borehole walls, thus preventing inflow of unwanted fluids from permeable formations.

10

Although the amount of waste removed by direct cutting is simple to calculate, calculating the amount of waste eroded from the borehole wall is more difficult. A number of factors may influence borehole erosion (e.g., eccentricity of pipe and hole, impact of solid particles in mud on the walls, physical and chemical interaction between mud and walls, and time of contact between the mud and walls [Broc, 1982]); however, industry opinion singles out fluid shear stress as the most important factor (Walker and Holman, 1971; Darley, 1969).

17

24

29

3012034567

38

39 40 41

42

44 45

Three drilling mud properties (density, viscosity, and yield stress) are necessary to evaluate the fluid shear stress, which in turn is one of several parameters used to evaluate the amount of material eroded from the borehole wall by scouring from the swirling drilling fluid (e.g., CUTTINGS [Rechard et al., 1989]). (Section 4.3, Intrusion Borehole Characteristics; Chapter 3, Engineered Barriers; and Chapter 6, Probability Models, present other parameters for this anthropogenic event.)

Flow Regime. The flow regime within the annulus (laminar or turbulent) is governed by the Reynolds number, N_R . The Reynolds number is dependent upon the properties of the drilling mud (density, viscosity, and velocity) and the size of the annulus. The Reynolds number is defined as

$$N_{R} = \frac{\bar{\rho} \quad \bar{V}d_{e}}{\bar{\mu}}$$
(4.1-20)

where

 d_e = length dimension = equivalent diameter for annulus = d_{hole} - d_{collar}

 $\bar{\rho}$ = average fluid density

 $\overline{\mathbf{V}}$ = average fluid velocity

 $\bar{\mu}$ = average fluid viscosity (for non-newtonian fluids, the average viscosity will depend upon the viscosity model used)

The ultimate diameter of the hole, d_{hole} , is the quantity to be evaluated, and is determined through an iterative process. The velocity is estimated from the drilling pump rates provided in Section 4.3. The fluid density and viscosity (and yield stress for non-newtonian fluids) are discussed below.

5

Density. The current drilling procedure for an exploratory oil or gas well in the Delaware
Basin (see Figure 1.6-2) involves using a drilling fluid, which is usually a saturated brine.
The brine density is maintained during the transport of cuttings by adding an emulsified oil
(Pace, 1990). Consequently, the fluid density is near 1,200 kg/m³ (75 lb/ft³ or 10 lb/gal)
with a narrow range between 1,138 and 1,377 kg/m³ (9.5 and 11.5 lb/gal) (Figure 4.1-7).

11

19

22

30

31

40 41

444456780

When drilling for oil or gas, particularly in the area around the WIPP, there is the possibility of encountering a blowout. The drilling companies can respond in a relatively short time. If the drill hole intercepts a brine reservoir with sufficient pressure to cause copious amounts of brine flow to the surface, the company will add weight (usually barite) to the drilling fluid to stop the flow from the reservoir. The mud density could increase to as much as 1900 kg/m³ (16 lb/gal). This density increase would occur long after the drill passed through the repository area, the time of greatest erosion.

20 Shear Stress. For both laminar and turbulent flow, the shear stress can be expressed as 21 (Vennard and Street, 1975, p. 381):

$$\tau = \frac{f\rho V^2}{2} \tag{4.1-21}$$

The fanning friction factor, f, is discussed below for turbulent and laminar shear stress.

Turbulent Shear Stress. In turbulent flow (Reynolds number $N_{R} > N_{R_{crit}}$ where $N_{R_{crit}}$ varies between 2,100 for newtonian fluids and 2,400 for some non-newtonian fluids [Vennard and Street, 1975, p. 384; Walker, 1976, p. 89]) the fanning friction factor is dependent on both N_R, and surface roughness (e.g., Moody diagram [Vennard and Street, 1975, Figure 9.5; Streeter and Wylie, 1975, Figure 5.32]), with N_R having a minor influence. Consequently, the shear stress is dependent primarily upon absolute surface roughness, ε , and kinetic energy

 $(\rho V^2/2)$. An empirical expression for f is (Colebrook, 1938):

$$\frac{1}{\sqrt{f}} = -4 \log \left[\frac{\varepsilon/d}{3.72} + \frac{1.255}{N_R} \sqrt{f} \right]$$
(4.1-22)

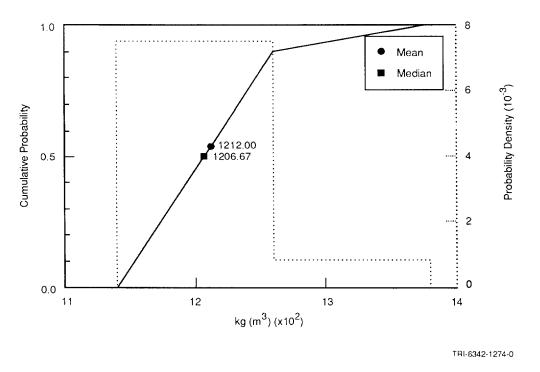
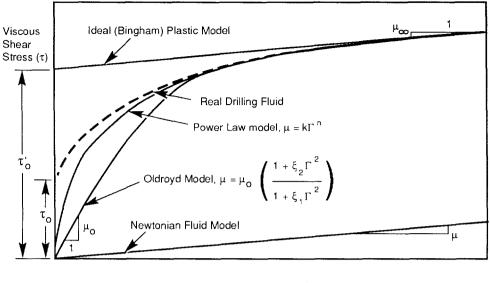



Figure 4.1-7. Distribution of Drilling Mud (Saturated Brine) Density.

10	where
11	
12	ε = absolute roughness of material
13	
14	d = hydraulic diameter = difference between borehole diameter and collar diameter
15	
16	The assumed absolute roughness of waste (ε) is tabulated in the description of the waste in
17	Chapter 3, Engineered Barriers.
18	
19	Laminar Shear Stress. For laminar flow, the fanning friction factor, f, is a function of only
20	N_R . The shear stress in laminar flow (Reynolds number $N_R < 2,100$ [Vennard and Street,
21	1975, p. 384]) depends solely on the fluid viscosity and strain rate (velocity gradient);
22	however, for a non-newtonian fluid such as drilling mud, the viscosity varies with strain rate
23	(Figure 4.1-8). Several functional forms are used to model this variation (Ideal Bingham
24	Plastic, Power Law, and Oldroyd Model). The PA Division currently uses the Oldroyd model.
25	
26	Ideal Bingham Plastic A linear (Ideal Bingham Plastic) model approximates the actual
27	yield stress (τ_0) (Figure 4.1-8) at high strain rate
28	
29	$\tau = \tau'_{0} + \mu \ell \Gamma \tag{4.1-23}$
30	

Strain Rate ($\Gamma = \frac{dv}{dy}$)

TRI-6342-1045-1

where 9 10 = linear viscosity (= "average" viscosity for evaluating N_R) 11 μe τ'_{o} = yield point (shear stress at zero strain rate) 12 Г = strain rate 13 14 Oldroyd Model -- Oldroyd's (1958) shear softening model of the viscosity can also 15 approximate the drilling fluid behavior away from the yield stress (τ_0) by the appropriate 16 choice of parameters: 17 18 $\tau = \mu_0 \left[\frac{1 + \zeta_2 \Gamma^2}{1 + \zeta_1 \Gamma^2} \right] \Gamma$ 190123450 (4.1-24)27 where 28 = $\mu_0(\zeta_2/\zeta_1)$ = limiting viscosity at infinite strain rate = μ_ℓ (= "average" viscosity 29 μ_{∞} for evaluating $N_{\rm R}$) 30 Г = strain rate 31 = Oldroyd model parameters ζ_1, ζ_2 32 = limiting viscosity at zero rate of strain 33 μ_0 34

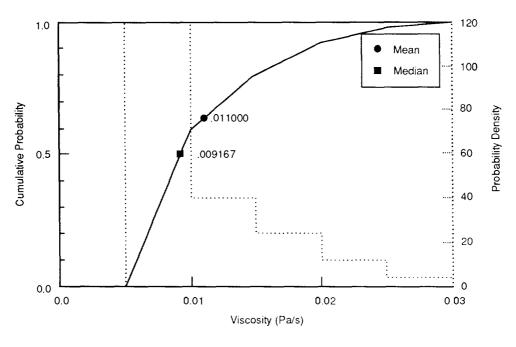
Note that for the PA calculations, ζ_1 was assumed equal to $2 \zeta_2$, based on viscosity measurements for an oil-based, 1.7-kg/m³ (14-lb/gal) mud (Darley and Gray, 1988, Table 5-2). The assumption can be somewhat arbitrary since the behavior at high strain rate (away from the yield point) is of primary interest.

6 Using the above assumption, the parameter ζ_2 was estimated by equating the linear ideal 7 plastic model, Eq. 4.1-23 with the Oldroyd model, Eq. 4.1-24, at a high strain rate. After 8 simple algebraic manipulation

 $\varsigma_{2} = (\mu_{\infty}\Gamma_{m} - \tau_{o}')/2\Gamma_{m}^{2}\tau_{o}'$ (4.1-25)

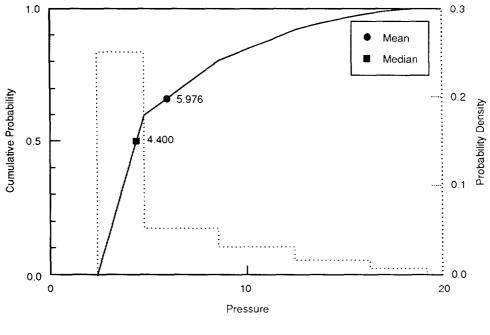
14 The high strain rate selected for the match point (Γ_m) was 1020 s⁻¹.

16 Linear Viscosity. For a saturated brine with the density maintained by emulsified oil and 17 modeled as an ideal Bingham plastic, Pace (1990) estimates that μ_{ℓ} varies between 0.005 and 18 0.030 Pa•s (0.003 and 0.020 lbf•s/ft²) with a median of 0.009 Pa•s (0.006 lbf•s/ft²). Figure 19 4.1-9 shows the estimated pdf and cdf for drilling mud viscosity.


Yield Stress. For a saturated brine with the density maintained by emulsified oil and modeled as an ideal Bingham plastic, Pace (1990) estimates the yield point (τ_0) varies between 2.4 and 19 Pa (5 and 42 lb/100 ft²) with a median of 4 Pa (9.2 lb/100 ft²) (Figure 4.1-10).

24

20


5

9

TRI-6342-1275-0

Figure 4.1-9. Estimated Distribution (pdf and cdf) for Drilling Mud Viscosity.

TRI-6342-1273-0

Figure 4.1-10. Estimated Distribution (pdf and cdf) for Drilling Mud Yield Stress (Ideal Plastic).

4.2 Human-Intrusion Borehole

л
-

						Distribution	
	Parameter	Median	Rang	де 	Units	Туре	Source
Bc	orehole Fill Properties						
C	Creep (r ₀ -r/r ₀)		2 x 10 ⁻²	8 x 10 ⁻¹	none	Table	Sjaardema and Krieg, 1987, Figure 4.6
D	Density, average ($ ho_{ave}$)	2.3 x 10 ³			kg/m ³	Constant	See text (Salado).
C	Density, bulk (ø _{bulk})	2.14 x 10 ³			kg∕m ³	Constant	See text (Salado).
	Permeability, final (k)	3.16 x 10 ⁻¹²	1 x 10 ⁻¹⁴	1 × 10-11	m²	Lognormal	Freeze and Cherry, Table 2.2 (silty sand)
	Initial						
	Plug in Castile Fm.	10-15			m ²	Constant	Lappin et al., 1989, Table C-1
	Plugs in Salado Fm.	10-18			m²	Constant	Lappin et al., 1989, Table C-1
F	Porosity (ø)	3.75 x 10 ⁻¹	2.5 x 10 ⁻¹	5 x 10 ⁻¹	none	Normal	Freeze and Cherry, Table 2.4 (sand)
Dr	rilling Characteristics						
Ľ	Drill bit diameter (d)						
	Intrusion	3.55 x 10 ⁻¹	2.67 x 10 ⁻¹	4.44 x 10 ⁻¹	m	Uniform	See text.
	Historical	2 x 10 ⁻¹	1.21 x 10 ⁻¹	4.45 x 10 ⁻¹	m	Delta	Brinster, 1990c
0	Drill string angular						
	velocity (🖁)	7.7	4.2	2.3 x 10 ¹	rad/s	Cumulative	Pace, 1990; Austin, 1983
[Drilling mud						
	flowrate (Q _f)	9.935 x 10 ⁻²	7.45 x 10 ⁻²	1.24 x 10 ⁻¹	m ³ /(s∙m)	Uniform	Pace, 1990; Austin, 1983

GLOBAL MATERIALS AND AGENTS Human-Intrusion Borehole

Parameter:	Creep
Median:	None
Range:	2 x 10 ⁻²
Units:	8 x 10 ⁻¹ Dimensionless
Distribution:	Table
Source(s):	 Sjaardema, G. D. and R. D. Krieg. 1987. A Constitutive Model for the Consolidation of WIPP Crushed Salt and Its Use in Analysis of Backfilled Shaft and Drift Configurations. SAND87-1977 Albuquerque, NM: Sandia National Laboratories. (Figure 4.6)
orage Density n Parameter:	Density, average (ρ_{ave})
Median: Range:	2.3 x 10 ³ None
Units:	kg/m ³
Distribution:	Constant
Source(s):	Krieg, R. D. 1984. Reference Stratigraphy and Rock Properties fo the Waste Isolation Pilot Plant (WIPP) Project. SAND83-1908 Albuquerque, NM: Sandia National Laboratories. (Table 4)
ulk Density of Ha	
Parameter:	Density, bulk (p _{bulk})
Parameter: Median:	Density, bulk (ρ_{bulk}) 2.14 x 10 ³
Parameter: Median: Range:	Density, bulk (ρ_{bulk}) 2.14 x 10 ³ None

2 Final Permeability

Parameter:	Permeability, final (k)	
Median:	3.16×10^{-12}	
Range:	1×10^{-14}	
	1 x 10 ⁻¹¹	
Units:	m²	
Distribution:	Lognormal	
Source(s):	Freeze, R. A. and J. C. Cherry. 1979. Groundwater. Cliffs, NJ: Prentice-Hall, Inc. (Table 2.4, silty sand)	Englewood
Porosity		
Porosity		
Porosity Parameter:	Porosity (ø)	
	Porosity (φ) 3.75 x 10 ⁻¹	
Parameter: Median:	Porosity (φ) 3.75 x 10 ⁻¹ 2.5 x 10 ⁻¹	
Parameter:	3.75×10^{-1}	
Parameter: Median:	3.75 x 10 ⁻¹ 2.5 x 10 ⁻¹	
Parameter: Median: Range:	3.75 x 10 ⁻¹ 2.5 x 10 ⁻¹ 5 x 10 ⁻¹	

1 Discussion:

2

Because of the speculative nature of inadvertent human intrusion, PA calculations depend on
the guidance provided by regulations on factors such as length, severity, and resulting
conditions after intrusion. The EPA Standard, 40 CFR 191, in Appendix B states

6 7

8

9

10

11

12

13

"...the implementing agency can assume that passive institutional controls or the intruders' own exploratory procedures are adequate for the intruders to soon detect, or be warned of, the incompatibility of the area with their activities ... Furthermore, the Agency assumes that the consequences of such inadvertent drilling need not be assumed to be more severe than: ... (2) creation of a ground water flow path with a permeability typical of a borehole filled by the soil or gravel that would normally settle into an open hole over time--not the permeability of a carefully sealed borehole."

14 15

Thus while intruders "soon detect" the repository, the guidance in Appendix B suggests that the implementing agency should not take credit for any special precautions that the drilling company might pursue as the result of detection that could alter long-term borehole behavior.

Initial Conditions after Abandonment. Some PA calculations require that initial conditions be established for the time period immediately after intrusion; no regulatory guidance has been provided for these conditions. In defining initial conditions in the borehole, the PA calculations assume that future societies establish government regulations on drilling similar to those in effect today to protect natural resources. Thus, for any borehole through the repository and hypothetical brine reservoir, drillers would be required to place casing and several cement and sand plugs as follows:

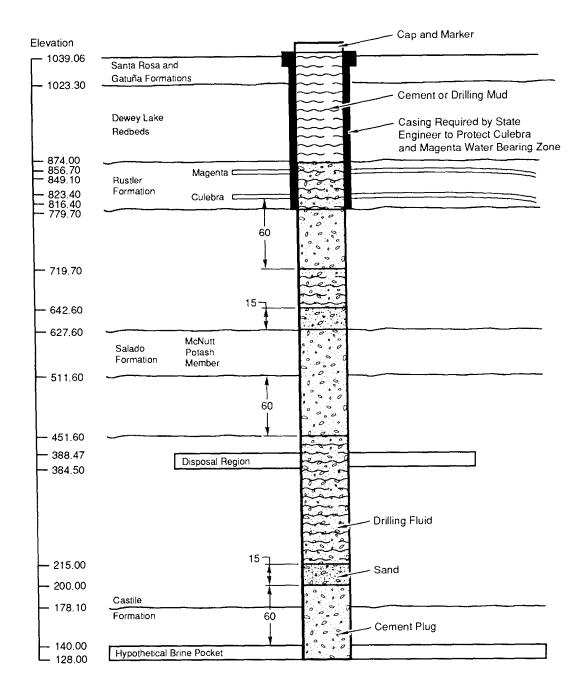
27

28 Casing. The normal procedure for drilling an oil and gas well is to drill the hole to the base of the Rustler Formation (the top of salt) and set casing, called a salt string. The State 29 30 Engineer Office dictates the use of this casing because the WIPP is located in a closed ground-water basin, and all hydrocarbon wells are required to protect the aquifers in the 31 32 basin (e.g., Culebra Dolomite). After the hole has been drilled and the casing placed in the hole, the casing is cemented from bottom to top with an API Class C grout (intended for use 33 in oil and gas wells from surface to a depth of 2,400 m [8,000 ft] and having a sulfate 34 35 resistance).

36

Plug Locations. The Energy, Minerals, and Natural Resources Department, Oil Conservation Division (OCD) controls plugging when abandoning a borehole in the Delaware Basin in and around the WIPP. Exact specifications are negotiated between the drilling company and the OCD. The OCD then inspects for compliance. Because the WIPP repository is located in the potash enclave, recommended plugging procedures protect the potash horizon from foreign

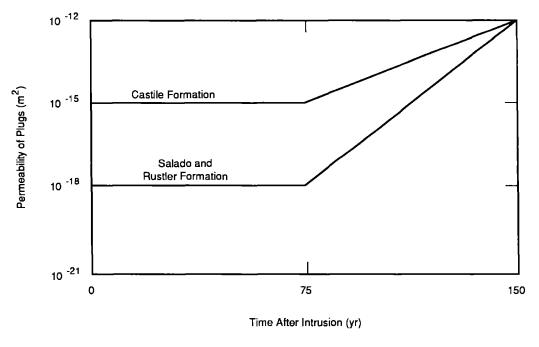
fluids. Prior to 1988, specifications likely included sealing off any encountered brine 1 reservoir in the Castile Formation with cement grout and capping the seal with a 60-m 2 (200-ft) cement-grout plug. About 15 m (50 ft) of sand was usually emplaced above grout 3 plugs. Weighted drilling fluid above the sand was usually emplaced to ~60 m (~200 ft) below 4 the potash horizon, where another plug extended through the potash horizon. A second sand 5 cap was emplaced, followed by weighted drilling mud to within ~ 60 m (~ 200 ft) of the top of 6 the Salado Formation salt, where another plug of cement grout was emplaced, followed by 7 sand and weighted mud. When the base of the casing was reached, the specifications either 8 9 required grouting or filling with weighted mud to the surface, where a cap and abandonment marker were often placed (Lappin et al, 1989, Appendix C). 10


- In April 1988, the OCD amended order R-111 and specified that the plug be a "solid cement
 plug through the salt section" (Salado Formation); the amendment was in response to conflicts
 between the potash and oil/gas industries (OCD, 1988, p. 10). The 1991 PA calculations
 assumed these latter plugging conditions.
- 17 Initial Plug Permeability. The initial plug permeabilities depend strongly on the host rock in 18 which the plug is emplaced (e.g., clean vs. chemically altered steel casing or ahydrite vs. 19 halite). Because most experimental studies of plug-borehole interactions extend for only 20 hundreds of days or less, data are limited (Christensen and Petersen, 1981; Buck, 1985; Bush 21 and Piele, 1986; Scheetz et al., 1986). Any PA calculations starting from initial conditions 22 assume permeabilities of 10^{-15} m² (1 mD) for plugs in the Castile Formation and 10^{-18} m² 23 (10^{-3} mD) in the Salado and Rustler Formations (Lappin et al., 1989, Table C-1).
- Borehole Permeability and Porosity. Of primary concern to the PA calculations is the borehole permeability over most of the 10,000 yr. Three components of these calculations are (1) the length of time that the plug and casing remain intact, (2) the change in permeability of the deteriorating plugs with time, and (3) the ultimate deformation of the borehole.
- Plug Life. Cementing companies suggest that the cement plugs should last for at least 100 yr,
 as would casing. PA calculations assume a life of 75 yr followed by 75 yr of degredation
 (Figure 4.2-2).
- 33

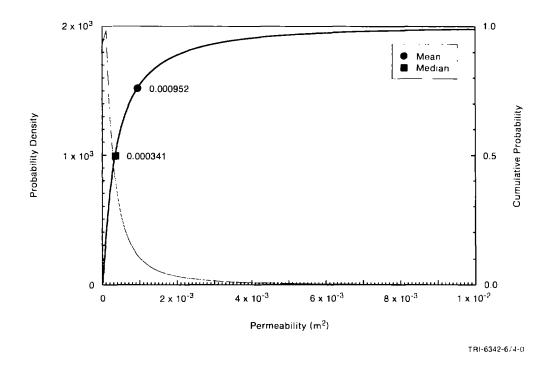
16

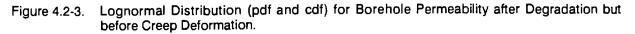
24

- Degraded Plugs and Borehole Debris Permeability. PA calculations assume that the degrading concrete plugs and other debris initially present in the hole would have a permeability (Figure 4.2-3) and porosity (Figure 4.2-4) of silty sand (Freeze and Cherry, 1979), but with a bulk and average density equal to that of the Salado Formation (Table 4.2-1). The permeability and porosity were assumed to vary lognormally and normally, respectively, between the typical range for silty sand, typical of distributions of the parameters in the literature (Harr, 1987, Table 1.8.1).
- 41
- Note that any drilling mud initially in the borehole or brine that drains into the borehole
 would have to be able to migrate through the degrading plugs before the borehole could be a
 viable conduit. In other words, if the fluid is trapped, the borehole is not a conduit.
- 45

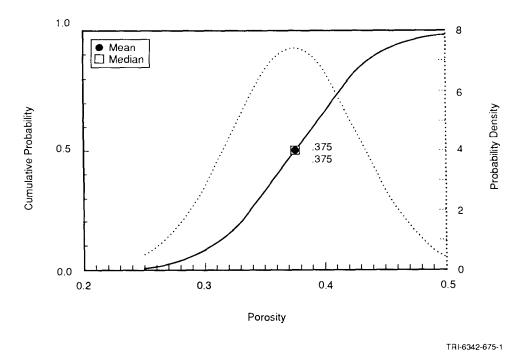

GLOBAL MATERIALS AND AGENTS Human-Intrusion Borehole

Contact Elevations (in Meters) are Taken from Borehole ERDA - 9, Typically Used in Modeling Not to Scale


TRI-6330-69-1


Figure 4.2-1. Required Casing and Plugs. New Mexico State Engineer requires casing through Rustler Fm. when drilling exploratory boreholes; New Mexico Energy, Mineral, and Natural Resources Department currently requires solid cement plugs in Salado Fm. to protect potash horizon when abandoning a borehole.

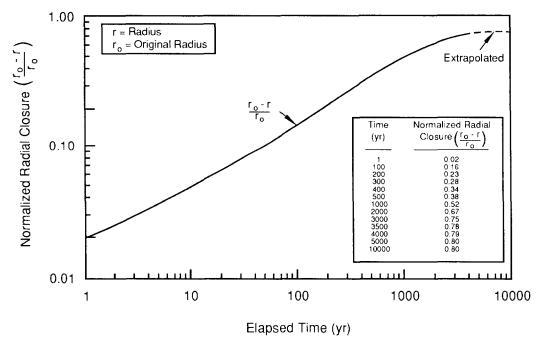
TRI-6342-797-0



(page date: 15-NOV-91)

(database version: X-2.19PR)

5 Figure 4.2-4. Normal Distribution (pdf and cdf) for Borehole Porosity after Degradation but before 6 Creep Deformation.


- Borehole Deformation. Because of the change in borehole abandonment procedures, the 1991
 PA calculations did not assume any borehole deformation. This assumption contributed to a
 more conservative calculation.
- 13

7 8 9

With the previous order, salt "would normally settle into an open hole" and naturally seal the hole shut in the uncemented section of the borehole. Thus, with time, the borehole would attain very low permeabilities similar to the host salt. However, if the amended orders are followed and the borehole is filled, the use of a solid cement plug through the Salado Formation greatly decreases the likelihood that the borehole will be permanently sealed by salt creep over the long term (>100 yr).

20

The numerically predicted creep closure used in the 1990 PA calculations is shown in Figure 21 4.2-5 (Sjaardema and Krieg, 1987, Figure 4.6). Although a homogenous transient creep 22 model may not completely predict borehole closure -- because local variations such as 23 anhydrite layers and clay lenses play an important role in the ultimate deformation -- the 24 homogenous model of creep will err on the conservative side, predicting much slower creep 25 closure than actually occurs (Munson et al., 1988; 1989; 1990c). On the other hand, Figure 26 27 4.2-5 assumes no fluid is in the hole. The presence of hydrostatic pressure will greatly decrease the closure rate. 28

TRI-6342-59-0

Figure 4.2-5. Normalized Closure for Shaft (Sjaardema and Krieg, 1987, Figure 4.6).

4.2.2 Drilling Characteristics

Diameter of Intrusion Drill Bit (Deep Hydrocarbon Target)

Parameter:	Intrusion drill bit diameter (d)
Median:	3.55×10^{-1}
Range:	2.67×10^{-1}
	4.44×10^{-1}
Units:	m
Distribution:	Uniform
Source(s):	See text.

15 16

17

1 2 3

4

Historical Drill Bit Diameter

Parameter:	Historical drill bit diameters (d)
Median:	2×10^{-1}
Range:	1.21×10^{-1}
-	4.45×10^{-1}
Units:	m
Distribution:	Delta
Source(s):	Brinster, K. 1990c. "Well data from electric logs," Memo 10 in
	Appendix A of Rechard et al. 1990. Data Used in Preliminar
	Performance Assessment of the Waste Isolation Pilot Plant (1990)
	SAND89-2408. Albuquerque, NM: Sandia National Laboratories.

32

33 Figure 4.2-6 shows the uniform distribution for the diameter of the intrusion drill bit.

34

35 Figure 4.2-7 shows the distribution of drill bits used in the past.

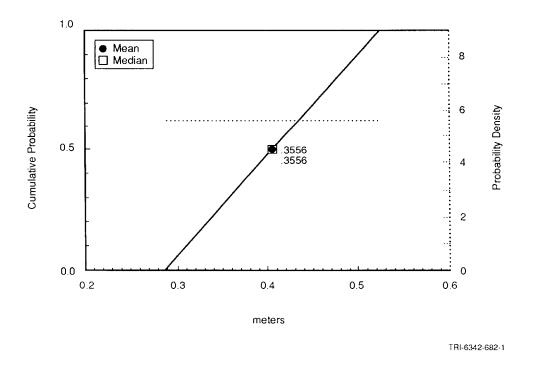
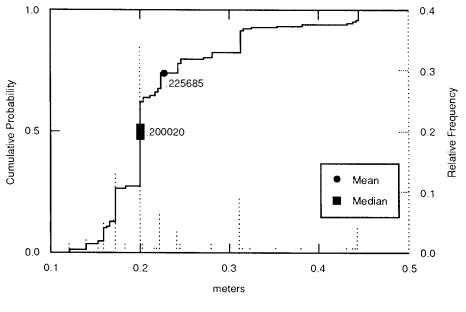



Figure 4.2-6. Estimated Probability of Drilling an Intrusion Borehole with a Specific Diameter.

TRI-6342-1468-0

Figure 4.2-7. Distribution of Historical Drill Bit Diameter.

(page date: 15-NOV-91)

1 Discussion:

- 2 3
 - The guidance for the EPA Standard, 40 CFR 191, (Appendix B) states that the EPA
- 4 5

6

7 8

9

10

11 12 "...believes that the most productive consideration of inadvertent intrusion concerns those realistic possibilities that may be usefully mitigated by repository design, site selection, or use of passive controls (although passive institutional controls should not be assumed to completely rule out the possibility of intrusion). Therefore, inadvertent and intermittent intrusion by exploratory drilling for resources (other than any provided by the disposal system itself) can be the most severe intrusion scenario assumed..."

The future histories (scenarios) that must be considered are not necessarily exhaustive, but rather those that if examined might differentiate between repository sites or perhaps identify ways to improve repository design.

16

17 Consequently, the PA Division of the WIPP assumes that current standard drilling procedures 18 for gas and oil exploration will continue into the future, and that future drillers will observe 19 regulations similar to those currently imposed by federal and state agencies to protect 20 resources.

21

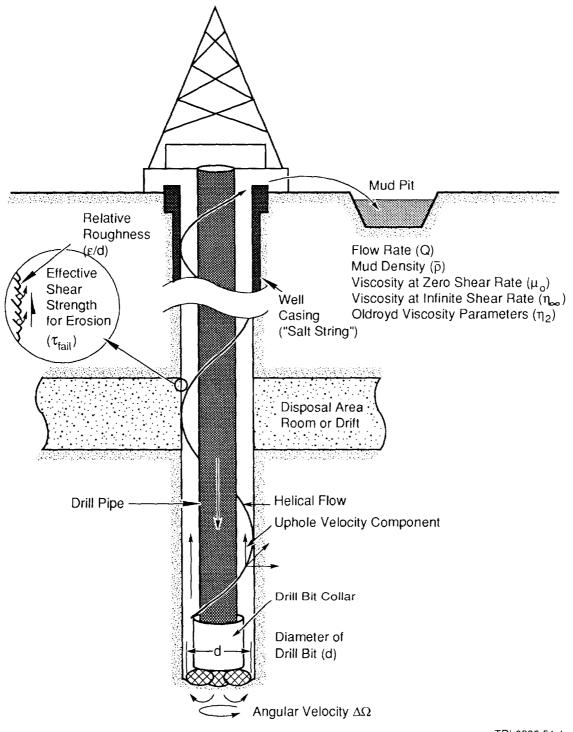
Drilling for oil and gas has two main objectives: to drill the hole to the production zone as quickly and economically as safely possible, and to install casing from the reservoir to the surface for well production. The procedures used to accomplish these objectives are fairly well standardized in the drilling industry.

26

Currently when a company drills an exploratory oil or gas well, the operation uses a standard 27 28 rotary drill rig with a mud circulation system. The differences between drilling for oil and gas depend on the depth of the well, which controls the size of casing used. Figures 4.2-6 29 30 and 4.2-7 show the distribution used in the past in the Delaware Basin for oil and gas exploration. The data are reported as a discrete distribution because bit diameters cannot 31 vary continuously between 0.1206 m and 0.4445 m diameter (4-3/4 in. and 17-1/2 in.), but 32 must be the diameter of a bit that was actually used (Brinster, 1990c). The median bit 33 diameter is 0.2000 m (7-7/8 in. diameter) (Figures 4.2-6 and 4.2-7). 34

35

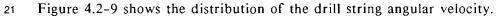
Currently, the normal depth for an oil well in the Delaware Basin near the WIPP site ranges 36 from 1,200 to 1,800 m (4,000 to 6,000 ft), but gas-well depths usually exceed 3,000 m 37 38 (10,000 ft). Consequently, oil wells normally have a standard 0.413-m (16 1/4-in.) drilled hole to the top of salt to accommodate 0.340-m (13 3/8-in.) steel casing, and gas wells 39 normally have a standard 0.4445-m (17 1/2-in.) drilled hole to accommodate 0.356-m (14-in.) 40 casing. After casing is set with grout, the company drills either a standard 0.311-m (12) 41 42 1/4-in.) hole, if the target is oil, or a 0.356-m (14-in.) hole, if the target is gas (Table 4.2-2). Rather than sample from the historical diameters for evaluating the borehole as was done in 43 the 1990 PA calculations, the 1991 PA calculations sample from a perturbation about the 44 currently used diameter for deep gas wells (i.e., 0.356 m \pm 0.0889 [14 in. \pm 3.5]). This 45 46 practice ensures that fairly large borehole diameters are used and thus is more conservative 47 than the 1990 calculations.

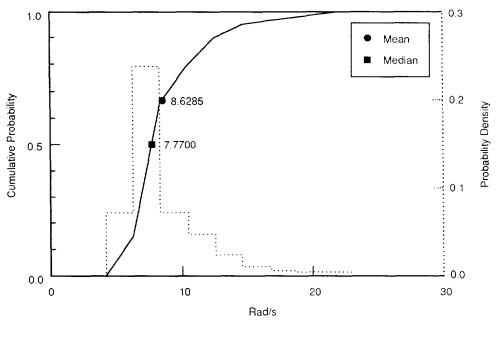

From the bit diameter, the drilled diameter through the waste is predicted based on strength properties of the waste (e.g., shear strength) and angular velocity of the drillstring, viscosity of the drilling fluid, fluid density, and annular uphole fluid velocity (Rechard et al., 1989) (Figure 4.2-8). Shear strength and surface roughness of the waste also influence the drilled area and are discussed with waste properties.

- 6
- 7
- 8
- 10

Table 4.2-2. Specifications for Gas and Oil Exploratory Boreholes

Para	ameter	Value	Units
Drilled diameter			
In Rustler Formation	(oil well)	0.413	m
	(gas well)	0.444	m
In Salado and Castile	e Formations, (oil well)	0.311	m
	(gas well)	0.356	m
.		· · · · · · · · · · · · · · · · · · ·	


GLOBAL MATERIALS AND AGENTS Human-Intrusion Borehole



TRI-6330-51-1

Figure 4.2-8. Definition of Parameters Describing Human Intrusion by Drilling.

Parameter:	Drill string angular velocity (a,b)
Median:	7.7
Range:	4.2
	2.3×10^{1}
Units:	rad/s
Distribution:	Cumulative
Source(s):	Pace, R. O. 1990. Manager, Technology Exchange Technica
	Services, Baroid Drillng Fluids, Inc., 3000 N. Sam Houston Pkwy
	E., Houston, TX. (Expert Opinion). Letter of 18 September 1990
	Letter 1b in Appendix A of Rechard et al. 1990. Data Used i
	Preliminary Performance Assessment of the Waste Isolation Pile
	Plant (1990). SAND89-2408. Albuquerque, NM: Sandi
	National Laboratories.
	Austin, E. H. 1983. Drilling Engineering Handbook. Boston, MA
	International Human Resources Development Corporation.

TRI-6342-1277-0

Figure 4.2-9. Distribution (pdf and cdf) of Drill String Angular Velocity.

30 Discussion:

For drilling through salt, the drill string angular velocity ($\frac{3}{6}$) can vary between 4.18 and 23 rad/s (40 and 220 rpm) (Austin, 1983, Figure 4.5), with a median speed of about 7.75 rad/s (75 rpm) (Pace, 1990).

1 Mud Flowrate

Parameter:	Drilling mud flowrate (Q _f)
Median:	9.925 x 10 ⁻²
Range:	7.45×10^{-2}
	1.24×10^{-1}
Units:	m ³ /(s∙m)
Distribution:	Uniform
Source(s):	Austin, E. H. 1983. Drilling Engineering Handbook. Boston, MA International Human Resources Development Corporation.

14 15

16 Discussion:

17

Flowrates of the drilling fluid usually vary between 7.45 x 10^{-2} and 1.24 x 10^{-1} m³/(s•m) of drill diameter (30 and 50 gal/min/in.) (Austin, 1983, Table 1.15). PA calculations assumed that the annulus between the drill collar and borehole was initially about 2.5 cm (1 in.). Thus, for the minimum and maximum diameters typically used in the drilling near the WIPP, the uphole velocity varies between 0.99 and 1.73 m/s (3.2 and 5.7 ft/s).

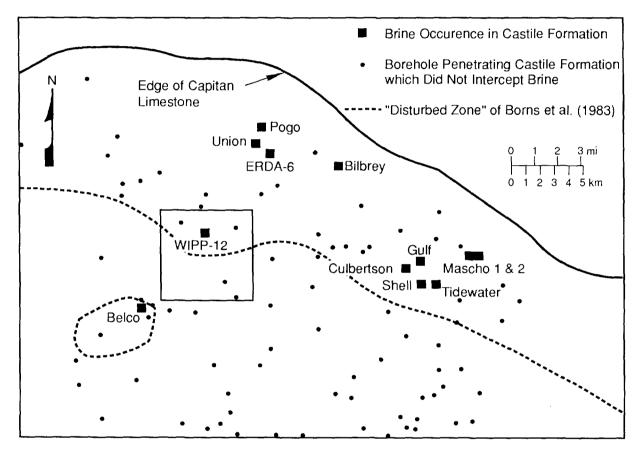
4.3 Parameters for Castile Formation Brine Reservoir 2

3

Pressurized brine in the northern Delaware Basin has been encountered in fractured 5 anhydrites of the Castile Formation in boreholes both north and northeast of the WIPP over 6 the past 50 yr. In addition, Castile brines were encountered southwest of the WIPP at the 7 Belco Well, about 6.5 km (4 mi) from the center of the WIPP. During WIPP site 8 characterization, Castile Formation brine reservoirs were encountered in the WIPP-12 9 borehole, about 1.6 km (1 mi) north of the center of the WIPP, and the ERDA-6 borehole, 10 about 8 km (5 mi) northeast of the center of the WIPP (Figure 4.3-1). 11

12

Also, a geophysical study that correlated with the known occurrence of brine at WIPP-12 13 indicated the presence of brine fluid within the Castile Formation under the WIPP (Earth 14 Technology Corp., 1988). Based on borehole experience and the geophysical study, the PA 15 calculations assume that a brine reservoir exists underneath at least a portion of the disposal 16 The assumed presence of a Castile brine reservoir beneath the repository is of region. 17 concern only in the event of human intrusion. (The area and thus the probability of hitting a 18 brine reservoir and the disposal area are discussed in Chapter 5.) 19


20

21	Table 4.3-1 provides the parame	eter values for the	Castile Formation Brin	e Reservoir.
----	---------------------------------	---------------------	------------------------	--------------

22 23

	Distribution							
Parameter	Median	Rar	ige	Units	Туре	Source		
Elevation, top	1.4 x 10 ²	-2.00 x 10 ²	1.78 x 10 ²	m	Cumulative	See text.		
Density, grain (ρ _g) Analγtic Model	2.963 x 10 ³			kg/m ³	Constant	See anhydrite, Section 24.		
Pressure, initial (p _i)	1.26 x 10 ⁷	1.1 x 10 ⁷	2.1 x 10 ⁷	Pa	Cumulative	$\rho_{fg}\Delta z$, $\rho_{bg}\Delta z$; Lappin et al.,1989 Table 3-19; Popielak et al.,1983, p. H-52		
Storativity, bulk Ŝ _b Numerical Model Permeability	2 x 10 ⁻¹	2 x 10 ⁻²	2 x 10 ¹	m ³ /Pa	Loguniform	See text.		
Intact matrix	1 x 10 ⁻¹⁹	1 x 10-20	1 x 10-18	m ²	Cumulative	See Table 2.4-1.		
Fractured matrix	1 x 10 ⁻¹³	1 x 10-16	1 x 10-10	m ²	Cumulative	Freeze and Cherry, 1979; Reeve et al., 1991.		
Porosity	5 x 10 ⁻³	1 x 10 ⁻³	1 x 10 ⁻²	none	Curnulative	Reeves et al., 1991.		
Radius, equivalent	2.32 x 10 ²	3 x 10 ¹	8.6 x 10 ³	m	Curnulative	Reeves et al., 1991.		
Thickness	1.2 x 10 ¹	7	6.1 x 10 ¹	m	Constant	Reeves et al., 1991.		

-

TRI-6330-112-1

Figure 4.3-1. Deep Boreholes that Encountered Brine Reservoirs within the Castile Formation, Northern Delaware Basin (Lappin et al., 1989, Figure 3-26).

2 4.3.1 Analytic Brine Reservoir Model

5 Elevation of Top

6		
9	Parameter:	Elevation of top
10	Median:	1.4×10^2
11	Range:	-2.0×10^2
12	_	1.78×10^2
13	Units:	m
14	Distribution:	Cumulative
15	Source(s):	See Figure 2.2-1.
16		Lappin, A. R., R. L. Hunter, D. P. Garber, and P. B. Davies, eds.
17		1989. Systems Analysis Long-Term Radionuclide Transport, and
18		Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern
19		New Mexico; March 1989. SAND89-0462. Albuquerque, NM:
20		Sandia National Laboratories. (Table 3-19)
21		

21 22

3 4

28 Discussion:

25

As discussed in Section 5.1.1, the elevation of the brine reservoir is directly tied to the areal extent. The elevation of the brine reservoir potentially varies between -200 and 178 m (-656 and 584 ft), the estimated bottom and measured top elevation, respectively, of the Castile Formation in ERDA-9. The elevation of the top of the WIPP-12 brine reservoir (140 m [457.8 ft]) was chosen as the median. For 1991 PA calculations, the hypothetical brine reservoir elevation was fixed at the median, while the areal extent was allowed to vary, independently.

- 33
- Figure 4.3-2 shows the estimated distribution for elevation.
- 35

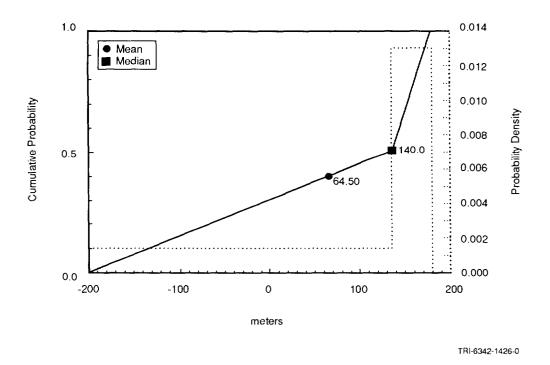


Figure 4.3-2. Estimated Distribution (pdf and cdf) for Elevation of Castile Formation Brine Reservoir.

2 Brine Pressure

Parameter:	Pressure, initial (p _i)
Median:	1.26×10^7
Range:	1.1×10^{7}
	2.1×10^7
Units:	Pa
Distribution:	Cumulative
Source(s):	Popielak, R. S., R. L. Beauheim, S. R. Black, W. E. Coons, C.
	Ellingson, and R. L. Olsen. 1983. Brine Reservoirs in the Cast
	Fm., Waste Isolation Pilot Plant (WIPP) Project, Southeastern N
	Mexico. TME-3153. Carlsbad, NM: U.S. Department of Energ
	Lappin, A. R., R. L. Hunter, D. P. Garber, and P. B. Davies, ed
	1989. Systems Analysis Long-Term Radionuclide Transport, a
	Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeaste
	New Mexico; March 1989. SAND89-0462. Albuquerque, N
	Sandia National Laboratories. (Table 3-19)

22 Figure 4.3-3 shows the estimated distribution for initial brine reservoir pressure.

24

1.0 3 Probability Density (x 10⁻⁷ .l....l.... 2 Cumulative Probability 1.4 x 10⁷ 0.5 1.3 x 10⁷ 1 Mean • Median 0 0 1.2 1.4 1.6 1.8 2.0 Pressure (Pa) (x10⁷) TRI-6342-1156-0

Figure 4.3-3. Estimated Distribution (pdf and cdf) for Castile Brine Reservoir Initial Pressure.

1 Discussion:

Median. The measured initial pressure of 12.6 MPa (125 atm) for WIPP-12 (Popielak, 1983,
p. H-52) was used as the median brine reservoir initial pressure.

5

Range. Lappin et al. (Table 3-19, 1989, derived from Popielak et al., 1983, Table H.1)
estimated the initial brine reservoir pressure from several wellhead measurements at WIPP-12
and other boreholes that encountered pressurized Castile brine. The range was between 7.0
and 17.4 MPa (69 and 172 atm). Because the range of pressures includes measurements in
wells completed at various elevations, a correction for differences in elevation is required.

11

The origin of Castile brine reservoirs is not conclusively known. Present interpretations are that their origin is either local, by limited movement of intergranular brines from adjacent Castile halites, or regional, by the previous existence of a lateral hydraulic connection of the Castile Formation with the Capitan reef (Lappin et al., 1989). However, the initial pressure observations at other wells are only directly pertinent if (1) the reservoir fluids are from the same source (past interconnection of reservoir fluid) or (2) they had a common genesis (e.g., brine trapped along bedding planes in areas of high permeability).

19

For the first case (interconnection), an elevation correction assuming a hydrostatic variation 20 with depth is most appropriate. For the second case (common genesis), an elevation 21 correction assuming a lithostatic variation depth is most appropriate. The range using both 22 types of elevation corrections is 10.7 to 16.8 MPa (106 to 166 atm) (Table 4.3-2). A brine 23 density of 1,215 kg/m³ (75.85 lb/ft³) (Section 4.1) was assumed for the first case; an average 24 formation density of 2,400 kg/m³ (149.8 lb/ft³) was assumed for the second case. Elevations 25 (except WIPP-12 and ERDA-6) were estimated from the well location and a topographic map 26 of the area (USGS 15 min quads, Carlsbad, NM, 1971, Nash Draw, NM, 1965). 27

28

This calculated range is similar to the maximum and minimum possible range of 11 and 21 MPa assuming hydrostatic and lithostatic pressures at the elevation of the WIPP-12 brine reservoir (140 m [457.8 ft]) (see Figure 2.2-3) and consequently this latter range was used in the PA calculations.

2

3

 Table 4.3-2.
 Estimated Initial Pressures of Brine Reservoirs Encountered in the Region around the

 WIPP Corrected to the Depth at the WIPP-12 Brine Reservoir (after Popielak et al., 1983)

	Pressure with	Pressure with	Reported	Elevation		
Well	Hydrostatic	Lithostatic	Pressure at	of	Depth to	Surface
Name	Correction	Correction	Observation	Observation	Observation	Elevation*
	(MPa)	(MPa)	(MPa)	(m)	(m)	(m)
	12.7	12.7	12.7	140	918	1058
ERDA-6	15.5	16.8	14.1	253	826	1079
Belco	14.5	14.6	14.3	152	854	1006
Gulf	12.1	10.7	13.6	16	1097	1113
Pogo	> 16.6	> 15.8	> 17.4	69	1013	1082
Tidewater	>14.0	>12.2	> 16.0	-24	1137	1113
Union	>11.2	> 12.2	> 10.1	226	856	1082
H&W Danford 1	11.5	15.8	7.0	512	588	1100(?)
**Bilbrey	12.1	13.8	11.2	209	942	1151
**Culbreston	11.8	10.9	12.8	57	1071	1128
**Mascho 1	11.6	10.8	12.4	69	1013	1082
**Mascho 2	11.3	10.6	12.0	77	1005	1082
**Shell	11.8	10.4	13.4	9	1119	1128

27 **28**

30 * Elevation from well location and USGS 15 min quad topographic map, Carlsbad, NM, 1971, Nash

31 ** According to Popielak et al. (1983, Table H.1), these wells should not be used to estimate static pressure.

GLOBAL MATERIALS AND MISCELLANEOUS Parameters for Castile Formation Brine Reservoir

Parameter:	Bulk storativity (S _b)
Median:	2×10^{-1}
Range:	2×10^{-2}
	2
Units:	m ³ /Pa
Distribution:	Lognormal
Source(s):	See text.
	Popielak, R. S., R. L. Beauheim, S. R. Black, W. E. Coons, C. T
	Ellingson, and R. L. Olsen. 1983. Brine Reservoirs in the Castill
	Formation, Southeastern New Mexico, Waste Isolation Pilot Plan
	(WIPP) Project. TME-3153. Carlsbad, NM: U.S. Department of
	Energy.

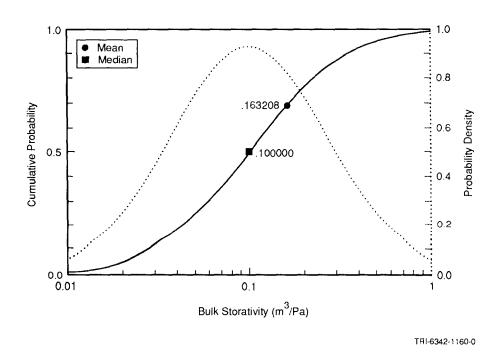


Figure 4.3-4. Estimated Distribution (pdf and cdf) for Bulk Storativity of Castile Brine Reservoir.

1 Discussion:

Bulk storativity (S_b) as defined herein is the total volume of fluid discharged from the reservoir per unit decrease in reservoir pressure $(\Delta V/\Delta p)$. The bulk storativity can be estimated from wellhead measurements (long-term change in pressure and total discharge volume), or from the compressibility of the reservoir matrix and fluid and the total volume and porosity of the reservoir.

8

22

25

47

The pressure recovery of the WIPP-12 reservoir is characteristic of a dual-porosity medium. 9 An initial rapid response is attributed to a highly permeable fracture set, while a more 10 gradual component of recovery is due to repressurization of the higher permeability fracture 11 set by intersecting lower permeability fractures. Because the human-intrusion scenarios 12 contemplate that the Castile will be connected to the Culebra over the long term (compared to 13 the duration of well tests), estimates of bulk storativity from long-term pressure changes are 14 more appropriate than those made using short-term pressure changes, which may represent 15 only the storativity of the highest permeability fractures. Estimates of bulk storativity using 16 wellhead measurements range from 5 x 10^{-4} m³/Pa (from ERDA-6 testing through October, 17 1982) to 2 x 10^{-1} m³/Pa (from estimated total discharge volume, maximum estimated 18 formation pressure, and apparent long-term recovery pressure at WIPP-12). Because WIPP-12 19 is closer to the waste disposal areathan ERDA-6, the latter number is considered more 20 appropriate for a sub-repository reservoir. 21

Reservoir compressibility $(\beta_{s/q})$ and total volume (V_{tot}) may also be used to estimate bulk storativity:

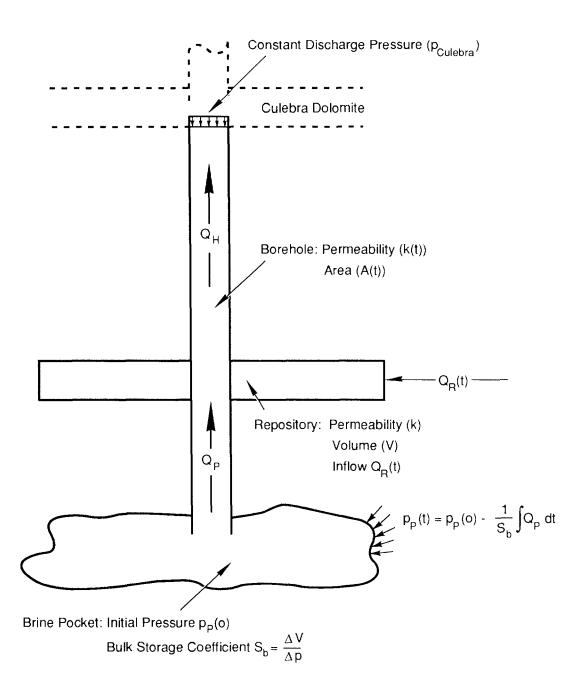
$$S_{b} = \frac{\Delta V}{\Delta p} = V_{tot} \frac{1}{V_{tot}} \frac{\Delta V}{\Delta p} = V_{tot} \frac{1}{K} = V_{tot} \beta_{s}$$
(4.3-1)

32 The area of the anticline associated with the WIPP-12 reservoir is approximately $1.7 \times 10^6 \text{ m}^2$ (Popielak et. al., 1982 p. H-53). Popielak depicts brine occurrence in the lower 40% of the 33 100-m thickness of Anhydrite III-IV at WIPP-12 (Popielak et al., 1983, Figure G-2), giving a 34 rough estimate of the reservoir total volume of $6.5 \times 10^7 \text{ m}^3$. (Note that other published 35 estimates of reservoir volume [e.g., Lappin et al., 1989, p. E-32] were made from wellhead 36 measurements assuming some value of compressibility. These volume estimates will therefore 37 not lead to independent estimates of S_b). Estimates of the bulk modulus $K_{bulk} = E/3(1-2\nu)$ 38 (where E is Young's modulus and ν is Poisson's ratio) of Anhydrite III at WIPP-12 were used 39 by Popielak et al. (1983, p. G-34) to derive a range of β_s from 3 x 10⁻¹¹ Pa⁻¹ to 1.4 x 10⁻¹⁰ 40 Pa⁻¹. The resulting range in bulk storativity from Eq. 4.3-1 is 2 x 10^{-3} to 9 x 10^{-3} m³/Pa. 41 The reason this range does not include the wellhead estimate from WIPP-12 may be due to 42 43 errors in the estimate of bulk volume or compressibility. For example, the apparent β_s may be larger than estimated here because of fractures in the anhydrite or trapped gas in the 44 reservoir. However, at present there is no reason to suppose that bulk storativity is 45 substantially higher than estimated from WIPP-12 wellhead measurements. 46

Based on the above considerations, the bulk storativity is assumed to lie between 2×10^{-2} and 2 x 10 m³/Pa. The likelihood of the actual value falling in a given interval is described by a loguniform distribution between these limits. The median of this distribution is 0.2 m³/Pa.

(page date: 15-NOV-91)

The high effective transmissivity of the Castile brine reservoir inferred from flow tests at the 2 WIPP-12 borehole (Lappin et al., 1989; Popielak et al., 1983) implies that, in the event of its 3 connection to the Culebra Dolomite through a sand-filled borehole, fluid flow rates from the 4 brine reservoir will be controlled by the conductivity of the borehole fill and the area of the 5 borehole (Rechard et al., 1990b, Figure 4-14; Reeves et al., 1991); pressure gradients within 6 the brine reservoir will be small compared to gradients along the intrusion borehole. 7 Observed correlation between brine occurrence and anticlines in the Castile (Lappin, 1988), 8 and the larger differences in pressure among brine reservoirs at various locations, imply that 9 Castile brine reservoirs have finite extent and are effectively isolated from one another over 10 the long term. These observations suggest that in the context of discharge through an 11 intrusion borehole(s) during the regulatory lifetime of the repository, Castile brine reservoirs 12 would behave as finite reservoirs with effectively infinite conductivity. The reservoir state at 13 any time could therefore be characterized by a single pressure. 14


15

Assuming constant compressibility of the brine reservoir components (fluid, matrix, and gas), the pressure in the brine reservoir will vary linearly with the volume of brine removed as follows: $dp/dV = 1/S_b$ where dp is the change in brine reservoir pressure, dV is the change in brine volume in the brine reservoir, and S_b is the bulk storage coefficient for the whole brine reservoir.

21

22 Therefore, the essential characteristics of the brine reservoir are contained in two parameters

- 23 (Figure 4.3-5): the initial pressure of the brine reservoir, p_i , and bulk storativity, S_b .
- 24

TRI-6342-393-1

Figure 4.3-5. Conceptual Model of Castile Brine Reservoir, Repository, and Borehole Requires a Specified Initial Brine Reservoir Pressure and a Bulk Storage Coefficient (Change in Discharge Volume with Change in Brine Reservoir Pressure).

4.3.2 Numerical Brine Reservoir Model

4 Permeability, Intact Matrix

5		
B	Parameter:	Permeability, intact matrix
9	Median:	1 x 10 ⁻¹⁹
10	Range:	1 x 10 ⁻²⁰
11		1×10^{-18}
12	Units:	m ²
13	Distribution:	Cumulative
14	Source(s):	See Table 2.4-1.
15		

15 16

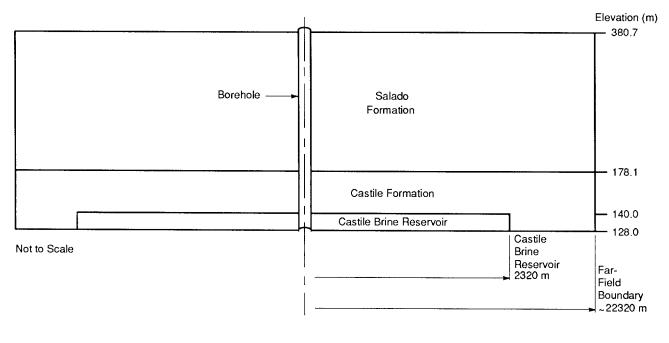
17

1 2 3

Permeability, Fractured Matrix

Parameter:	Permeability, fractured matrix
Median:	1×10^{-13}
Range:	1 x 10 ⁻¹⁶
	1×10^{-10}
Units:	m ²
Distribution:	Cumulative
Source(s):	Freeze, R. A. and J. C. Cherry. 1979. Groundwater. Englewood
	Cliffs, NJ: Prentice-Hall, Inc. (Table 2.6)
	Reeves, M., G. Freeze, V. Kelley, J. Pickens, D. Upton, and P.
	Davies. 1991. Regional Double-Porosity Solute Transport in the
	Culebra Dolomite under Brine-Reservoir-Breach Release
	Conditions: An Analysis of Parameter Sensitivity and Importance.
	SAND89-7069. Albuquerque, NM: Sandia National Laboratories.
	(Table 2.1)

37 Discussion:


38

36

The mesh for the numerical model used two layers for the Castile Formation (see Figure 39 4.3-6). The upper layer and the lower layer beyond a radius of 2,320 m (7,586 ft) were 40 intact Castile anhydrite matrix. The lower layer out to a radius of 2,320 m (7,586 ft) was the 41 fractured brine reservoir. The permeability used for the reservoir was 1 x 10¹¹ m². Test 42 simulations using the median permeability of intact anhydrite, 1 x 10⁻¹⁹ m², and pressures in 43 the brine reservoir within the range of sampled values (11 MPa to 21 MPa), showed that 44 those pressures decayed relatively quickly by flow through the intact matrix (upper layer) and 45 into the Salado Formation. It was apparent that, when using the reported median 46 47 permeability of Castile anhydrite and assuming Darcy flow everywhere, one cannot maintain a pressurized brine reservoir in the Castile for more than a few hundred years. In order to 48

simulate a pressurized brine reservoir, it was necessary to isolate it completely from the Salado and from the far field by assigning a permeability of zero to the intact Castile matrix (upper Castile mesh layer and far field lower layer). When isolated in this manner, the numerical model of the Castile brine reservoir can simulate the behavior observed during well tests done by Popielak et al. (1983) with the properties described in this section and in Sections 4.3 and 4.3.2.

7

TRI-6342-1407-0

Figure 4.3-6. Numerical Model of Castile Brine Reservoir.

GLOBAL MATERIALS AND MISCELLANEOUS Parameters for Castile Formation Brine Reservoir

1 Porosity

2	·····	
6	Parameter:	Porosity
6	Median:	0.005
7	Range:	0.001
8		0.01
9	Units:	Dimensionless
10	Distribution:	Cumulative
11	Source(s):	Reeves, M., G. Freeze, V. Kelly, J. Pickens, D. Upton, and P. Davies.
12		1991. Regional Double-Porosity Solute Transport in the Culebra
13	1	Dolomite under Brine-Reservoir-Breach Release Conditions: An
14		Analysis of Parameter Sensitivity and Importance. SAND89-7069.
15		Albuquerque, NM: Sandia National Laboratories. (Table 2.1)
16		

17

18 Discussion:

Bulk storativity was varied in the 1991 PA calculations. However, calculations done using the 19 two-dimensional, two-phase porous flow model, BRAGFLO, require compressibilities of 20 brine and rock, rather than bulk storativity to determine the storage capacity of a porous 21 medium. A porosity, ϕ , of 0.005 was used for both the brine reservoir and the Castile 22 Formation, and the brine compressibility, S_b, was 2.5 x 10⁻¹⁰ Pa⁻¹ (Salado brine was used in 23 the model, since brine density has to be constant in BRAGFLO; see Section 4.1.1). Brine 24 reservoir matrix compressibility, β_s , was obtained from sampled values of bulk storativity, S_b , 25 26 using the formula

27 28

29

32

37

38

$$\phi = S_b / V - \phi \beta$$

where V is the volume of the reservoir, $\pi r^2 L$. Dimensions of the reservoir (radius, r, and the thickness, L) are discussed below. The compressibility discussed here is defined by

$$\beta_{\rm s} = \frac{1}{1-\phi} \, \frac{{\rm d}\phi}{{\rm d}p}$$

whereas BRAGFLO requires a compressibility, β_s , defined as

$$\beta'_{\rm S} = \frac{1}{\phi} \frac{{\rm d}(\phi)}{{\rm d}p}$$

 $\beta_{\rm s}' = \beta_{\rm s}(1-\phi)/\phi$

43 so one more step is needed to obtain β_s :

44 45

1 For the brine reservoir, the bulk storativity ranged from 0.02 to 2.0, resulting in matrix 2 compressibility, β'_{s} , ranging from 2.2 x 10⁻⁸ to 1.8 x 10⁻⁶ Pa ⁻¹.

3

The value used in the two-phase flow model for the intact Castile matrix compressibility was $1.99 \times 10^{-7} Pa^{-1}$, although the zero permeability meant that this parameter was effectively unused.

6 7

Values of other material properties for the Castile Formation and the brine reservoir are 8 discussed elsewhere in Sections 4.3 and 2.4 (Hydrologic Parameters for Anhydrite Layers 9 within Salado Formation). Parameters used in the two-phase flow model for the intact 10 Castile matrix include: residual brine saturation of 0.2; residual gas saturation of 0.2; Brooks-11 Corey relative permeability correlation exponent of 0.7; and threshold capillary pressure of 12 1.869 MPa. Because the permeability of the intact matrix was set to zero, none of these 13 parameters has any effect; however, if nonzero permeabilities were used, these are the values 14 that would be used. For the fractured brine reservoir, the following were used: residual 15 brine and gas saturations of 0.2; Brooks-Corey exponent of 0.7; and a threshold capillary 16 17 pressure of zero. Zero capillary pressure in the brine reservoir proved to be necessary for numerical stability; nonzero values caused excessively long run times, but otherwise had little 18 effect on the results. 19

GLOBAL MATERIALS AND MISCELLANEOUS Parameters for Castile Formation Brine Reservoir

Parameter:	Radius
Median:	2320
Range:	30
	8600
Units:	m
Distribution:	Cumulative
Source(s):	Reeves, M., G. Freeze, V. Kelly, J. Pickens, D. Upton, and P. Davies 1991. Regional Double-Porosity Solute Transport in the Culebra Dolomite under Brine-Reservoir-Breach Release Conditions: A Analysis of Parameter Sensitivity and Importance. SAND89-7069 Albuquerque, NM: Sandia National Laboratories. (Table 2.1)
Parameter:	Thickness
Median:	12.0
Range:	7.0
	61
Units:	m
Distribution:	Constant
Source(s):	Reeves, M., G. Freeze, V. Kelly, J. Pickens, D. Upton, and P. Davies
	1991. Regional Double-Porosity Solute Transport in the Culebr
	Dolomite under Brine-Reservoir-Breach Release Conditions: A
	Analysis of Parameter Sensitivity and Importance. SAND89-7069
	Albuquerque, NM: Sandia National Laboratories. (Table 2.1)
	Popielak, R. S., R. L. Beauheim, S. R. Black, W. E. Coons, C. T
	Ellingson, and R. L. Olsen. 1983. Brine Reservoirs in the Castil Formation, Southeastern New Mexico, Waste Isolation Pilot Plan
	(WIPP) Project. TME-3153. Carlsbad, NM: U.S. Department of

37 38

Discussion: 39

40

The size of the brine reservoir was based on several factors, including the bulk storativity 41 (which was varied in the 1991 PA calculations), earlier estimates of the extent of the 42 reservoir (specifically, the radius of the "outer ring" of the brine reservoir, as determined 43 in Reeves et al. [1989]), and the size of grid blocks in the mesh. The dimensions finally 44 used were arrived at iteratively and somewhat arbitrarily as the conceptual model and the 45 mesh were developed and as the original data of Popielak et al. (1983) were reexamined. 46 After establishing the grid and selecting a radius for the reservoir, the value for the 47 thickness of the reservoir was chosen in order to accommodate the sampled range of 48 49 storativities. A value of 12 m (39 ft) was selected as appropriate for use in the numerical

- 1 storativities. A value of 12 m (39 ft) was selected as appropriate for use in the numerical
- 2 model for the Castile brine reservoir. As a comparison, Popielak et al. (1983) originally
- 3 assumed a thickness of 61 m (199 ft), which coincided with the thickness tested during
- 4 their drill stem tests, whereas Reeves et al. estimated an effective thickness of 7 to 24 m
- 5 (23 to 78 ft) in their analysis of the data for Popielak et al., (1983).

4.4 Climate Variability and Culebra Member Recharge

6 Climate variability is a continuous process (agent) acting on and thus affecting the state of
7 the disposal system. The primary concerns are precipitation variation and, ultimately,
8 recharge to strata above the Salado Formation, specifically, to the Culebra Dolomite Member.
9 The parameters for climate variability and Culebra Member recharge are shown in Table
10 4.4-1.

- **8**

					Distribution	
Parameter	Median	Ran	ge	Units	Туре	Source
Annual precipitation (rp)	3.436 x 10 ⁻¹	3.09 x 10 ⁻²	6.563 x 10 ⁻¹	m	Normal	Hunter, 1985
Precipitation variation						
Amplitude factor (A _m)	2			none	Constant	Swift, October 10, 1991,
						Memo (see Appendix A).
Short-term fluctuation (Φ)	2x10-10			Hz	Constant	Swift, October 10, 1991,
						Memo (see Appendix A).
Glacial fluctuation (0)	1.7x10 ⁻¹²			Hz	Constant	Swift, October 10, 1991,
						Merno (see Appendix A).
Recharge amplitude						
factor (A _m)	8 x 10 ⁻²	0	1.6 x 10 ⁻¹	none	Uniform	See text.

Precipitation variability is modeled as a simple combination of sine and cosine functions
representing high-frequency precipitation fluctuations and low-frequency glacial (e.g.,
Pleistocene) fluctuations. The function is not a prediction of future precipitation but rather
is a simple way to explore the influence of precipitation variation:

$$\frac{\bar{r}_{f}}{\bar{r}_{p}} = \left[\left(\frac{3A_{m} + 1}{4} \right) - \left(\frac{A_{m} - 1}{2} \right) \left(\cos \Theta t + \frac{1}{2} \cos \Phi t - \sin \frac{\Phi}{2} t \right) \right]$$
(4.4-1)

4.4.1 Annual Precipitation

Parameter:	Mean annual precipitation
Mean median:	3.436×10^{-1}
Range:	3.09×10^{-2}
_	6.563×10^{-1}
Units:	m
Distribution:	Normal
Source(s):	Hunter, R. L. 1985. A Regional Water Balance for the Waste
	Isolation Pilot Plant (WIPP) Site and Surrounding Area
	SAND84-2233. Albuquerque, NM: Sandia National Laboratories
	(Table 2)

16

1

Figure 4.4-1 shows the distribution for mean annual precipitation at the WIPP station. Figure
4.4-2 shows the contours for the mean annual precipitation near the WIPP.

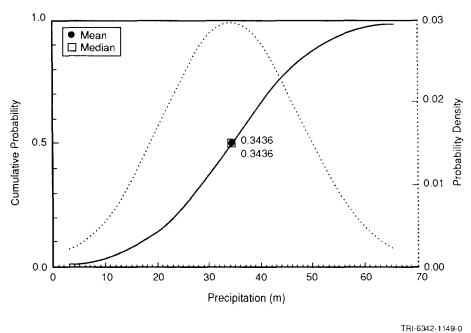
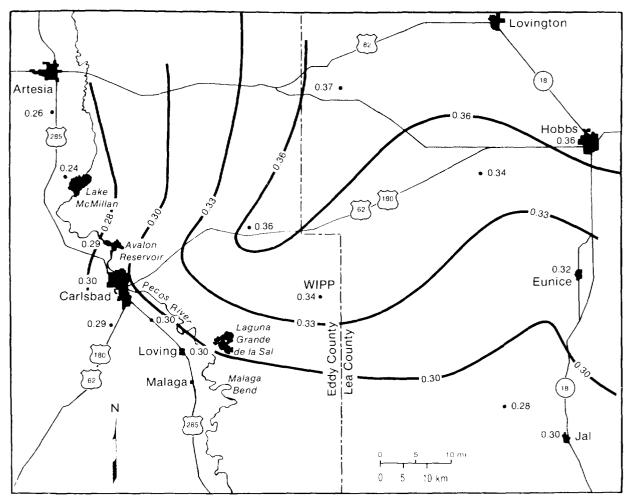
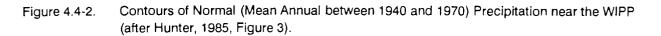




Figure 4.4-1. Normal Distribution (pdf and cdf) for Mean Annual Precipitation.

Mean Precipitation in Meters

TRI-6342-123-1

1 Discussion:

2

Southeastern New Mexico is an arid-to-semiarid fringe of the Chihuahuan Desert that 3 receives about 0.30 m (12 in.) of annual precipitation. Three complete years of record (1977 4 through 1979) collected at a station located at the WIPP for the Environmental Impact 5 Statement show that the average annual precipitation is 0.3436 m (13.53 in.), with a range of 6 0.0309 and 0.6563 m (1.22 and 25.84 in.), assuming a normal distribution (Figure 4.4-1) (EIS, 7 1980).* In general, most of the precipitation falls in the summer between May and September 8 (Hunter, 1985, Table 2). The range of the mean from stations close to the WIPP varies 9 between 0.28 and 0.38 m (11 and 15 in.) (Figure 4.4-2). 10 11 Precipitation at weather stations near the WIPP varies greatly from year to year. For 12 example, Roswell's record low annual precipitation since 1878 is about 0.11 m (4.4 in.); the 13

record annual high is about 0.84 m (33 in.) (Hunter, 1985, Figure 2). Consequently, an average precipitation for the WIPP based on three complete years of record is only a rough estimate of the long-term mean. However, this estimate is adequate for typical PA calculations.

Precipitation in the vicinity of the WIPP for years 1977 and 1979 was near normal, and 1978 was very wet. (The National Weather Service defines "normal precipitation" as the mean value for the past 30 yr, updated every 10 yr.) Hunter calculated an adjusted mean precipitation of 0.2771 m (10.91 in.) (20% difference) for the WIPP based on the mean departure during the years 1977 through 1979 of precipitation measurements from seven nearby stations (Hunter, 1985, p. 12).

25 26

18

^{29 *} The WIPP began collecting precipitation data on a regular basis in 1986. This additional data will be reported in future volumes.

4.4.2 Precipitation Variation 1

2

The basic premise for assessing climatic change at the WIPP is the assumption that, because 8 of the long-term stability of glacial cycles, future climates will remain within the range 5 defined by the Pleistocene and Holocene. Data from deep-sea sediments indicate that 6 fluctuations in global climate corresponding to glaciation and deglaciation of the northern 7 hemisphere have been regular in both frequency and amplitude for at least 780,000 yr. 8 Published results of global-warming models do not predict climatic changes of greater 9 magnitude than those of the Pleistocene (Bertram-Howery et al., 1990). 10

11

Amplitude Factor 12

Parameter:	Amplitude factor (A _m)
Median:	2
Range:	None
Units:	Dimensionless
Distribution:	Constant
Source(s):	Swift, P. 1991. "Climate Recharge Variability Parameters for the
	1991 WIPP PA Calculations, Internal memo to distribution
	October 10, 1991. Albuquerque, NM: Sandia Nationa
	Laboratories. (In Appendix A of this volume)

26

Discussion: 27

28

Field data from the American Southwest and global-climate models indicate that the wettest 29 conditions in the past at the WIPP occurred when the North American ice sheet reached its 30 southern limit (roughly 1,200 km [746 mi] north of the WIPP during the last glacial maximum 31 18,000 to 22,000 yr before present), which moved the jet stream much further south than 32 now. The average precipitation in the Southwest increased to about twice its present value. 33 Wet periods have occurred since the retreat of the ice sheet, but none has exceeded glacial 34 limits. 35

36

Although the amplitude of the glacial precipitation is relatively well constrained by data 37 (Bertram-Howery et al., 1990, p. V-37; Swift, October 10, 1991, Memo, [Appendix A]), 38 amplitudes of the Holocene peaks are less easily determined. However, data indicate that 39 none of the Holocene precipitation peaks exceeded glacial levels. Continuous climatic data 40 from ice cores in Antarctica and Greenland suggest that at these locations temperature 41 42 fluctuated significantly during glacial maximums (e.g., Jouzel et al., 1987). These fluctuations may reflect global climatic changes, and in the absence of high-resolution data from the 43 American Southwest for precipitation fluctuations during glacial maximums, we have assumed 44 that peaks comparable to those of the Holocene could have been superimposed on the glacial 45 maximum. Therefore, there may have been relatively brief (i.e., on the order of hundreds to 46 perhaps thousands of years) periods during the glacial maximum when precipitation at the 47 WIPP may have averaged three times present levels. 48

Model of Precipitation Variation. Paleoclimatic data permit reconstruction of a precipitation 1 curve for the WIPP for the last 30,000 yr (Figure 4.4-3). This curve shows two basic styles 2 of climatic fluctuation: relatively low-frequency increases in precipitation that coincide with з the maximum extent of the North American ice sheet; and higher-frequency precipitation 4 increases of uncertain causes that have occurred several times in the last 10,000 yr since the 5 retreat of the ice sheet. Variability has also occurred in the seasonality and intensity of 6 precipitation. Most of the late Pleistocene moisture fell as winter rain. Most of the Holocene 7 moisture falls during during a summer monsoon, in local and often intense thunderstorms. 8

9

16

17 18

122223456

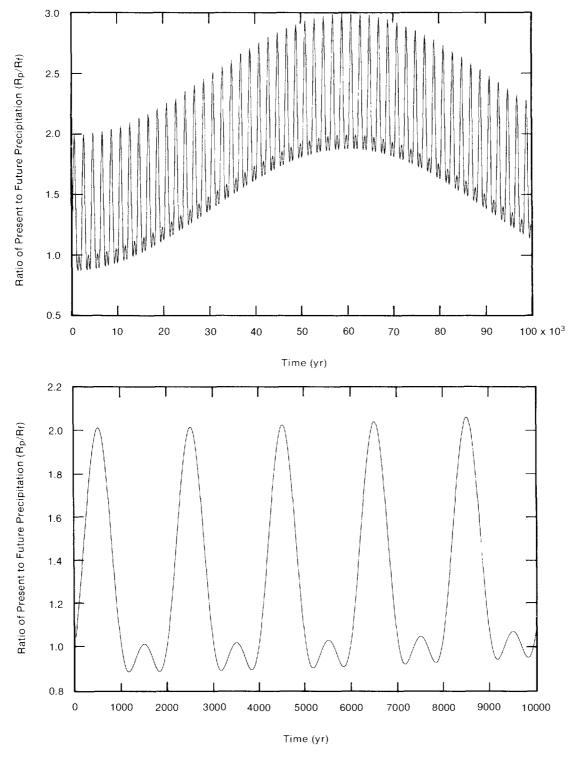
27

The curve shown in Figure 4.4-3 cannot be extrapolated into the future with any confidence. The curve can be used, however, in combination with the general understanding of glacial periodicity (see Bertram-Howery et al., 1990), to make a reasonable approximation of likely future variability. The proposed function does not in any sense predict precipitation at a future time. Rather, it is a function to approximate the variability in precipitation that may occur.

Specifically, the currently proposed precipitation function is as follows:

$$\frac{\tilde{r}_{f}}{\tilde{r}_{p}} = \left[\left(\frac{3A_{m} + 1}{4} \right) - \left(\frac{A_{m} - 1}{2} \right) \left(\cos\theta t + \frac{1}{2} \cos\Phi t - \sin\frac{\Phi}{2} t \right) \right]$$
(4.4-1)

where


28			
29	r _f	Ξ	future mean annual precipitation
30	rp	=	present mean annual precipitation
31	A _m	=	amplitude scaling factor (i.e., past precipitation maximum was A _m times the
32			present)
33	θ	=	frequency parameter for Holocene-type climatic fluctuations (Hz)
34	Φ	=	frequency parameter for Pleistocene glaciations (Hz)
35	t	=	time (s)
36			
37			
~ ~	The prod		d volves for A and A have been chosen from examination of the next

The preferred values for Θ and Φ have been chosen from examination of the past 38 precipitation curve (Figure 4.4-3) and the glacial record. If $\Phi = 2 \times 10^{-10}$ Hz, wet maximums 39 will occur every 2,000 yr, approximately with the same frequency shown on Figure 4.4-3. 40 Note that we are presently near a dry minimum, and the last wet maximum occurred roughly 41 1000 yr ago. If $\theta = 1.7 \times 10^{-12}$ Hz, the next full glacial maximum will occur in 60,000 yr, 42 approximately the time predicted by simple models of the astronomical control of glacial 43 periodicity (e.g., Imbrie and Imbrie, 1980). Figure 4.4-4 shows a plot of the climate function 44 for these values. 45

TRI-6342-299-3

Figure 4.4-3. Estimated Mean Annual Precipitation at the WIPP during the Late Pleistocene and Holocene (after Bertram-Howery et al., 1990, Figure V-18).

TRI-6342-1130-0

Figure 4.4-4. Precipitation Fluctuations Assumed at the WIPP for Next 10,000 Yr.

(page date: 15-NOV-91)

(database version: X-2.19PR)

GLOBAL MATERIALS AND MISCELLANEOUS Parameters for Castile Formation Brine Reservoir

1 Short-Term Fluctuation

Parameter:	Short-term precipitation fluctuation frequency (Φ)
Median:	2×10^{-10}
Range:	None
Units:	Hz
Distribution:	Constant
Source(s):	Swift, P. 1991. "Climate and Recharge Variability Parameters for the
	1991 WIPP PA Calculations," Internal memo to distribution,
	October 10, 1991. Albuquerque, NM: Sandia National
	Laboratories. (In Appendix A of this volume)

15

16 **Discussion:**

17

The approximate frequency of wet maximum is every 2,000 yr, or a value of Φ of about 0.2 nHz ($2\pi/(1000 \text{ yr} \cdot 3.155 \cdot 10^7 \text{ s/yr})$). Note that we are presently near a dry minimum; the last wet maximum occurred roughly 1,000 yr ago.

21

Holocene climates have been predominantly dry, with wet peaks much briefer than dry minimums (Figure 4.4-3). The Φ terms in the model equation (4.4-1) give an oscillation in which the future climate is wetter than the present one-half of the time. This value appears to be somewhat greater than the actual ratio, and, assuming that wet conditions are more likely to result in releases from the WIPP, these terms provide a conservative approximation of Holocene variability. The functions and values used give an "average" precipitation roughly 1.3 times present precipitation, with peaks of just over 2 times present precipitation.

30

1 Glacial Fluctuation

Parameter:	Glacial fluctuation (Θ)
Median:	1.7×10^{-12}
Range:	None
Units:	Hz
Distribution:	Constant
Source(s):	Swift, P. 1991. "Climate and Recharge Variability Parameters for the
	1991 WIPP PA Calculations," Internal memo to distribution,
	October 10, 1991. Albuquerque, NM: Sandia National
	Laboratories. (In Appendix A of this volume)

15

16 Discussion:

17

The approximate time predicted by simple models assuming astronomical control of glacial periodicity suggest the next glacial maximum may occur in about 60,000 yr or a value of Θ of about 1.7 pHz ($\pi/60,000$ yr) (Imbrie and Imbrie, 1980). A value of Θ of 10 pHz ($\pi/10,000$ yr) gives a wet maximum in 10,000 yr, and results in extreme precipitation values 3 times those of the present. This is not a realistic value for Θ -- ice sheets grow relatively slowly, and it would be difficult to achieve full continential glaciation within 10,000 yr.

2 4.4.3 Boundary Recharge Variation

Parameter:	Recharge amplitude factor (A _m)
Median:	0.08
Range:	0
	0.16
Units:	Dimensionless
Distribution:	Uniform
Source(s):	See text.

13 14

15 Figure 4.4-5 shows the distribution for the recharge amplitude factor.

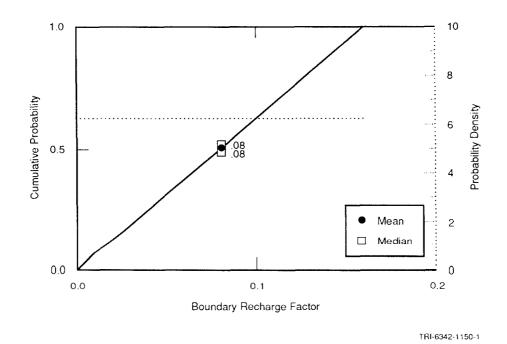


Figure 4.4-5. Uniform Distribution (pdf and cdf) for Recharge Boundary Amplitude Factor for Culebra Dolomite Member.

1 Discussion:

2

3 At present, the location and areal extent of the surface recharge area for the Culebra and the present amount of infiltration are not known. Hydraulic head and isotopic data indicate that 4 very little, if any, moisture reaches the Culebra directly from the ground surface above the 5 WIPP (Lambert and Harvey, 1987; Lambert and Carter, 1987; Lappin et al., 1989; Beauheim, 6 1987c). Researchers believe that regional recharge occurs several tens of kilometers to the 7 north of the WIPP, where the Culebra is near the ground surface (Mercer, 1983; Brinster, 8 1991). Whether water from this hypothesized recharge area could reach the current model 9 domain area is not known (Swift, October 10, 1991, Memo [Appendix A]). 10

11

25

28

33

35

Available literature on the relationship between precipitation and recharge is limited to 12 examinations of recharge to a water table by direct infiltration. There is no particular reason 13 to assume a 1-to-1 correlation between increases in precipitation and increases in model 14 recharge. Environmental tracer research (e.g., Allison, 1988) suggests that long-term increases 15 in precipitation in deserts may result in significantly larger increases in infiltration, 16 particularly if the increases in precipitation coincide with lower temperatures and decreased 17 evapotranspiration. As an extreme example, Stone (1984) estimated a 28-fold increase in 18 19 infiltration for one location at the Salt Lake coal field in western New Mexico during the late Pleistocene wet maximum. Bredenkamp (1988a,b) compared head-levels in wells and 20 sinkholes with short-term (decade-scale) precipitation fluctuations in the Transvaal, and 21 suggested that for any specific system there may be a minimum precipitation level below 22 which recharge does not occur. Above this uncertain level, recharge to the water table may 23 be a linear function of precipitation. 24

Both the range and the distribution for the recharge factor are preliminary and should be adjusted as new data or interpretations warrant.

Recharge Model. Because of the unknown factors regarding recharge, a very simple model of recharge to the Culebra is used. The model consists of evaluating the head by scaling the relative change in precipitation with a recharge factor. The head is then applied at the hypothesized recharge area.

34 The current model is

$$\frac{h_{f}}{h_{p}} = \frac{3A_{m} + 1}{4} - \frac{A_{m} - 1}{2} (\cos \Theta t + \frac{1}{2} \cos \Phi t - \sin \frac{1}{2} \Phi t)$$
(4.4-2)

Recharge Amplitude Factor. The recharge amplitude factor represents uncertainty in numerous parameters, including (a) the location and extent of the surface recharge area, (b) groundwater flow between the surface recharge area and the boundary of the model domain, and (c) the relationship between precipitation and infiltration in the surface recharge area, which in turn is dependent on factors such as vegetation, temperature, local topography, and coil characteristics.

7

8 To cover variability in model recharge, the PA Division incorporates recharge uncertainty in 9 the 1991 calculations by sampling a uniformly distributed amplitude parameter (A_m) over a 10 range that permits the range to vary from present hydraulic heads to heads equal to the land 11 surface. Justification for the range is as follows:

12

Lower bound, r = 1. This value corresponds to present hydraulic head conditions. Circumstances can be imagined in which increases in precipitation result in a decrease in infiltration (e.g., development of plant cover on previously barren land, or changes in topography resulting in runoff from a previously closed drainage), but none appears likely for the WIPP area. It is more likely that an increase in the cool-season component of precipitation will result in higher infiltration.

19

20 Upper bound, r = 0.16. This value sets hydraulic heads equal to the land surface. This value 21 is consistent with fossil evidence that springs existed in the region near the northwest corner 22 of the regional grid (Bachman, 1981; Brinster, 1991, p. IV-7).

2

5. PARAMETERS FOR SCENARIO PROBABILITY MODELS

3

6 This chapter presents data used in those probability models that estimate elementary 6 probabilities of events and processes that appear in future WIPP histories, specifically, those 7 histories in which the WIPP is penetrated by exploratory boreholes. Elementary probabilities 8 furnished by these models are used to calculate probabilities $P(S_j)$ of computational scenarios 9 S_j . The mathematical approach to scenario-based performance assessment is discussed in 10 Volume 1, Chapter 3, and Volume 2, Chapters 2 and 3, of this report; Tierney (1991); Helton 11 et al. (1991); and Section 1.4 of this volume.

12

Because innumerable scenarios exist, an infinite number of groupings of scenarios exist. As 13 in 1990, the analyzed scenarios for 1991 were grouped into four summary scenarios (see 14 Volume 1): one base-case scenario (without human intrusion) and three human-intrusion 15 scenarios (i.e., E1, E2, and E1E2). To more carefully explore the cause and effect 16 relationship from hypothetical events and processes (as opposed to those that will occur but 17 for which we do not know the precise parameter values), the three human-intrusion summary 18 scenarios have been further refined (discretized) into computational scenarios. While this 19 partitioning of summary scenario space is new and, consequently, the details of the 20 probability model, are dramatically different in 1991, the parameters (x) of the probability 21 model $P(S_i(x))$ are the same as in 1990 and the same Poisson probability model was used to 22 evaluate the time and number of potential intrusions. The parameters are discussed in the 23 following sections. 24

5.1 Area of Brine Reservoirs

1 2 3

6

5.1.1 Area of Castile Brine Reservoir below WIPP Disposal Area

Parameter:	Areal extent of brine reservoir
Median:	0.40
Range:	0.25
	0.552
Units:	Dimensionless (%)
Distribution:	Cumulative
Source(s):	See text.

17

19 Figure 5.1-1 shows the distribution of the areal extent.

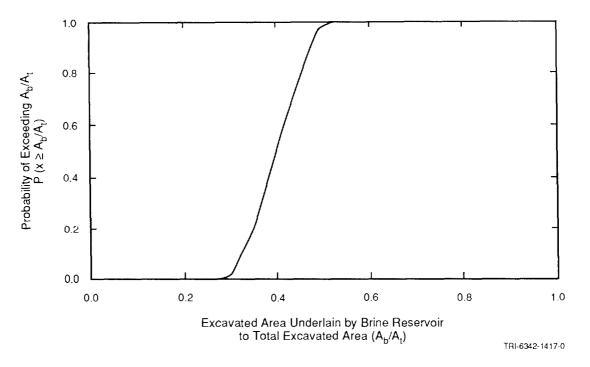


Figure 5.1-1. Distribution of Fraction of WIPP Disposal Area Overlapped by Brine Reservoir. Simulated construction uses inclusive definition of brine reservoir and block model (see text).

2 Discussion:

3

4 A geophysical survey, using transient electromagnetic methods, was made in 1987 to determine the presence or absence of brines within the Castile Formation under the WIPP 5 disposal area (Earth Technology Corp., 1988). Briefly, the electromagnetic method associates 6 high electric conductivity with fluid. (The stated precision was to within ± 75 m.) The entire 7 Bell Canyon Formation directly beneath the Castile Formation is a good conductor. However, 8 in several places underneath the WIPP disposal area, the elevation to the first major 9 conducting media detected lay above the top of the Bell Canyon Formation (~-200 \pm 30 m 10 $[-654 \pm 100 \text{ ft}]$ in the ERDA-9 well) but below the bottom of the Salado Formation (178 m 11 [582 ft] in ERDA-9) (see Figure 2.2-1 and Section 2.2). 12

13

The probability of hitting a brine reservoir can be evaluated for the waste disposal area as a whole or for subunits such as the panels. The current human-intrusion probability model (Volume 2, Chapters 1 and 2) uses the former data (the probability of hitting a brine reservoir over the entire waste panel) and assumes that this same probability applies to each panel. However, an examination of this assumption required the probability for each panel as well (Volume 2, Chapters 1 and 2). The following discussion emphasizes the probability over the entire disposal area, but provides data on a per panel basis as well.

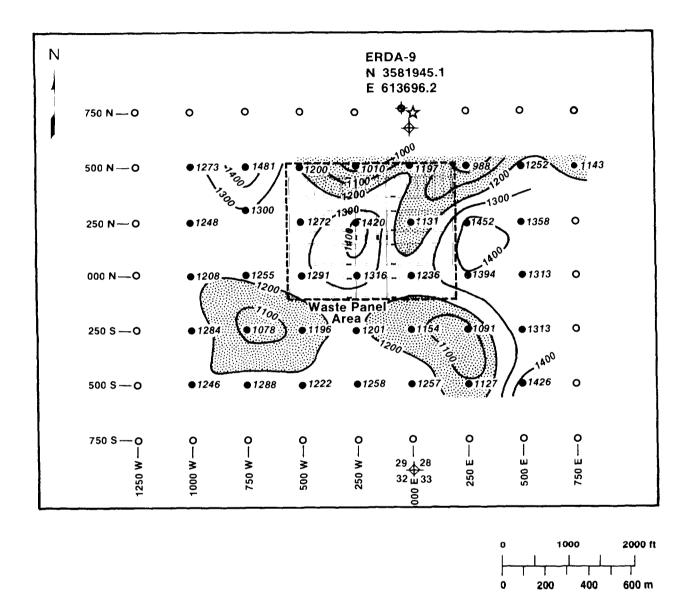
21

Two methods were considered for determining the area of the brine reservoir. The first involved using the interpolated conductor elevations and the Anhydrite III of the Castile Formation and the Bell Canyon Formation elevations without considering uncertainty in the data. Although not used, it is discussed first because of its simplicity. The second method considers uncertainty in the data through geostatistics.

27

Area Estimate Assuming No Uncertainty in Data. Contours of the depth or elevation to the first major conductor are plotted in Figures 5.1-2 and 5.1-3. The data in Figure 5.1-2 was the interpretation originally reported (Earth Technology Corporation, 1988). However, Figure 5.1-3 is an equally valid interpretation of the data; it is somewhat more conservative and was computer generated from the same data.

Minimum Area (Anhydrite III Level). The brine reservoirs are usually found in fracture zones of anticlimal structures in the uppermost anhydrite layer in the Castile (Lappin, 1988) (e.g., Anhydrite III as in WIPP-12 or when Anhydrite III is absent such as Anhydrite II in ERDA-6).


38

33

In ERDA-9, the elevation to the bottom of Anhydrite III in the Castile Formation is estimated at 105 m (250 ft). Consequently, there is a possibity that no brine is present beneath the disposal area (Figure 5.1-1).

42

Maximum Area (Bell Canyon Level). Pressurized brine reservoirs cannot be entirely
discounted until the Bell Canyon Formation is reached at about -200 m (-660 ft) (Figure
2.2-1), implying that conductors higher than about -200 m (-660 ft) could indicate brine
within the Castile Formation. PA calculations use the -200 m (-660 ft) contour for defining
the maximum area of any brine reservoirs under the WIPP disposal area (Figure 5.1-2),
resulting in a maximum area at 45% (Table 5.1-1).

TRI-6342-256-2

Figure 5.1-2. Frequently Reported Contour Map of Depth of First Major Conductor below WIPP Disposal Area. (Map drawn by hand.) (after Earth Technology Corp., 1988).

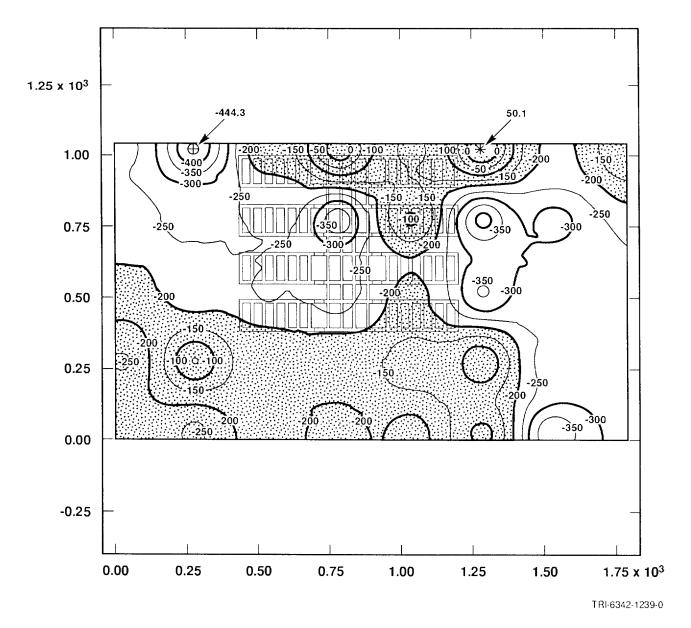


Figure 5.1-3. Conservative Contour Map of Elevation of First Major Conductor below WIPP Disposal Area.

(page date: 15-NOV-91)

PARAMETERS FOR SCENARIO PROBABILITY MODELS Area of Brine Reservoirs

		Cumulative Percent (%) at Indicated Maximum Depths									Area
Depth (m)	0	-50	-100	-150	-180	-200	-250	-300	-350	-400	(m ²)
Panel 1			5.37	61.95	97.80	100.00	100.00	100.00	100.00	100.00	11,530.
Panel 2			4.00	44.57	69.33	73.08	87.47	100.00	100.00	100.00	11,530.
Panel 3						18.23	85.73	100.00	100.00	100.00	11,530
Panel 4					35.85	75.57	96.17	100.00	100.00	100.00	11,530
Panel 5						19.76	94.80	100.00	100.00	100.00	11,530
Panel 6							26.57	100.00	100.00	100.00	11,530
Panel 7							67.45	100.00	100.00	100.00	11,530
Panel 8			0.79	9.01	34.64	52.86	100.00	100.00	100.00	100.00	11,530
Southern						3.24	45.01	100.00	100.00	100.00	8,413
Northern	3.97	12.49	21.67	27.49	34.86	45.29	54.79	69.25	94.52	100.00	8,701
Cumulative											
Percent Cumulative	0.316	0.994	2.796	14.367	27.828	39.648	77.219	97.553	99.564	100.000	
Area (m ²)	345.3	1,086.8	3,057.6	15,711.1	30,431.4	43,357.1	84,442.3	106,678.2	108,877.4 1	09,354.0	

Table 5.1-1. Cumulative Percentages of the Disposal Region Underlain by a Brine Reservoir, Assuming 2 Various Maximum Depths З

32

30

31 *Combined Distribution.* Without knowing the likelihood that either endpoint is more valid, a discrete distribution with points at 0 and 45% of equal probability is suggested. 33

34

Area Estimate Incorporating Uncertainty in the Data. Described above is a method of 35 estimating the fractional area of the waste-panel region underlain by a Castile brine reservoir 36 using contours of the conductor elevation. This method assumes that elevation contours 37 drawn from the observed data correctly represent the variation of conductor depth between 38 observation locations. The following discussion describes an alternative method that does not 39 rely on reported depth contours, and the resulting area fraction distribution. 40

41

Conductor elevation measurements are available at 36 points (Figure 5.1-3). These data were 42 used to estimate conductor elevation at all points within the waste panel region. Any estimate 43 of the conductor depth at an unmeasured location had an uncertainty associated with it. The 44 objective of this procedure is to incorporate relevant uncertainties in the estimate of area 45 fraction. 46

47

Spatial Variability and Interpolation. Uncertainty in interpolated elevations is a consequence 48 of spatial variability of the observed data. Quantifying spatial variability helps in estimating 49 the error of an interpolated value. If two observations are made close together, it is 50 reasonable to expect that similar values will be obtained (autocorrelation function, Chapter 1). 51 As the distance between observations increases, the similarity of observed values decreases. 52 This behavior of spatially varying fields is often represented as a variogram (Figure 5.1-4). 53 The variogram shows the average squared difference in observed values between observations 54 separated by a given distance vs. the distance between observations. For a given separation 55 distance h, the average is taken over all pairs of observations that are separated by distance h. 56 57

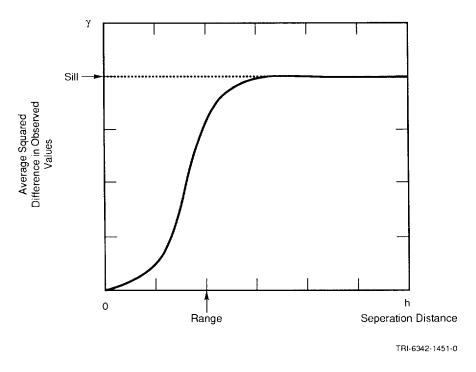


Figure 5.1-4. Example Variogram Illustrating Typical Behavior of γ with h.

5 The variogram in Figure 5.1.4 is a generic example illustrating two common features seen in 6 real data. Close to the origin (i.e., small separation distances), values are similar, so that the 7 average squared difference is small. As the distance between observations increases, observed 8 values tend to become uncorrelated, resulting in an increase in average squared difference in 9 observed values. The distance at which observations tend to become uncorrelated is referred 10 to as the range of the variogram. As separation distance increases beyond the range, the 11 average squared difference tends to a limiting value, called the sill.

12

Not all fields exhibit clearly defined range and sill. Systematic trends in the data, for example, can produce variograms that continually increase with separation distance. In addition, the spatial variability of the data may be different along different directions, so that a variogram constructed from separations along one direction may be different from a variogram constructed along another direction.

18

19 Information contained in the variogram is useful in interpolating from observed values for 20 two reasons:

21

(1) The range of the variogram identifies the maximum distance over which observations
 tend to be correlated. This information is important for selecting the data points near
 the interpolation location having values that may be related to the actual value at the
 interpolation location.

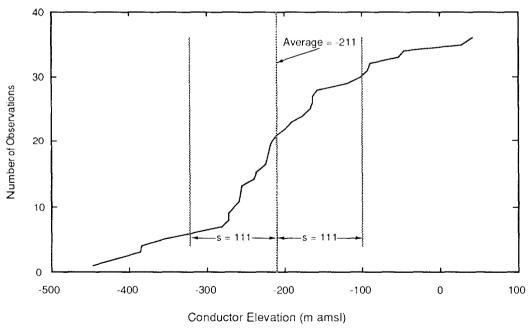
26

30

(2) The average squared difference between data values, along with the distances between
 the interpolation location and the locations of the selected observations, may be used to
 estimate the potential variability of the real value from the interpolated value.

PARAMETERS FOR SCENARIO PROBABILITY MODELS Area of Brine Reservoirs

Analysis of TDEM Data. Figure 5.1-2 shows conductor elevations interpreted from the TDEM survey at 36 locations near and within the waste panel region. Figure 5.1-5 shows a cumulative distribution of observed elevations, along with the average elevation and sample standard deviation. Scatter plots of conductor elevation vs. X (E-W) location and Y (N-S) location are shown in Figure 5.1-6. There is no suggestion of a significant simple trend in elevation along either direction.


7

A variogram of elevations was constructed in the E-W, N-S, NE-SW, and NW-SE directions. 8 9 The regular arrangement of observation points facilitates this calculation: the variogram value for a separation of 250 m in the E-W direction, for example, is simply the average of the 10 squared difference of elevation values at points adjacent to each other in the E-W direction. 11 Similar averages can be made for multiples of the observation grid spacing (250 m) in the E-12 W and N-S directions. Points in the NE-SW and NW-SE directions area separated by 13 multiples of ~353 m. In calculating the elevation variogram, the observation at (750W, 290N) 14 was assumed to have been made at (750W, 250N). This displacement has no important effect 15 on the resulting variogram. 16

17

Figure 5.1-7 shows the variogram of the elevation data along the directions mentioned. The separation distances considered were 250 m and 500 m in the E-W and N-S directions, and 353 m in the diagonal directions. Larger separations have too few pairs to provide a reliable estimate of mean squared difference. The horizontal line, which shows the average squared difference over all pairs of points regardless of separation, is an estimate of the variogram sill.

24

TRI-6342-1413-0

Figure 5.1-5. Population Distribution and Statistics for Conductor Elevations.

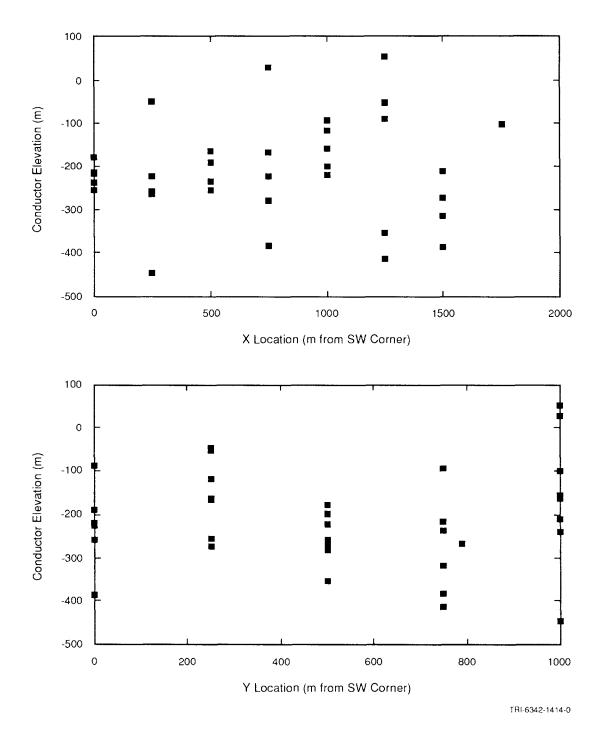


Figure 5.1-6. Scatter Plots of Conductor Elevation vs. X and Y Location.

(page date: 15-NOV-91)

PARAMETERS FOR SCENARIO PROBABILITY MODELS Area of Brine Reservoirs

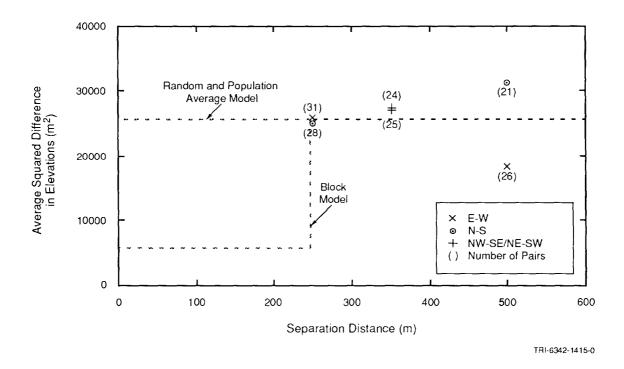


Figure 5.1-7. Empirical Variogram of Conductor Elevations.

7 The striking feature of the variogram is the lack of evidence for a range of correlation of 8 observations. The average squared difference for adjacent measurements and the expected 9 squared difference for randomly selected measurements (i.e., the sill) are indistinguishable. 10 In other words, there is no evidence for spatial correlation of elevation over distances as small 11 as 250 m. (In a separate analysis, the program AKRIP was used to estimate a generalized 12 covariance for the elevation data. The identified model contained only a "nugget" term, i.e., 13 the generalized covariance was not found to depend on separation distance.)

14

Estimation of Conductor Elevation. The variogram suggests that, in attempting to estimate 15 conductor elevation at non-measured locations, observations made 250 m from the 16 interpolation location contain no more information about the real value at the interpolation 17 location than more distant observations. For all points within the waste panel region, at least 18 19 one observation less than 250 m away will be available. The variogram analysis does not indicate whether observations less than 250 m distant can be expected to provide information 20 about elevation at the interpolation point. In particular, the assumption of linear variation of 21 elevation between data points made in constructing contours of conductor elevation has no 22 support (i.e., Figures 5.1-2 and 5.1-3). 23

24

Two bounding alternatives, corresponding to different assumptions about the behavior of the variogram between 0 and 250 m have been considered (see Figure 5.1-7):

27

(1) "Random elevation" assumption: Conductor elevation correlation length is very small
 <<250 m. The variogram is equal to the sill value between 0 and 250 m.

(2) "Block elevation" assumption: The observation grid spacing is just outside the actual
 correlation length. Below 250 m, observations become highly correlated, with an
 expected squared difference equal to twice the measurement error variance ("cookie
 cutter" autocorrelation).

- 6 These assumptions lead to two different methods of estimating conductor elevation. Both 7 assumptions have been carried through in estimating brine reservoir area fraction.
- 8
 9 In the random elevation assumption, nearby data points contribute no special information
 10 about the real value at the interpolation point in virtue of their proximity. The best estimate
 11 for elevation at any point is simply the average elevation over all observations. The variance
 12 of the error of this estimate is the population variance.
- 13

5

15 In the block elevation assumption, elevation is highly correlated over distances smaller than 16 the measurement interval. The estimate of elevation at an interpolation point is simply the 17 observed value at the nearest observation point. The variance of the error of this estimate is 18 the variance of the error of the observation (75 m^2) .

19

If the interpolated value is thought of as a weighted linear combination of observed values (as in inverse distance interpolation or in kriging), the random and block assumptions lead to the extremes of uniform weighting of all observations and exclusive weighting of the nearest observation.

24

25 Estimation of Area Fraction. The area fraction is defined as the area of the waste panel excavation overlying a brine reservoir divided by the total excavation area. A point is 26 27 considered to overlie a brine reservoir if there is an electrically conductive zone in a hydrologically conductive layer of the Castile Formation. Although Castile brine reservoirs 28 29 encountered during drilling appear to be always associated with the uppermost Castile anhydrite (Anhydrite III at the WIPP site), there is the possibility that brine reservoirs may 30 occur in lower Castile Anhydrites. For the purpose of estimating area fraction using the 31 existing data, two formulations are possible: 32

- 33
- (1) A point overlies a brine reservoir if the sub-Salado conductor elevation is greater than
 the elevation of the base of Anhydrite III, or
- 36 (2) A point overlies a brine reservoir if the sub-Salado conductor elevation is greater than
 37 the elevation of the base of the Castile.
- 38

For any point in the waste panel region, none of the elevations used to identify a brine reservoir by either formulation are known with certainty. In addition, there is uncertainty in which of the above formulations is appropriate. The area fraction estimate should incorporate these uncertainties.

- 43
- 44 Description of Method. Uncertainties associated with estimation of the area fraction were 45 addressed through Monte Carlo simulations as follows:

PARAMETERS FOR SCENARIO PROBABILITY MODELS Area of Brine Reservoirs

200 samples from two uncorrelated uniformly distributed random variables were taken as possible values for the base elevations of the Castile and Anhydrite III. These distributions ranged from -230 m to -170 m for the base of the Castile, and from 70 m to 140 m for the base of Anhydrite III. The estimates of base elevation were uniformly distributed over the given range and were not correlated. The base elevation for the Castile and for Anhydrite III were assumed to be constant over the waste panel area.

- 7
- Along with these elevations, one of the two formulations for identifying a brine reservoir
 were selected at random.
- 10

For each set of sampled base elevations and brine reservoir definition, 2000 realizations of
 conductor elevation were created on a uniform mesh. The relative area overlying the brine
 reservoir was then calculated using the sampled realizations and the selected definition of a
 brine reservoir.

- 15
- The relative number of simulations having a given area fraction was then used to construct an area fraction distribution. The derived area fraction distribution reflects uncertainty in conductor elevation, lithology, and the existence of brine reservoirs in lower Castile anhydrites.
- 20

The above process was applied twice, using the "random" and "block" assumptions for spatial correlation of conductor elevation in the generation of conductor realizations. In either case, conductor elevations at each mesh cell were assumed to be normally distributed around the estimated value.

25

Maximum Area (Bell Canyon Level). Based on the geostatistical analysis and data uncertainty described above, the use of the more conservative block model, and the assumption that a brine reservoir cannot be discounted until the Bell Canyon is reached, there is a chance that the brine reservoir has an area between 25 and 55% of the excavated area with a median of 40%. This contrasts with the best estimate of 45% from the contour method. The distribution is bell-shaped (Figure 5.1-1).

32

Minimum Area (Anhydrite III Level). Based on the geostatistical analysis and data uncertainty described above, the probability of the brine reservoir residing in the uppermost anhydrite layer is very small.

36

50% Combination. Figure 5.1.8 shows the derived cumulative distribution of area fraction 37 using both the "random" and "block" assumptions and assuming that 50% of the time 38 Anhydrite III is the maximum depth and 50% of the time the Bell Canyon is the maximum 39 depth. Both distributions show a distinct bi-modality assuming very small values of area 40 fraction correspond to the requirement that the brine reservoir be in Anhydrite III, while 41 larger area fractions correspond to the requirement that the brine reservoir must be in the 42 43 Castile Formation. The relative weighting of the two formulations for the brine reservoir controls the elevation of the plateau in the cumulative distribution, and is clearly more 44 45 important than the model of spatial variability of conductor elevation (random or block). 46

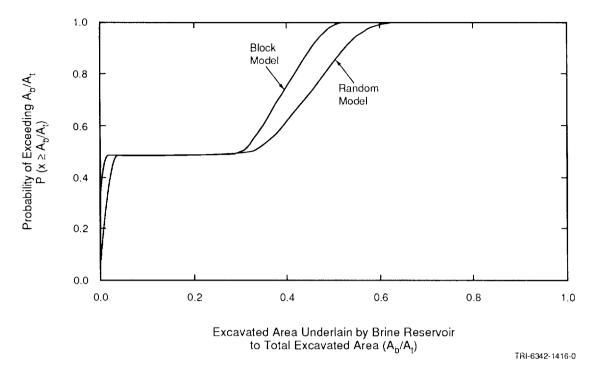
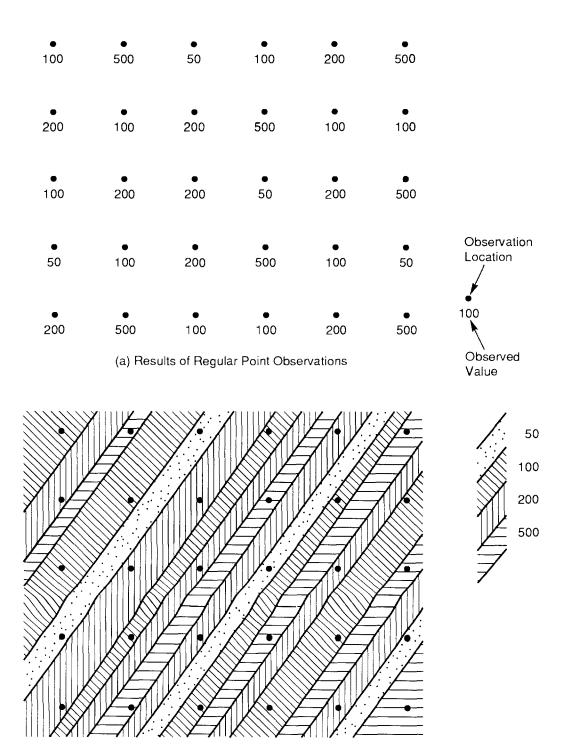


Figure 5.1-8. Cumulative Distribution of Area Fraction using the "Random" and "Block" Assumptions.

In the 1991 PA calculations, we used the maximum area distribution of 25 to 55% because the
results are more conservative. We could not readily establish the likelihood that the elevation
of Anhydrite III in the Castile Formation could be used as a cutoff for indicating whether a
brine reservoir existed under the disposal area without further examination of the occurrence
of brine reservoirs in the region.

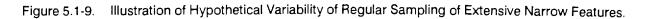
12

13 Lack of Spatial Correlation of Conductor Elevations. The variogram analysis suggests that conductor elevations are not correlated over a distance of 250 m. Aside from ramifications 14 for interpolation, this result appears to place limits on the areal extent of brine reservoirs 15 beneath WIPP. This conclusion is not entirely justified. Figure 5.1-9 shows a hypothetical 16 17 arrangement of measurement points, and an underlying structure dominated by narrow features at an angle to the measurement array. Although the features are continuous over the 18 region, observations of particular features are randomly distributed through the measurement 19 array. In order for the underlying correlation structure of the oblong features to be revealed 20 in this hypothetical case, the measurement array must be able to resolve the minimum 21 characteristic dimension of the features. Note that it may still be possible for the original 22 sampling to provide a good estimate of the relative area of each feature type. 23


24

Although the above illustration is hypothetical, geologic considerations argue that brine reservoir location may be controlled by fracturing along Castile anticlines. In this situation, it is not unreasonable to expect brine reservoirs to be defined by long, narrow fracture zones along the anticline axis. Lack of correlation at a scale of 250 m would then place an upper limit on the minimum dimension of these fracture zones, but would not constraint maximum area extent.

31 32


(page date: 15-NOV-91)

PARAMETERS FOR SCENARIO PROBABILITY MODELS Area of Brine Reservoirs

(b) Underlying Structure

TRI-6342-1419-0

1 5.1.2 Location of Intrusion

2 3

4 In 1991, the location of the borehole was fixed at the center of the disposal region (see

5 Figure 3.1-2) to reduce the computational burden in the transport calculations until the

- 6 influence of the variable transmissivity fields on fluid flow could be determined. (The most 7 conservative position was not known a priori.) Next year's PA calculations will either use a
- conservative position was not known a priori.) Next year's PA calcu
 variable position of the borehole or select a conservative location.
- 9

5.2 Human-Intrusion Probability (Drilling) Models

5.2.1 Drilling Rate Function

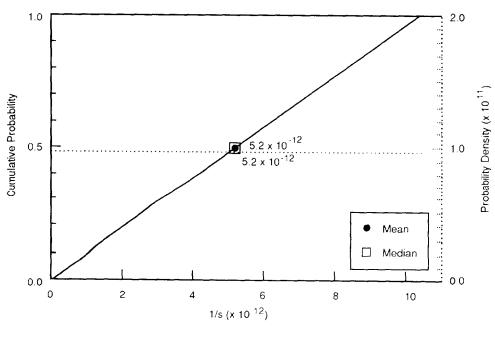

5		
8	Parameter:	Drilling rate function $\Lambda(t)$
9	Median:	5.2×10^{-12}
10	Range:	0 <
11		1.04×10^{-11}
12	Units:	S ⁻¹
13	Distribution:	Uniform
14	Source(s):	Tierney, M. S. 1991. Combining Scenarios in a Calculation of the
15		Overall Probability Distribution of Cumulative Releases of
16		Radioactivity from the Waste Isolation Pilot Plant, Southeastern
17		New Mexico. SAND90-0838. Albuquerque, NM: Sandia National
18		Laboratories. (Appendix C)
19	L	
20		

Figure 5.2-1 shows the distribution for the constant failure rate function for exploratory drilling.

23

1 2 3

4

TRI-6342-1276-0

Figure 5.2-1. Estimated Distribution (pdf and cdf) of Constant Failure Rate.

2 Discussion:

3

4

5 6

789012004000

20

21

22 23

24 25

26

27

28 29 30

31

33333333333344

42 43

47

49

50

51 52

The model for determining the probabilities of human intrusions (drilling) is based upon a general failure rate function $(\Lambda(t))$:

$$\Lambda(t) = \begin{cases} 0 & 0 < t < t \\ -d/dt \ \ln[1-F(t)], & 0 < t < t \\ 0 & -t \end{cases}$$
(5.2-1)

where

t = time elapsed since disposal system placed in operation t_0 = time when active government control ceases (100 yr [40 CFR 191]) F(t) = cumulative distribution for first time of disturbing event.

40 CFR 191, Appendix B, places an upper bound on $\Lambda(t)$:

... the Agency assumes that the likelihood of such inadvertent and intermittent drilling need not be taken to be greater than 30 boreholes per square kilometer per 10,000 years for geologic repositories in proximity to sedimentary rock formations...

or

$$\lambda = \frac{30 \text{ boreholes}}{10^6 \text{ m}^2 \ 10^4 \text{ yr}} \quad \text{area of excavated disposal region} \quad (5.2-2)$$

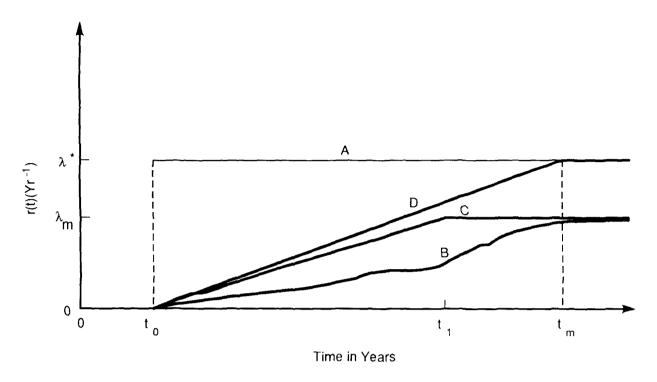
Hence for the WIPP, $\lambda = 3.28 \times 10^{-4} \text{ yr}^{-1}$ assuming an excavated disposal region of about 1.09 x 10⁵ m² (1.1 x 10⁶ ft²). The mean time of the first intrusion is 1/ λ or about 3,000 yr. The number of intrusions is sampled from an associated Poisson distribution.

48 Similarly, 40 CFR 191. Appendix B, places a lower bound on $\Lambda(t)$:

... passive institutional controls should not be assumed to completely rule out the possibility of intrusion ...

The actual variation of the drilling (failure) rate function with time is unknown but can be conservatively approximated by a piecewise linear function (Tierney, 1991, Appendix C) (Curve A, Figure 5.2-2). Currently, PA calculations assume $\Lambda(t)$ is a constant ($\Lambda(t) = \lambda$) for each simulation and uniformly distributed between certain maximum and minimum values.^{*} The failure rate, $\Lambda(t)$, is used in estimating, for example, probabilities for multiple intrusions or evaluating the time of the first intrusion.

59


61

60 ____

(database version: X-2.19PR)

Though conservative, the constant failure rate is unrealistic because the effects of markers (required by 40 CFR 191 to warn of
 the presence of the repository) are ignored.

PARAMETERS FOR SCENARIO PROBABILITY MODELS Human-Intrusion Probability (Drilling) Models

TRI-6342-606-0

Figure 5.2-2. Alternative Forms of a Failure Rate for Exploratory Drilling (after Tierney, 1991, Appendix C).

9 Assuming that the times of attempted drilling are independent of each other and that the failure rate $\Lambda(t)$ is a constant λ , the probability that drilling will occur exactly n times in the 10 11 time interval t is given by the Poisson distribution (Ross, 1985, Chapter 7):

$$P(N=n) = \frac{(\lambda t)^n}{n!} \exp(-\lambda t), n=0,1,2,...$$
 (5.2-3)
where

5-18

t = time 20 $1/\lambda + t_0$ = average time one must wait until first drilling occurs = number of intrusions (a random variable). Ν 21 22 Because the PA Division grouped the occurrence of human intrusion into separate scenarios, 23 24 PA calculations used the conditional probability. The conditional probability that drilling will occur more than once (N > 0) is 25 26 P(N=n | N>0) = P(N=n)/P(N>0)27 28 29 where 30 31 $P(N>0) = 1 - P(N=0) = 1 - exp(-\lambda t)$ 32

(page date: 15-NOV-91)

(5.2-4)

18 19

1 Hence,

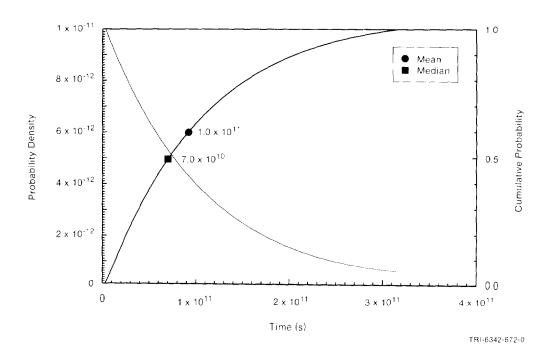
$$P\{N=n \mid N>0\} = \left\{\frac{(\lambda t)^n}{n!} \exp(-\lambda t)\right\} / [1-\exp(-\lambda t)]$$
(5.2-5)

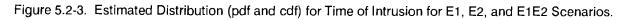
8 The discrete probability of intrusion, P{N=n | N>0}, is given in Table 5.2-1 and Figure 5.2-2 9 for between 1 and 13 intrusions for $\Lambda(t) - \lambda_{max} = 3.28 \times 10^{-4} \text{ yr}^{-1}$.

10

12

234567


Median	Rar	nge	Value	Probability	Units	Source
3	1	13	1	1.2810 x 10 ⁻¹	none	Tierney, 1991,
			2	2.1020 x 10 ⁻¹		Appendix C
			3	2.2990 x 10 ⁻¹		
			4	1.8860 x 10 ⁻¹		
			5	1.2380 x 10 ⁻¹		
			6	6.77 x 10 ⁻²		
			7	3.17 x 10 ⁻²		
			8	1.30 x 10 ⁻²		
			9	4.70 x 10 ⁻³		
			10	1.60 x 10 ⁻³		
			11	5.00 x 10 ⁻⁴		
			12	1.00 x 10 ⁻⁴		
			13	1.00 x 10 ⁻⁴		


Table 5.2-1. Probability of Multiple Hits into Disposal Region of Repository

PARAMETERS FOR SCENARIO PROBABILITY MODELS Human-Intrusion Probability (Drilling) Models

Parameter:	Time of first intrusion
Median:	7×10^{10}
Range:	3.156×10^9
	3.156×10^{11}
Units:	S
Distribution:	Exponential
Source(s):	Tierney, M. S. 1991. Combining Scenarios in a Calculation of the
	Overall Probability Distribution of Cumulative Releases o
	Radioactivity from the Waste Isolation Pilot Plant, Southeastern
	New Mexico. SAND90-0838. Albuquerque, NM: Sandia Nationa
	Laboratories. (Appendix C)

18 Figure 5.2-3 shows the distribution for time of intrusion.

Discussion:

1

3 4

5

678901123

14

15 16

1789012045078

29

30

31

32 33

34

35 36 37

38

39

40 41

4444444455

52 53

54

55 56

5555666666

The time of first intrusion is evaluated from failure rate function $\Lambda(t)$ (Eq. 5.2-1). Integrating Eq. 5.2-1 to evaluate F(t) yields

$$F(t) = 1 - \exp[-\int_{t}^{t} \Lambda(\tau) d\tau]$$
 (5.2-6)

Since PA calculations assume $\Lambda(t)$ is a constant (λ) for each simulation, F(t) is a cumulative exponential distribution

$$F(t) = \begin{cases} 0 & \text{if } 0 < t < t_0 \\ 1 & \text{if } t \ge t_0 \end{cases}$$
(5.2-7)

= $\Pr \{ time of hit < t \}$

where

 $1/\lambda + t_0$ = the average time one must wait either until the first drilling occurs that intersects the disposal region or between intrusions.

Thus, for a Poisson process, the waiting time between successive intrusions has an exponential distribution.

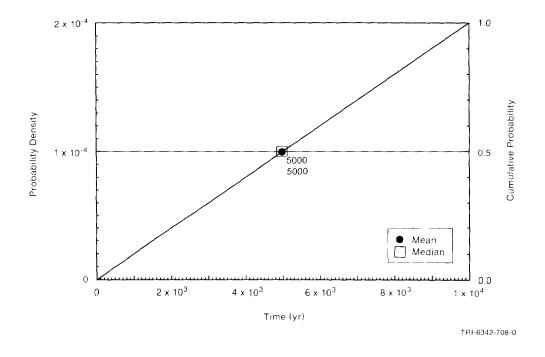
Because the PA Division grouped the occurrence of human intrusion into separate scenarios, PA calculations used the conditional probability. The conditional probability on the time when drilling will occur given that drilling occurs at least once before $t > t_1$, where t_1 is the regulatory period of 10,000 yr is (Miller and Freund, 1977, p. 34)

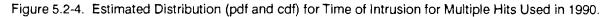
$$P\{\text{time of hit } < t | \text{time of hit } < t_1 \}$$

= P{time of hit < t}/P{time of hit < t_1} (5.2-8)

where

P{time of hit I - $exp[-\lambda(t_1 - t_0)]$


Hence,


$$P\{\text{time of hit} < t | \text{time of hit} < t_1\} = \{1 - \exp[-\lambda(t - t_0)]\}/\{1 - \exp[-\lambda(t_1 - t_0)]\}$$
(5.2-9)

PARAMETERS FOR SCENARIO PROBABILITY MODELS Human-Intrusion Probability (Drilling) Models

5.2.3 Times of Multiple Intrusions

Parameter:	Time of intrusion
Median:	1.5936 x 10 ¹¹
Range:	3.156 x 10 ⁹
	3.156×10^{11}
Units:	S
Distribution:	Uniform
Source(s):	Tierney, M. S. 1991. Combining Scenarios in a Calculation of th
	Overall Probability Distribution of Cumulative Releases o
	Radioactivity from the Waste Isolation Pilot Plant, Southeaster,
	New Mexico. SAND90-0838. Albuquerque, NM: Sandia Nationa
	Laboratories. (Appendix C)

1 Discussion:

In 1990, the times of the N intrusions were evaluated from a uniform distribution between 100 and 10,000 yr^{*} (Figure 5.2-4). The N random samples from the uniform distribution were then ordered from the smallest to the largest. Identical times for intrusions were permitted. Because the waiting times between successive intrusions have exponential distributions for a Poisson process, the mean time of intrusion (or mean time between intrusions) was $1/\lambda + t_0$ or about 3,000 yr.

- In 1991, the time of intrusion is used to define computational scenarios. To simplify the discretization, the time of intrusion was divided into five equal intervals of 2,000 yr and the intrusion or multiple intrusions in each interval set at the midpoint (e.g., 1,000 yr).
- 13

9

¹⁵ _

¹⁶

^{17 *} For compliance calculations, 100 yr is the time period after which active government control of the WIPP must be assumed to

¹⁸ stop (40 CFR 191); 10,000 yr is the end of the regulatory period.

6. SUMMARY OF PARAMETERS SAMPLED IN 1991

4 5

Ø

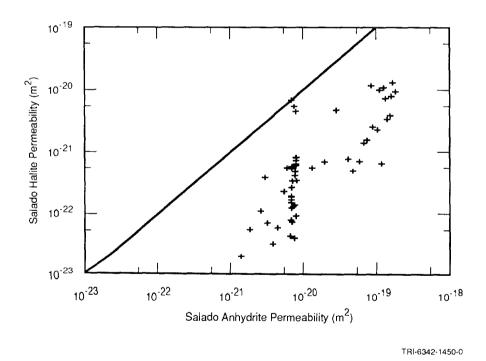
8

9

10 11 12 Tables 6.0-1, 6.0-2, and 6.0-3 summarize the parameters that were sampled for the 1991 PA calculations for the geologic barriers, engineered barriers, and agents acting on the disposal system and probability models for scenarios, respectively. Figure 6.0-1 shows the rank correlation for halite and anhydrite permeability (Table 6.0-1).

		B 11.1			Distribution	•	
Parameter	Median	Ran	ige	Units	Туре	Source	
Halite within Salado Forn	nation						
Permeability (k)	5.7 x 10 ⁻²¹	8.6 x 10 ⁻²²	5.4 x 10 ⁻²⁰	m ²	Data	Beauheim, June 14, 199 Memo (see Appendix A)	
Pore pressure (p)	1.28 x 10 ⁷	9.3 x 10 ⁶	1.39 x 10 ⁷	Pa	Data	See anhydrite.	
Anhydrite Layers within S	alado Formation						
Pore pressure (p)	1.28 x 10 ⁷	9.3 × 10 ⁶	1.39 x 10 ⁷	Pa	Data	Beauheim, June 14, 199 Memo; Howarth, June 1 1991, Memo (se Appendix A)	
*Permeability (k) Undisturbed	7.8 x 10 ⁻²⁰	6.8 x 10 ⁻²⁰	9.5 x 10 ⁻ 19	m ²	Data	Beauheim, June 14, 199 Memo (see Appendix A)	
Porosity (ø)							
Undisturbed	1 x 10 ⁻²	1 x 10 ⁻³	3 x 10 ⁻²	none	Cumulative	See text.	
Threshold displacem		2	. 7	_			
pressure (p _t)	3 x 10 ⁵	3 x 10 ³	3 x 10 ⁷	Pa	Lognormal	Davies, 1991; Davies, Ju 2, 1991, Memo (s Appendix A)	
Castile Formation Brine	Reservoir						
Initial pressure (p)	1.26 x 10 ⁷	1.1 x 10 ⁷	2.1 x 10 ⁷	Pa	Cumulative	Popielak et al., 198 p. H-52; Lappin et a 1989, Table 3-19	
Storativity, bulk (Sb)	2 x 10-1	2 x 10 ⁻²	2	m ³	Lognormal	See text.	
Gloradivity, Bain (OD)	2 × 10	2 1 10	-		Lognonna		
Culebra Dolomite Memb	er						
Dispersivity,							
longitudinal (α _L)	1 x 10 ²	5 x 10 ¹	3 x 10 ²	m	Cumulative	Lappin et al.,199 Table E-6	
Fracture spacing (2B)4 x 10 ⁻¹	6 x 10 ⁻²	8	m	Cumulative	Beauheim et al., June 1991, Memo (s Appendix A)	
Porosity							
Fracture (ϕ_{f})	1 x 10 ⁻³	1 x 10 ⁻⁴	1 x 10 ⁻²	none	Lognormal	Lappin et al.,1989, Ta 1-2, Table E-6	
Matrix (ϕ_{ff})	1.39 x 10 ⁻¹	9.6 x 10 ⁻²	2.08 x 10 ⁻¹	none	Spatial	Kelley and Saulnier, 19 Table 4.4; Lappin al.,1989 Table E-8	

Table 6.0-1. Distributions of Sample Parameters in December 1991 WIPP Performance Assessment 18 15 for Geologic Barriers


SUMMARY

2

3

					Distribution	
Parameter	Median		Range	Units	Туре	Source
Partition Coefficient	ts					
Fracture						
Am	9.26 x 10 ¹	0.0	1 x 10 ³	m ³ ∕kg	Cumulative	See text.
Np	1	0.0	1 x 10 ³	m ³ /kg	Cumulative	See text.
Pu	2.02 x 10 ²	0.0	1 x 10 ³	m ³ /kg	Cumulative	See text.
Th	1 x 10 ⁻¹	0.0	1 x 10 ¹	m ³ /kg	Cumulative	See text.
U	7.5 x 10 ⁻³	0.0	1	m ³ /kg	Cumulative	See text.
Matrix				, •		
Am	1.86 x 10 ⁻¹	0.0	1 x 10 ²	m ³ /kg	Cumulative	See text.
Np	4.8 x 10 ⁻²	0.0	1 x 10 ²	m ³ /kg	Cumulative	See text.
Pu	2.61 x 10 ⁻¹	0.0	1 x 10 ²	m ³ /kg	Cumulative	See text.
Th	1 x 10 ⁻²	0.0	1	m ³ /kg	Cumulative	See text.
U	2.58 x 10 ⁻²	0.0	1	m ³ /kg	Cumulative	See text.
Transmissivity field		0	60	none	Uniform	See text.

Table 6.0-1. Distributions of Sample Parameters in December 1991 WIPP Performance Assessment for Geologic Barriers (Continued)

General Relationship Maintained between Halite and Anhydrite Permeabilities of Salado Figure 6.0-1. Formation Using a Rank Correlation Coefficient (r) of 0.80.

(page date: 15-NOV-91)

Relative humid rate(see Appendix A)humid rate 1×10^{-1} 0 5×10^{-1} noneCumulativeBrush, July 8, 1991, (see Appendix A)Stoichiometry 5×10^{-1} 01noneUniformBrush, and Ander: Lappin et al., 1989, prMicrobiological Inundated rate1 \times 10^{-1}01.6 x 10^{-8}mol/kg/s**CumulativeBrush, July 8, 1991, (see Appendix A)Relative humid rate1 \times 10^{-1}02 x 10^{-1}noneUniformBrush, July 8, 1991, (see Appendix A)Stoichiometry 8.35×10^{-1} 01.67noneUniformBrush, July 8, 1991, (see Appendix A)Dissolved Concentrations (Solubility)***Arm3 +1 × 10^{-9}5 × 10^{-14}1.4MolarCumulative Trauth et al., 1991Np5 +6 × 10^{-9}3 × 10^{-16}2 × 10^{-5}MolarCumulative Trauth et al., 1991Trauth et al., 1991Np5 +6 × 10^{-7}3 × 10^{-16}4 × 10^{-6}MolarCumulative Trauth et al., 1991Pu5 +6 × 10^{-10}2.5 × 10^{-16}MolarCumulative Trauth et al., 1991Th4 +1 × 10^{-10}5.5 × 10^{-2}MolarCumulative Trauth et al., 1991U6 +2 × 10^{-3}1 × 10^{-7}1MolarCumulative Trauth et al., 1991Volume Fractions of IDB Categories Metal/Glass3.76 × 10^{-1}2.76 × 10^{-1}4.84 × 10^{-1}noneNormal See text, Table 3.44Initial waste saturation1.3	Parameter	Median	Ra	inge	Units	Distribution Type	Source
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Unmodified Waste Form	1	<u> </u>				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Relative humid rate(see Appendix A)Numid rate1 x 10 ⁻¹ 05 x 10 ⁻¹ noneCumulativeBrush, July 8, 1991, (see Appendix A)Stoichiometry5 x 10 ⁻¹ 01noneUniformBrush, and Ander: Lappin et al., 1989, pMicrobiological 		_		_			
humid rate1 x 10^{-1}05 x 10^{-1}noneCumulativeBrush, July 8, 1991, (see Appendix A)Stoichiometry5 x 10^{-1}01noneUniformBrush and Ander, Lappin et al., 1989, pMicrobiological Inundated rate3.2 x 10^{-9}01.6 x 10^{-8}mol/kg/s**CumulativeBrush, July 8, 1991, (see Appendix A)Relative humid rate1 x 10^{-1}02 x 10^{-1}noneUniformBrush, July 8, 1991, (see Appendix A)Stoichiometry8.35 x 10^{-1}01.67noneUniformBrush, July 8, 1991, (see Appendix A)Dissolved Concentrations (Solubility)*** Am ³⁺ 1x 10^{-9}5x 10^{-14}1.4MolarCumulativeTrauth et al., 1991 Trauth et al., 1991Np5+6x 10^{-9}3x 10^{-11}1.2x 10^{-2}MolarCumulativeTrauth et al., 1991 Trauth et al., 1991Pu4+6x 10^{-10}2.0 x 10^{-16}4x 10^{-6}MolarCumulativeTrauth et al., 1991 Trauth et al., 1991Pu5+6x 10^{-10}2.5x 10^{-16}2.2x 10^{-6}MolarCumulativeTrauth et al., 1991 Trauth et al., 1991U6+2x 10^{-3}1x 10^{-7}1MolarCumulativeTrauth et al., 1991 Trauth et al., 1991U6+2x 10^{-3}1x 10^{-7}1MolarCumulativeTrauth et al., 1991U6+2x 10^{-3}1x 10^{-7}4.76 x 10^{-1}noneNormalSee text, Table 3.4-4NormalSee text, Table 3.44 x 10^{-1}.84 x 10		6.3 x 10 ⁻⁹	0 1	.3 x 10 ⁻⁸	mol/m ² /s*	Cumulative	Brush, July 8, 1991, M (see Appendix A)
Stoichiometry 5×10^{-1} 01noneUniform(see Appendix A) Brush and Ander Lappin et al., 1989, pMicrobiological Inundated rate1.2 \times 10^{-9}01.6 \times 10^{-8}mol/kg/s**CumulativeBrush, July 8, 1991, 		1		1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-	(see Appendix A)
Inundated rate 3.2×10^{-9} 0 1.6×10^{-8} mol/kg/s**CumulativeBrush, July 8, 1991, (see Appendix A)Relative humid rate 1×10^{-1} 0 2×10^{-1} noneUniformBrush, July 8, 1991, (see Appendix A)Stoichiometry 8.35×10^{-1} 0 1.67 noneUniformBrush and Ander Lappin et al., 1989 10.Dissolved Concentrations (Solubility)*** Am ³⁺ A^{m3+} 1×10^{-9} 5×10^{-14} 1.4 MolarCumulative CumulativeTrauth et al., 1991 Trauth et al., 1991 Trauth et al., 1991Np5+ 6×10^{-7} 3×10^{-16} 2×10^{-5} MolarCumulative CumulativeTrauth et al., 1991 Trauth et al., 1991 Trauth et al., 1991 Pu ⁵⁺ Pu ⁵⁺ 6×10^{-10} 2.0×10^{-16} 4×10^{-6} Molar MolarCumulative Trauth et al., 1991 Trauth et al., 1991 Trauth et al., 1991 U ⁴⁺ Tauth et al. 1.0^{-15} 5×10^{-16} Molar MolarCumulative Trauth et al., 1991 Trauth et al., 1991 U ⁴⁺ U ⁴⁺ 1×10^{-15} 5×10^{-2} Molar MolarCumulative Trauth et al., 1991 Trauth et al., 1991 U ⁶⁺ Volume Fractions of IDB Categories Metal/Glass 3.76×10^{-1} 2.76×10^{-1} noneNormal NormalSee text, Table 3.4-5 Combustibles 3.84×10^{-1} 0 2.76×10^{-1} UniformSee text.	Stoichiometry	5 x 10 ⁻¹	0 1	Ì	none	Uniform	Brush and Anderso Lappin et al., 1989, p.
Inundated rate 3.2×10^{-9} 0 1.6×10^{-8} mol/kg/s**CumulativeBrush, July 8, 1991, (see Appendix A)Relative humid rate 1×10^{-1} 0 2×10^{-1} noneUniformBrush, July 8, 1991, (see Appendix A)Stoichiometry 8.35×10^{-1} 0 1.67 noneUniformBrush and Ander Lappin et al., 1989 10.Dissolved Concentrations (Solubility)*** 	Microbiological						
Relative humid rate1 x 10 ⁻¹ 02 x 10 ⁻¹ noneUniformBrush, July 8, 1991, (see Appendix A)Stoichiometry 8.35 x 10 ⁻¹ 01.67noneUniformBrush, July 8, 1991, (see Appendix A)Dissolved Concentrations (Solubility)***Am ³⁺ 1 x 10 ⁻⁹ $5 x 10^{-14}$ 1.4MolarCumulative CumulativeTrauth et al., 1991 Trauth et al., 1991Np ⁴⁺ $6 x 10^{-9}$ $3 x 10^{-16}$ $2 x 10^{-5}$ MolarCumulative CumulativeTrauth et al., 1991Pu ⁴⁺ $6 x 10^{-10}$ $2.0 x 10^{-16}$ $4 x 10^{-6}$ MolarCumulative CumulativeTrauth et al., 1991Pu ⁵⁺ $6 x 10^{-10}$ $2.5 x 10^{-17}$ $5.5 x 10^{-4}$ MolarCumulative CumulativeTrauth et al., 1991Pu ⁵⁺ $6 x 10^{-10}$ $2.5 x 10^{-17}$ $5.5 x 10^{-4}$ MolarCumulative CumulativeTrauth et al., 1991Util 4 $1 x 10^{-4}$ $1 x 10^{-15}$ $5 x 10^{-2}$ MolarCumulative CumulativeTrauth et al., 1991UdeUtil 4 $1 x 10^{-7}$ $1 mo^{-1}$ $1 x 0^{-7}$ MolarCumulative CumulativeTrauth et al., 1991UdeUtil 4 $1 x 10^{-15}$ $5 x 10^{-1}$ $1 x 0^{-1}$ $1 x 0^{-1}$ Trauth et al., 1991UdeUtil 4 <t< td=""><td></td><td>3.2 x 10⁻⁹</td><td>0 1</td><td>1.6 x 10⁻⁸</td><td>mol/kg/s**</td><td>Cumulative</td><td>Brush, July 8, 1991, M (see Appendix A)</td></t<>		3.2 x 10 ⁻⁹	0 1	1.6 x 10 ⁻⁸	mol/kg/s**	Cumulative	Brush, July 8, 1991, M (see Appendix A)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Relative						(
Stoichiometry 8.35×10^{-1} 0 1.67 noneUniformBrush and Ander Lappin et al., 1989 10.Dissolved Concentrations (Solubility)*** Am^{3+} 1×10^{-9} 5×10^{-14} 1.4 MolarCumulativeTrauth et al., 1991 Trauth et al., 1991Np4+ 6×10^{-9} 3×10^{-16} 2×10^{-5} MolarCumulativeTrauth et al., 1991Np5+ 6×10^{-7} 3×10^{-11} 1.2×10^{-2} MolarCumulativeTrauth et al., 1991Pu4+ 6×10^{-10} 2.0×10^{-16} 4×10^{-6} MolarCumulativeTrauth et al., 1991Pu5+ 6×10^{-10} 2.5×10^{-17} 5.5×10^{-4} MolarCumulativeTrauth et al., 1991Pu5+ 6×10^{-10} 2.5×10^{-16} 4×10^{-6} MolarCumulativeTrauth et al., 1991Pu5+ 6×10^{-10} 2.5×10^{-16} 4×10^{-6} MolarCumulativeTrauth et al., 1991Th4+ 1×10^{-10} 5.5×10^{-16} 4×10^{-2} MolarCumulativeTrauth et al., 1991U6+ 2×10^{-3} 1×10^{-7} 1MolarCumulativeTrauth et al., 1991U6+ 2.76×10^{-1} 4.76×10^{-1} noneNormalSee text, Table 3.4-5Combustibles 3.84×10^{-1} 2.84×10^{-1} noneNormalSee text, Table 3.4-5Initial waste 	humid rate	1 x 10 ⁻¹	0 2	2 x 10 ⁻¹	none	Uniform	Brush, July 8, 1991, M (see Appendix A)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Stoichiometry	8.35 x 10 ⁻¹	0	1.67	none	Uniform	Brush and Anderso Lappin et al., 1989,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dissolved Concentra	tions (Solubility)	***				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Δm3+			14	Molar	Cumulative	Trauth et al 1001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No4+						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Np5+						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6 x 10-10		i 4 v 10-6			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6v10-10					,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1v10-10					
U6 + 2x10 ⁻³ 1x10 ⁻⁷ 1 Molar Cumulative Trauth et al., 1991 Volume Fractions of IDB Categories Metal/Glass 3.76 x 10 ⁻¹ 2.76 x 10 ⁻¹ 4.76 x 10 ⁻¹ none Normal See text, Table 3.4-5 Combustibles 3.84 x 10 ⁻¹ 2.84 x 10 ⁻¹ 4.84 x 10 ⁻¹ none Normal See text, Table 3.4-5 Initial waste saturation 1.38 x 10 ⁻¹ 0 2.76 x 10 ⁻¹ Uniform See text.							
Metal/Glass 3.76 x 10 ⁻¹ 2.76 x 10 ⁻¹ 4.76 x 10 ⁻¹ none Normal See text, Table 3.4-5 Combustibles 3.84 x 10 ⁻¹ 2.84 x 10 ⁻¹ 4.84 x 10 ⁻¹ none Normal See text, Table 3.4-5 Initial waste saturation 1.38 x 10 ⁻¹ 0 2.76 x 10 ⁻¹ Uniform See text.						-	
Metal/Glass 3.76 x 10 ⁻¹ 2.76 x 10 ⁻¹ 4.76 x 10 ⁻¹ none Normal See text, Table 3.4-5 Combustibles 3.84 x 10 ⁻¹ 2.84 x 10 ⁻¹ 4.84 x 10 ⁻¹ none Normal See text, Table 3.4-5 Initial waste saturation 1.38 x 10 ⁻¹ 0 2.76 x 10 ⁻¹ Uniform See text.	Volume Fractions of	IDB Categories					
Combustibles 3.84 x 10 ⁻¹ 2.84 x 10 ⁻¹ 4.84 x 10 ⁻¹ none Normal See text, Table 3.4-5 Initial waste saturation 1.38 x 10 ⁻¹ 0 2.76 x 10 ⁻¹ Uniform See text.			2.76 x 10 ⁻¹	4.76 x 10-1	none	Normal	See text. Table 3.4-9
saturation 1.38 x 10 ⁻¹ 0 2.76 x 10 ⁻¹ Uniform See text.		4					See text, Table 3.4-9
saturation 1.38 x 10 ⁻¹ 0 2.76 x 10 ⁻¹ Uniform See text.	Initial waste						
		1.38 x 10 ⁻¹	0	2.76 x 10 ⁻¹		Uniform	See text.
	Eh-pH Conditions	0.5	0	1.0	none	Uniform	See text.

Table 6.0-2. Distributions of Sample Parameters in December 1991 WIPP Performance Assessment for Engineered Barriers

-Np, Pu, and Th — only one species was used in each sample. The species were rank For the following elements -56 58 correlated at r = 0.99.

SUMMARY

					Distribution	
Parameter	Median	Rar	nge	Units	Туре	Source
Agents Acting on Dispo						<u> </u>
Intrusion Borehole F						
Diameter	3.55 x 10 ⁻¹	2.67 x 10 ⁻¹	4.44 x 10 ⁻¹	m	Uniform	See text.
Permeability (k)	3.16 x 10 ⁻¹²	1 x 10 ⁻¹⁴	1 x 10 ⁻¹¹	m ²	Lognormal	Freeze and Cherry
						Table 2.2 (clean sand)
Climate parameter						
Recharge amplit						
factor	8x10 ⁻²	0	1.6x10 ⁻¹	none	Uniform	See text.
Probability Model for Se	cenarios					
Area of pressurized	brine					
reservoir	4.0 x 10 ⁻¹	2.5 x 10 ⁻¹	5.52 x 10 ⁻¹	none	Cumulative	See text.
Rate constant in Poi	isson					
drilling model, A(t)	5.2 x 10 ⁻¹²	0 <	1.04 x 10 ⁻¹¹	s-1	Uniform	40 CFR 191.
-						

Table 6.0-3. Distributions of Sample Parameters in December 1991 WIPP Performance Assessment for Agents Acting on Disposal System and Probability Models for Scenarios

Selection Procedure for Parameters Sampled in 1991

A parameter was chosen for sampling in the 1991 PA calculations if it fulfilled one of two 8 criteria: (1) the parameter proved to be sensitive in the 1990 sensitivity analyses (Helton et 5 al., 1991); or (2) the parameter was an imprecisely known quantity in a consequence model 6 first formally used in the present (1991) series of calculations. Examples of parameters that 7 fulfilled Criterion 1 are Culebra partition coefficients and dissolved concentrations 8 (solubilities including Eh-pH conditions). Examples of parameters that fulfilled Criterion 2 9 are the parameters of dual-porosity transport in the Culebra (dispersivity, fracture spacing, 10 matrix and fracture porosities); material properties of the anhydrite layers within the Salado 11 Formation (pore pressure, permeability, porosity); gas generation rates in unmodified waste 12 forms; volume fractions of unmodified waste forms; and constants in probability model for 13 human intrusion scenarios (area of pressurized brine reservoir, rate constant in Poisson model 14 of exploratory drilling). Some imprecisely known parameters must be sampled in any PA 15 exercise that uses the results of certain models; examples of this kind of parameter are the 16 transmissivity field, intrusion-borehole flow parameters (permeability, porosity), and the 17 recharge factor for climatic change (Swift, October 10, 1991, Memo [Appendix A]). 18 19

SUMMARY

```
Consequence Models for WIPP Disposal System (42 + 3 Variables)
1
2
     Geologic Barriers (22 Variables)
3
4
     Halite within Salado Formation Near Repository (1 variable)
6
        Permeability (1)
7
        Sampled in 1990 But Omitted in 1991
8
            Compressibility - not very important in 1990
9
10
     Anhydrite Layers within Salado Formation (4 variables)
11
        Brine Pressure at Repository Level (1)
12
        Permeability, Intact (1)
13
        Porosity, Intact (1)
14
        Threshold pressure (1)
15
16
     Castile Formation Brine Reservoir (2 variables)
17
        Bulk Storativity (S_h) (1)
18
        Initial Pressure (1)
19
20
     Culebra Dolomite Member (13 variables)
21
        Dispersivity (1)
22
23
        Matrix Porosity (1)
        Fracture Porosity (1) (no quantitative correlation with T)
24
        Fracture Spacing (1) (no quantitative correlation with T)
25
        Retardation, Matrix and Fracture (10=5x2)
26
        Transmissivity Field (1) (0 - 60, uniform distribution)
27
        Sampled in 1990 But Omitted in 1991
28
            Tortuosity — not much spatial change in transport model domain
29
30
     Engineered Barriers (15 + 3 Variables)
31
32
     Unmodified Waste Form
38
35
        Gas Generation Rates for Corrosion and Degradation in Humid and Saturated Conditions
        (4)
36
        Corrosion stoichiometry (1)
37
        Microbial stoichiometry (1)
38
        Dissolved Concentrations (Solubility) (5 + 3) - 3 correlated at r = 0.99 for modeling
39
40
        convenience
         Volumes of Metal and Combustibles (2)
41
        Initial Waste Saturation (1)
42
         Eh-pH Conditions (1)
43
44
        Sampled in 1990 But Omitted in 1991
            Molecular Diffusion -- Species dependent in 1991
45
46
     Agents Acting on Disposal System (3 Variables)
47
48
         Recharge (1) (includes leakage from subsidence)
60
         Intrusion Borehole Permeability and Drill Bit Diameter (2) (based on deep gas reservoir
51
         target in 1991)
52
53
     (page date: 15-NOV-91)
                                                6-6
                                                                     (database version: X-2.19PR)
```

Probability Model for Scenarios (2 Variables)

- 2
- 8 Area of Pressurized Brine Reservoir (1)
- 5 Rate Constant in Poisson Drilling Model (1)
- 6 Sampled in 1990 but Omitted in 1991
- 7 Number of Hits -- Defining variable for computational scenario
- 8 Room Number -- Area of brine reservoir determines probability of hitting brine reservoir in
- 9 1991; location for transport is fixed at the center of the Disposal Region
- 10 *Time of Intrusion* -- Defining variable for computational scenario

REFERENCES	
Allison, G. B. 1988. "A Review of Some of the Physical, Chemical, and Isotopic Technique Available for Estimating Groundwater Recharge," in I. Simmers (ed.), <i>Estimation of Natura</i> <i>Groundwater Recharge</i> . NATO ASI series, series C, vol. 222. Dordrecht, Holland: D. Reide pp. 49-72.	al
Anderson, D. R., M. G. Marietta, and M. S. Tierney. 1990. "Request for Assistance in Assigning Probability Distribution to the Parameters Being Used for the Preliminar Performance Assessment of the WIPP relating to EPA 40 CFR 191," Memo 2 in Appendix A of Rechard et al. 1990. Data Used in Preliminary Performance Assessment of the Waste Isolation Pilot Plant (1990). SAND89-2408. Albuquerque, NM: Sandia National Laboratories.	y of
Anderson, D. R., K. M. Trauth, and S. C. Hora. 1991. "The Use of Expert Elicitation of Quantify Uncertainty in Incomplete Sorption Data Bases for Waste Isolation Pilot Plan Performance Assessment." SAND91-7099C. Presented at the Organization for Econom. Cooperation and Development, Nuclear Energy Agency Sorption Workshop '91, Interlaked Switzerland, October 16, 1991.	nt ic
Arguello, J. G. 1988. WIPP Panel Entryway Seal-Numerical Simulation of Seal Composi Interaction for Preliminary Seal Design Evaluation. SAND87-2804. Albuquerque, NM: Sand National Laboratories.	
Austin, E. H. 1983. Drilling Engineering Handbook. Boston, MA: International Huma Resources Development Corporation.	in
Avis, J. D., and G. J. Saulnier, Jr. 1990. Analysis of the Fluid-Pressure Responses of the Rustler Formation at H-16 to the Construction of the Air-Intake Shaft at the Waste Isolatic Pilot Plant (WIPP) Site. SAND89-7067. Albuquerque, NM: Sandia National Laboratories.	he on
Bachman, G. O. 1981. Geology of Nash Draw, Eddy County, New Mexico. U.S. Geologic Survey Open-File Report 81-31. Albuquerque, NM: U.S. Geological Survey.	al
Barnhart, B. J., E. W. Campbell, E. Martinez, D. E. Caldwell, and R. Hallett. 1980. Potential Microbial Impact on Transuranic Wastes Under Conditions Expected in the Waste Isolation Pil Plant (WIPP), Annual Report, October 1, 1978-September 30, 1979. LA-8297-PR. Los Alamos NM: Los Alamos National Laboratories.	ot
Bayley, S. G., M. D. Siegel, M. Moore, and S. Faith. 1990. Sandia Sorption Data Manageme System Version 2 (SSDMS11). SAND89-0371. Albuquerque, NM: Sandia Nation Laboratories.	
Bear, J. 1972. Dynamics of Fluids in Porous Media. New York: American Elsevier Publishin Company, Inc.	ng
Bear, J., and A. Verruijt. 1987. Modeling Groundwater Flow and Pollution. Boston, MA: Reidel Publishing Company, p. 126.	D.
Beauheim, R. L. 1987a. Analysis of Pumping Tests of the Culebra Dolomite Conducted at the H-3 Hydropad at the Waste Isolation Pilot Plant (WIPP) Site. SAND86-2311. Albuquerqu NM: Sandia National Laboratories.	he Ie,

Beauheim, R. L. 1987b. Interpretation of the WIPP-13 Multipad Pumping Test of the Culebra 1 Dolomite at the Waste Isolation Pilot Plant (WIPP) Site. SAND87-2456. Albuquerque, NM: 2 Sandia National Laboratories. 3 4 Beauheim, R. L. 1987c. Interpretations of Single-Well Hydraulic Tests Conducted at and Near 5 the Waste Isolation Pilot Plant (WIPP) Site. 1983-1987. SAND87-0039. Albuquerque, NM: 6 Sandia National Laboratories. 7 8 Beauheim, R. L. 1989. Interpretation of H-11b4 Hydraulic Tests and the H-11 Multipad 9 Pumping Test of the Culebra Dolomite at the Waste Isolation Pilot Plant (WIPP) Site. 10 SAND89-0536. Albuquerque, NM: Sandia National Laboratories. 11 12 Beauheim, R. L. 1990. "Review of Parameter Values to be Used in Performance Assessment," 13 Memo 3c in Appendix A of Rechard et al. 1990. Data Used in Preliminary Performance 14 Assessment of the Waste Isolation Pilot Plant (1990). SAND89-2408. Albuquerque, NM: 15 Sandia National Laboratories. 16 17 Beauheim, R. L., G. J. Saulnier, and J. D. Avis. 1990. Interpretation of Brine-Permeability 18 Tests of the Salado Formation at the Waste Isolation Pilot Plant Site: First Interim Report. 19 SAND90-0083. Albuquerque, NM: Sandia National Laboratories. 20 21 Beauheim, R. L., G. J. Saulnier, and J. D. Avis. 1991. Interpretation of Brine-Permeability 22 Tests of the Salado Formation at the Waste Isolation Pilot Plant: First Interim Report. 23 SAND90-0083. Albuquerque, NM: Sandia National Laboratories. 24 25 Bechtel, Inc. 1985. Quarterly Geotechnical Field Data Report, December 1985. WIPP-DOE-211. 26 Prepared for the U.S. Department of Energy. San Francisco, CA: Bechtel National, Inc. 27 28 Bechtel, Inc. 1986. WIPP Design Validation Final Report. DOE/WIPP-86-010. Prepared for 29 U.S. Department of Energy. San Francisco, CA: Bechtel National, Inc. 30 31 Bertram-Howery, S. G., M. G. Marietta, D. R. Anderson, K. F. Brinster, L. S. Gomez, R. V. 32 Guzowski, and R. P. Rechard. 1988. Draft Forecast of the Final Report for the Comparison to 33 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant. SAND88-1452. Albuquerque, 34 NM: Sandia National Laboratories. 35 36 Bertram-Howery, S. G., M. G. Marietta, R. P. Rechard, P. N. Swift, D. R. Anderson, B. Baker, 37 J. Bean, W. Beyeler, K. F. Brinster, R. V. Guzowski, J. Helton, R. D. McCurley, D. K. Rudeen, 38 J. Scheiber, and P. Vaughn. 1990. Preliminary Comparison with 40 CFR Part 191, Subpart B 39 for the Waste Isolation Pilot Plant, December 1990, SAND90-2347. Albuquerque, NM: Sandia 40 National Laboratories. 41 42 43 Bertram-Howery, S. G., and R. L. Hunter. 1989. Preliminary Plan for Disposal-System Characterization and Long-Term Performance Evaluation of the Waste Isolation Pilot Plant. 44 45 SAND89-0178. Albuquerque, NM: Sandia National Laboratories. 46 Bertram-Howery, S. G., and P. Swift. 1990. Status Report: Potential for Long-Term Isolation 47 by the Waste Isolation Pilot Plant Disposal System, 1990. SAND90-0616. Albuquerque, NM: 48 Sandia National Laboratories. 49 50 Biot, M. A. 1991. "General Theory of Three-Dimensional Consolidation." Journal of Applied 51 Physics vol. 12, February 1941, pp. 155-164. 52 53

Black, S. R., R. S. Newton, and D. K. Shukla, eds. 1983. "Brine Content of the Facility Interval
 Strata" in *Results of the Site Validation Experiments*, Vol. II, Supporting Document 10.
 Carlsbad, NM: U.S. Department of Energy.

- 5 Blom, G. 1989. Probability and Statistics: Theory and Applications. New York: Springer-6 Verlag.
- Borns, D. J. 1985. Marker Bed 139: A Study of Drillcore From a Systematic Array.
 SAND85-0023. Albuquerque, NM: Sandia National Laboratories.
- Bredenkamp, D. B. 1988a. "Quantitative Estimation of Ground-Water Recharge in Dolomite,"
 in I. Simmers (ed.), *Estimation of Natural Groundwater Recharge*. NATO ASI series, series C,
 Vol. 222. Dordrecht, Holland: D. Reidel. pp. 449-460.
- Bredenkamp, D. B. 1988b. "Quantitative Estimation of Ground-Water Recharge in the
 Pretoria-Rietondale Area," in I. Simmers (ed.), *Estimation of Natural Groundwater Recharge*.
 NATO ASI series, series C, vol. 222. Dordrecht, Holland: D. Reidel. pp. 461-476.
- Brinster, K. F. 1990a. "Transmissivity Zones in Culebra Dolomite Member of Rustler
 Formation," Memo 8 in Appendix A of Rechard et al. 1990. Data Used in Preliminary
 Performance Assessment of the Waste Isolation Pilot Plant (1990). SAND90-2408.
 Albuquerque, NM: Sandia National Laboratories.
- Brinster, K. F. 1990b. "Transmissivities and Pilot Points for the Culebra Dolomite Member,"
 Memo 9 in Appendix A of Rechard et al. 1990. Data Used in Preliminary Performance
 Assessment of the Waste Isolation Pilot Plant (1990). SAND90-2408. Albuquerque, NM:
 Sandia National Laboratories.
- Brinster, K. F. 1990c. "Well Data from Electric Logs," Memo 10 in Appendix A of Rechard et
 al. 1990. Data Used in Preliminary Performance Assessment of the Waste Isolation Pilot Plant
 (1990). SAND89-2408. Albuquerque, NM: Sandia National Laboratories.
- Brinster, K. F. 1991. Preliminary Geohydrologic Conceptual Model of the Los Medaños Region
 Near the Waste Isolation Pilot Plant for the Purpose of Performance Assessment. SAND89-7147.
 Albuquerque, NM: Sandia National Laboratories.
- Broc, R., ed. 1982. Drilling Mud and Cement Slurry Rheology Manual. Houston, TX: Gulf Publishing Company.
- Brooks, R. H., and A. T. Corey. 1964. "Hydraulic Properties of Porous Media," Hydrology
 Papers, No. 3. Fort Collins, CO: Colorado State University.
- Brush, L. H. 1988. Feasibility of Disposal of High-Level Radioactive Wastes into the Seabed:
 Review of Laboratory Investigations of Radionuclide Migration Through Deep-Sea Sediments.
 SAND87-2438. Albuquerque, NM: Sandia National Laboratories.
- Brush, L. H. 1990. Test Plan for Laboratory and Modeling Studies of Repository and
 Radionuclide Chemistry for the Waste Isolation Pilot Plant. SAND90-0266. Albuquerque, NM:
 Sandia National Laboratories.
- 50

4

7

10

14

18

23

28

32

36

39

- Brush, L. H., and D. R. Anderson. 1989. "Appendix E: Estimates of Radionuclide
 Concentrations in Brines" in Marietta et al. 1989. Performance Assessment Methodology
 Demonstration: Methodology Development for Purposes of Evaluating Compliance with EPA 40
 CFR Part 191, Subpart B. for the Waste Isolation Pilot Plant. SAND89-2027. Albuquerque,
 NM: Sandia National Laboratories.
- 56

Brush, L. H., and A. R. Lappin. 1990. "Additional Estimates of Gas Production Rates and 1 Radionuclide Solubility for Use in Models of WIPP Disposal Rooms," Memo 4 in Appendix A of 2 Rechard et al. 1990. Data Used in Preliminary Performance Assessment of the Waste Isolation 3 Pilot Plant (1990). SAND89-2408. Albuquerque, NM: Sandia National Laboratories. 4 5 Buck, A. D. 1985. Development of a Sanded Nonsalt Expansive Grout for Repository Sealing 6 Application. Miscellaneous Paper SL-85-6. Vicksburg, MS: Department of the Army, 7 Waterways Experimental Station. 8 9 Buddenberg, J. W., and C. R. Wilke. 1949. Ind. Eng. Chem. 41: 1345-1347. 10 11 Bush, D. D., and S. Piele. 1986. A Full Scale Borehole Sealing Test in Salt Under Simulated 12 Downhole Conditions: Volume 1. BMI/ONWI-573(2). Columbus, OH: Office of Nuclear Waste 13 14 Isolation, Battelle Memorial Institute. 15 Butcher, B. M. 1989. Waste Isolation Pilot Plant Simulated Waste Compositions and Mechanical 16 Properties. SAND89-0372. Albuquerque, NM: Sandia National Laboratories. 17 18 Butcher, B. M. 1990. "Disposal Room Porosity and Permeability Values for Disposal Room 19 Performance Assessment," Memo 5 in Appendix A of Rechard et al. 1990. Data Used in 20 Preliminary Performance Assessment of the Waste Isolation Pilot Plant (1990). SAND89-2408. 21 Albuquerque, NM: Sandia National Laboratories. 22 23 Butcher, B. M., T. W. Thompson, R. G. VanBuskirk, and N. C. Patti. 1991. Mechanical 24 Compaction of WIPP Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National 25 Laboratories. 26 27 Caldwell, D. E. 1981. Microbial Biogeochemistry of Organic Matrix Transuranic Waste. 28 Unpublished Report submitted to M. A. Molecke, June 17, 1981. Albuquerque, NM: University 29 of New Mexico. 30 31 Caldwell, D. E., R. C. Hallett, M. A. Molecke, E. Martinez, and B. J. Barnhart. 1988. Rates of 32 Co2 Production from the Microbial Degradation of Transuranic Wastes under Simulated Geologic 33 Isolation Conditions. SAND87-7170. Albuquerque, NM: Sandia National Laboratories. 34 35 Carmichael, R. S., ed. 1984. CRC Handbook of Physical Properties of Rocks, Vol. III. Boca 36 Raton, FL: CRC Press, Inc. 37 38 Cauffman, T. L., A. M. LaVenue, and J. P. McCord. 1990. Ground-Water Flow Modeling of 39 the Culebra Dolomite: Volume II Data Base. SAND89-7068/2. Albuquerque, NM: Sandia 40 National Laboratories. 41 42 Chapman, N. A., and J. A. T. Smellie. 1986. "Natural Analogues to the Conditions around a 43 Final Repository for High-Level Radioactive Waste." Chemical Geology vol. 55, no. 3/4. 44 45 46 Cheeseman, R. J. 1978. Geology and Oil/Potash Resources of the Delaware Basin, Eddy and Lea Counties, New Mexico. New Mexico Bureau of Mines and Mineral Resources Circular 159. 47 Socorro, NM: New Mexico Bureau of Mines and Mineral Resources. 7-14. 48 49 Christensen, C. L., and W. W. Petersen. 1981. The Bell Canyon Test Summary Report. 50 SAND80-1375. Albuquerque, NM: Sandia National Laboratories. 51 52 Clark, S. P. 1966. Handbook of Physical Constants. New York: The Geological Society of 53 America, Inc. 54 55

- 1 Colebrook, C. F. 1938. "Turbulent Flow in Pipes, with Particular Reference to the Transition 2 Region Between the Smooth and Rough Pipe Laws," J. Inst. Civ. Eng. Long. 11: 133-156.
- 4 Conover, W. J. 1980. *Practical Nonparametric Statistics*. 2nd ed. New York: John Wiley and 5 Sons.
- Cranwell, R. M., and J. C. Helton. 1981. "Uncertainty Analysis for Geologic Disposal of Radioactive Waste," in D. C. Kocher, ed., Proceedings of the Symposium on Uncertainties Associated with the Regulation of the Geologic Disposal of High-Level Radioactive Waste, Gatlinburg, TN, March 9-13, 1981.
- Cranwell, R. M., R. V. Guzowski, J. E. Campbell, and N. R. Ortiz. 1990. Risk Methodology for Geologic Disposal of Radioactive Waste: Scenario Selection Procedure. SAND80-1429, NUREG/CR-1667. Albuquerque, NM: Sandia National Laboratories.
- Cygan, R. T. 1991. The Solubility of Gases in NaCl Brine and a Critical Evaluation of
 Available Data. SAND90-2848. Albuquerque, NM: Sandia National Laboratories.
- Darley, H. C. H. 1969. "A Laboratory Investigation of Borehole Stability." Journal of
 Petroleum Technology, July, 883-392.
- Darley, H. C. H., and G. R. Gray. 1988. Composition and Properties of Drilling and
 Completion Fluids. Houston, TX: Gulf Publishing Company.
- Davies, P. B. 1989. Variable-Density Ground-water Flow and Palehydrology in the Waste
 Isolation Pilot Plant (WIPP) Region, Southeastern New Mexico. Open File Report 88-490.
 Albuquerque, NM: U.S. Geological Survey, Dept. of the Interior.
- Davies, P. B. 1991. Evaluation of the Role of Threshold Pressure in Controlling Flow of Waste Generated Gas into Bedded Salt at the Waste Isolation Pilot Plant. SAND90-3246.
 Albuquerque, NM: Sandia National Laboratories.
- Davies, P. B., and A. M. LaVenue. 1990a. "Comments on Model Implementation and Data for
 Use in August Performance Assessment Calculations," Memo 3b in Appendix A of Rechard et
 al. 1990. Data Used in Preliminary Performance Assessment of the Waste Isolation Pilot Plant
 (1990). SAND89-2408. Albuquerque, NM: Sandia National Laboratories.
- Davies, P. B., and A. M. LaVenue. 1990b. "Additional Data for Characterizing 2-Phase Flow
 Behavior in Waste-Generated Gas Simulations and Pilot Point Information for Final Culebra
 2-D Model," Memo 11 in Appendix A of Rechard et al. 1990. Data Used in Preliminary
 Performance Assessment of the Waste Isolation Pilot Plant. SAND89-2408. Albuquerque, NM:
 Sandia National Laboratories.
- Davies, P. B., L. H. Brush, and F. T. Mendenhall. 1991. "Assessing the Impact of Waste-Generated Gas from the Degradation of Transuranic Waste at the Waste Isolation Pilot Plant
 (WIPP): An Overview of Strongly Coupled Chemical, Hydrologic, and Structural Processes."
- 47 Proceedings of NEA Workshop on Gas Generation and Release from Radioactive Waste
- Repositories, Aix-en-Provence, France, September 23, 1991. Organisation for Economic Co operation and Development (OECD).
- 50

З

6

11

28

32

Dosch, R. G. 1979. "Radionuclide Migration Studies Associated with the WIPP Site in Southern 1 New Mexico" in G. J. McCarthy, ed., Scientific Basis for Nuclear Waste Management. New 2 York: Plenum Publishing Company 1: 395-398. 3 4 Dullien, F. A. L. 1979. Porous Media Fluid Transport and Pore Structure. New York: 5 Academic Press. 6 7 Earth Technology Corporation. 1988. Final Report for Time Domain Electromagnetic (TDEM) 8 Surveys at the WIPP Site. SAND87-7144. Albuquerque, NM: Sandia National Laboratories. 9 10 Fanchi, J. R., J. E. Kennedy, and D. L. Dauben. 1987. BOASTII: A Three-Dimensional 11 Three-Phase Black Oil Applied Simulation Tool. DOE/BC-88/2/SP. U.S. Department of 12 13 Energy. 14 Frederickson, A. G. 1960. "Helical Flow of an Annular Mass of Visco-Elastic Fluid." Chemical Engineering Science vol. II: 252-259. 15 16 17 Freeze, R. A. and J. C. Cherry, 1979. Groundwater. Englewood Cliffs, NJ: Prentice-Hall, Inc. 18 19 Gorham, E. 1990. "Data for Use in August Performance Assessment Calculations," Memo 3 in 20 Appendix A of Rechard et al. 1990. Data Used in Preliminary Performance Assessment of the 21 Waste Isolation Pilot Plant (1990). SAND89-2408. Albuquerque, NM: Sandia National 22 Laboratories. 23 24 Gonzales, M. M. 1989. Compilation and Comparison of Test - Hole Location Surveys in the 25 Vicinity of the Waste Isolation Pilot Plant Site. SAND88-1065. Albuquerque, NM: Sandia 26 27 National Laboratories. 28 Graboski, M. S., and T. E. Daubert. 1979. "A Modified Soave Equation of State for Phase 29 Equilibrium Calculations. 3. Systems Containing Hydrogen," in Ind. Eng. Chem. Process Des. 30 Dev. vol. 18, no. 2: 300-306. 31 32 Guzowski, R. V. 1990. Preliminary Identification of Scenarios that May Affect the Release and 33 Transport of Radionuclides from the Waste Isolation Pilot Plant, Southeastern New Mexico. 34 SAND89-7149. Albuquerque, NM: Sandia National Laboratories. 35 36 Guzowski, R. V. 1991. Applicability of Probability Techniques to Determining the Probability 37 of Occurrence of Potentially Disruptive Intrusive Events at the Waste Isolation Pilot Plant. 38 SAND90-7100. Albuquerque, NM: Sandia National Laboratories. 39 40 Harms, J. C., and C. R. Williamson. 1988. "Deep-water Density Current Deposits of Delaware Mountain Group (Permian), Delaware Basin, Texas and New Mexico." American Association of 41 42 Petroleum Geologists Bulletin vol. 72, no. 3: 299-317. 43 44 Harr, M. E. 1987. Reliability Based Design in Civil Engineering. New York: McGraw Hill 45 46 Book Co. 47 Haug, A., V. A. Kelley, A. M. LaVenue, and J. F. Pickens. 1987. Modeling of Groundwater 48 Flow in the Culebra Dolomite at the Waste Isolation Pilot Plant (WIPP) Site: Interim Report. 49 Contractor Report SAND86-7167. Albuquerque, NM: Sandia National Laboratories. 50 51

Helton, J. C., J. M. Griesmeyer, F. E. Haskin, R. L. Iman, C. N. Amos, and W. B. Murfin.
1988. "Integration of the NUREG-1150 Analyses: Calculation of Risk and Propagation of Uncertainties." Proceedings of the Fifteenth Water Reactor Safety Research Information Meeting, Washington, D.C. U.S. Nuclear Regulatory Commission. 151-176.

Helton, J. C., J. W. Garner, R. D. McCurley, and D. K. Rudeen. 1991. Sensitivity Analysis
 Techniques and Results for Performance Assessment at the Waste Isolation Pilot Plant.
 Contractor Report SAND90-7103. Albuquerque, NM: Sandia National Laboratories.

- 10 Henderson, F. M. 1966. Open Channel Flow. New York: Macmillan Publishing Co.
- Hills, J. M. 1984. "Sedimentation, Tectonism, and Hydrocarbon Generation in Delaware Basin,
 West Texas and Southeastern New Mexico." American Association of Petroleum Geologist
 Bulletin 68: 250-267.
- Hiss, W. L. 1975. Stratigraphy and Ground-Water Hydrology of the Capitan Aquifer,
 Southeastern New Mexico and West Texas, Ph.D. Dissertation. Hydrology Dept, University of
 Colorado, Boulder.
- Holcomb, D. J., and M. Shields. 1987. *Hydrostatic Creep Consolidation of Crushed Salt with Added Water*. SAND87-1990. Albuquerque, NM: Sandia National Laboratories.
- Holt, R. M., and D. W. Powers. 1988. Facies Variability and Post-Depositional Alteration
 Within the Rustler Formation in the Vicinity of the Waste Isolation Pilot Plant. Southeastern New
 Mexico. DOE-WIPP 88-004. Carlsbad, NM: U.S. Department of Energy.
- Holt, R. M., and D. W. Powers. 1990. Geologic Mapping of the Air Intake Shaft at the Waste
 Isolation Pilot Plant. DOE-WIPP 90-051. Carlsbad, NM: U.S. Department of Energy.
- Hora, S. C., and R. L. Iman. 1989. "Expert Opinion in Risk Analysis: The NUREG-1150
 Methodology." Nuclear Science and Engineering 102: 323-331.
- Hora, S. C., D. von Winterfeldt, and K. M. Trauth. 1991. Expert Judgment on Inadvertent
 Human Intrusion into the Waste Isolation Pilot Plant. SAND90-3063. Albuquerque, NM:
 Sandia National Laboratories.
- HP (Hewlett-Packard). 1984. Petroleum Fluids PAC for HP-41C. Corvallis, OR: Hewlett Packard.
- 40 HSWA. 1984. Hazardous and Solid Waste Amendments of 1984. Pub. L. No. 98-616.
- Hunter, R. L. 1985. A Regional Water Balance for the Waste Isolation Pilot Plant (WIPP) Site
 and Surrounding Area. SAND84-2233. Albuquerque, NM: Sandia National Laboratories.
- Hunter, R. L. 1989. Events and Processes for Constructing Scenarios for the Release of
 Transuranic Waste from the Waste Isolation Pilot Plant, Southeastern New Mexico.
 SAND89-2546. Albuquerque, NM: Sandia National Laboratories.
- Hunter, R. L., and C. J. Mann, eds. 1989. Techniques for Determining Probabilities of Events
 and Processes Affecting the Performance of Geologic Repositories: Literature Review. Vol. 1.
 SAND86-0196, NUREG/CR-3964. Albuquerque, NM: Sandia National Laboratories.
- 52

48

9

11

15

19

22

26

29

32

36

39

Huyakorn, P. S., H. O. White, Jr., and S. Panday. 1989. STAFF2D. Herndon, VA: 1 Hydrogeologic, Inc. 2 3 IAEA (International Atomic Energy Agency). 1989. Evaluating the Reliability of Predictions 4 Made Using Environmental Transfer Models. Safety Series Report No. 100. Vienna: 5 International Atomic Energy Agency. 6 7 Ibrahim, M. A., M. R. Tek, and D. L. Katz. 1970. Threshold Pressure in Gas Storage. 8 Arlington, VA: American Gas Association, Inc. Q 10 ICRP, Pub 38. 1983. Radionuclide Transformations Energy and Intensity of Emissions, ICRP 11 Publication 38, Annals of the International Commission on Radiological Protection (ICRP), Vols. 12 11-13. 13 14 IDB (Integrated Data Base). 1987. 1987 Integrated Data Base: Spent Fuel and Radioactive 15 16 Waste Inventories. Projection and Characteristics, DOE/RW-0006 Revision 3. Oak Ridge, TN: Oak Ridge National Laboratory for U.S. Department of Energy. 17 18 IDB (Integrated Data Base). 1988. 1988 Integrated Data Base: Spent Fuel and Radioactive 19 Waste Inventories, Projection and Characteristics, DOE/RW-0006 Revision 4. Oak Ridge, TN: 20 Oak Ridge National Laboratory for U.S. Department of Energy. 21 22 IDB (Integrated Data Base). 1990. 1990 Integrated Data Base: Spent Fuel and Radioactive 23 Waste Inventories, Projection and Characteristics. DOE/RW-0006 Revision 6. Oak Ridge, TN: 24 Oak Ridge National Laboratory for U.S. Department of Energy. 25 26 Iman, R. L., and W. J. Conover. 1980. "Small Sample Sensitivity Analysis Techniques for 27 Computer Models, with and Application to Risk Assessment." Communications in Statistics A9: 28 1749-1842. Rejoinder to comments, pp. 1863-74. 29 30 31 Iman, R. L., and J. C. Helton. 1985. A Comparison of Uncertainty and Sensitivity Analysis Techniques for Computer Models. SAND84-1461, NUREG/CR-3904. Albuquerque, NM: 32 Sandia National Laboratories. 33 34 Imbrie, J., and J. Z. Imbrie. 1980. "Modeling the Climatic Response to Orbital Variations," 35 Science 207: 943-953. 36 37 Iuzzolino, H. J. 1983. Equation of State Development from Shock Tube Calculations. AFWL 38 TR 82-57. Kirtland AFB, NM: Air Force Weapons Laboratory. 39 40 Johnson, N. L., and S. Kotz, 1970a. Continuous Univariate Distributions-1. New York: John 41 Wiley & Sons. 42 43 Johnson, N. L., and S. Kotz, 1970b. Continuous Univariate Distributions-2. New York: John 44 Wiley & Sons. 45 46 47 Jouzel, J., C. Lorius, J. R. Petit, C. Genton, N. I. Barkow, V. M. Kotlvakov, and V. M. Petrov. 1987. "Vostok Ice Core; A Continuous Isotope Temperature Record Over the Last Climatic 48 Cycle (160,000 Years)." Nature 329: 403-408. 49 50 Kaplan, S., and B. J. Garrick. 1981. "On the Quantitative Definition of Risk," Risk Analysis 1: 51 52 11-27. 53

- Kaufman, D. W., ed. 1960. Sodium Chloride, the Production and Properties of Salt and Brine,
 Monograph No. 145. Washington, DC: American Chemical Society.
- Kelley, V. A., and J. F. Pickens. 1986. Interpretation of the Convergent-Flow Tracer Tests
 Conducted in the Culebra Dolomite at the H-3 and H-4 Hydropads at the Waste Isolation Pilot
 Plant (WIPP) Site. SAND86-7161. Albuquerque, NM: Sandia National Laboratories.
- Kelley, V. A., and G. J. Saulnier, Jr. 1990. Core Analysis for Selected Samples from the
 Culebra Dolomite at the Waste Isolation Pilot Plant Site. SAND90-7011. Albuquerque, NM:
 Sandia National Laboratories.
- Kipp, K. L. 1987. HST3D: A Computer Code for Simulation of Heat and Solute Transport in
 Three-Dimensional Groundwater Flow Systems. WRIR 86-4095. Denver, CO: U.S. Geological
 Survey.
- Knapp, H., R. Doring, L. Oellrich, U. Plocker, and J. M. Prausnitz. 1982. "Vapor-Liquid
 Equilibria for Mixtures of Low Boiling Substances" in *Chemistry Data Series*, Vol. 6.
 DECHEMA
- Krauskopf, K. B. 1986. "Thorium and Rare-Earth Metals as Analogs for Actinide Elements" in
 Chemical Geology 55: 323-336.
- Krieg, R. D. 1984. Reference Stratigraphy and Rock Properties for the Waste Isolation Pilot
 Plant (WIPP) Project. SAND83-1908. Albuquerque, NM: Sandia National Laboratories.
- Krumhansl, J. L., K. M. Kimball, and C. L. Stein. 1991. Intergranular Fluid Compositions
 from the Waste Isolation Pilot Plant (WIPP), Southeastern New Mexico. SAND90-0584.
 Albuquerque, NM: Sandia National Laboratories.
- Lallemand-Barres, J. and P. Peaudecerf. 1978. Recherche des Relations Entre les Valeurs
 Mesurèesde la Dispersivité Macroscropique d'un Milieu Aquifère, Ses Autres Charactéristiques
 et ales Conditions de Mesure. Eude Bibliograaphique. Rech. Bull. Bur. Geol. Min. Sér. 2, Sec.
 III, 4-1978. 277-284.
- Lambert, S. J., and J. A. Carter. 1987. Uranium-Isotope Systematics in Groundwaters of the
 Rustler Formation, Northern Delaware Basin, Southeastern New Mexico. SAND87-0388.
 Albuquerque, NM: Sandia National Laboratories.
- Lambert, S. J., and D. M. Harvey. 1987. Stable-Isotope Geochemistry of Groundwater in the
 Delaware Basin of Southeastern New Mexico. SAND87-0138. Albuquerque, NM: Sandia
 National Laboratories.
- Langmuir, D., and J. S. Herman. 1980. "The Mobility of Thorium in Natural Waters at Low
 Temperatures." Geochimica et Cosmochimica Acta 44: 1753-1766.
- 45
 46 Langmuir, D., and A. C. Riese. 1985. "The Thermodynamic Properties of Radium."
 47 Geochimica et Cosmochimica Acta 49: 1593-1601.
- 48

7

11

15

19

22

29

34

38

- Lappin, A. R. 1988. Summary of Site Characterization Studies Conducted from 1983 through
 1987 at Waste Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico. SAND88-0157.
 Albuquerque, NM: Sandia National Laboratories.
- 51 52

Lappin, A. R., R. L. Hunter, D. P. Garber, and P. B. Davies, eds. 1989. Systems Analysis 1 Long-Term Radionuclide Transport, and Dose Assessments, Waste Isolation Pilot Plant (WIPP), 2 Southeastern New Mexico; March 1989. SAND89-0462. Albuquerque, NM: Sandia National з Laboratories. 4 5 LaVenue, A. M., A. Haug, and V. A. Kelley. 1988. Numerical Simulation of Ground-Water 6 Flow in the Culebra Dolomite at the Waste Isolation Pilot Plant (WIPP) Site: Second Interim 7 Report. SAND88-7002. Albuquerque, NM: Sandia National Laboratories. 8 9 LaVenue, A. M., T. L. Cauffman, and J. F. Pickens. 1990. Ground-Water Flow Modeling of 10 the Culebra Dolomite. Volume I: Model Calibration. SAND89-7068. Albuquerque, NM: 11 Sandia National Laboratories. 12 13 Leckie, J. O. 1989. "Simulations of Distribution Coefficients Using Surface Complexation Models," Appendix C in M.D. Siegel, ed., Progress in Development of a Methodology for 14 15 Geochemical Sensitivity Analysis for Performance Assessment: Volume 2. Speciation, Sorption, 16 and Transport in Fractured Media, Letter Report to the U.S. Nuclear Regulatory Commission. 17 18 Li, Y., and S. Gregory. 1974. "Diffusion of Ions in Seawater and in Deep-Sea Sediments," 19 Geochimica et Cosmochimica Acta. 38: 703-714. 20 21 Lynch, A. W., and R. G. Dosch. 1980. Sorption Coefficients for Radionuclides on Samples 22 from the Water-Bearing Magenta and Culebra Members of the Rustler Formation. 23 SAND80-1064. Albuquerque, NM: Sandia National Laboratories. 24 25 26 McKay, M. D., W. J. Conover, and R. J. Beckman. 1979. "A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of OUtput from a Computer Code" in 27 28 Techometrics, vol. 21, no. 2. 29 Mann, C. J., and R. L. Hunter. 1988. "Probabilities of Geologic Events and Processes in 30 Natural Hazards." Zeitschrift fuer Geomorphologie N.F. 67: 39-52. 31 32 Marietta, M. G., S. G. Bertram-Howery, D. R. Anderson, K. F. Brinster, R. V. Guzowski, H. J. 33 Iuzzolino, and R. P. Rechard. 1989. Performance Assessment Methodology Demonstration: 34 Methodology Development for Purposes of Evaluating Compliance with EPA 40 CFR 191, 35 Subpart B, for the WIPP. SAND89-2027. Albuquerque, NM: Sandia National Laboratories. 36 37 Marsily, G. de. 1986. Quantitative Hydrogeology: Groundwater Hydrology for Engineers. 38 Orlando, FL: Academic Press, Inc. 39 40 41 Matalucci, R. V. 1987. In Situ Testing at the Waste Isolation Pilot Plant. SAND87-2382. Albuquerque, NM: Sandia National Laboratories. 42 43 Mercer, J. W. 1983. Geohydrology of the Proposed Waste Isolation Pilot Plant Site, Los 44 Medaños Area, Southeastern New Mexico. U.S. Geological Survey Water Resources Investigation 45 83-4016. 46 47 Mercer, J. W., and B. R. Orr. 1979. Interim Data Report on the Geohydrology of the Proposed 48 Waste Isolation Pilot Plant Site, Southeastern New Mexico. USGS Water-Resources 49 Investigations 79-98. Albuquerque, NM: U.S. Geological Survey. 50 51 52 Mercer, J. W., R. L. Beauheim, R. P. Snyder, and G. M. Fairer. 1987. Basic Data Report for Drilling and Hydrologic Testing of Drillhole DOE-2 at the Waste Isolation Pilot Plant (WIPP) 53 Site. SAND86-0611. Albuquerque, NM: Sandia National Laboratories. 54 55

Miller, D. G. 1982. Estimation of Tracer Diffusion Coefficients of Ions in Aqueous Solution. 1 UCRL-53319. Livermore, CA: Lawrence Livermore National Laboratory. 2 3 Miller, I., and J. E. Freund. 1977. Probabilities and Statistics for Engineers. 2nd ed. 4 Englewood Cliffs, NJ: Prentice-Hall. 5 6 Molecke, M. A. 1979. Gas Generation from Transuranic Waste Degradation: Data Summary 7 and Interpretation. SAND79-1245. Albuquerque, NM: Sandia National Laboratories. 8 9 Munson, D. E., A. F. Fossum, and P. E. Senseny. 1989. Advances in Resolution of 10 Discrepancies between Predicted and Measured In Situ Room Closures. SAND88-2948. 11 Albuquerque, NM: Sandia National Laboratories. 12 13 14 Munson, D. E., J. R. Ball, and R. L. Jones. 1990a. "Data Quality Assurance Controls through the WIPP In Situ Data Acquisition, Analysis and Management System" in Proceedings of the 15 International High-Level Radioactive Waste Management Conference, Las Vegas, NV, April 8-12. 16 Sponsored by American Nuclear Society and ASCE, New York, pp. 1337-1350. 17 18 19 Munson, D. E., R. V. Matalucci, J. R. Ball, and R. L. Jones. 1990b. WIDSAAM: The WIPP In Situ Data Acquisition, Analysis, and Management System. SAND87-2258. Albuquerque, NM: 20 Sandia National Laboratories. 21 22 Munson, D. E., K. L. DeVries, and G. D. Gallahan. 1990c. "Comparison of Calculations and In 23 Situ Results for a Large, Heated Test Room at the Waste Isolation Pilot Plant (WIPP)." 24 Proceedings of 31th U.S. Symposium on Rock Mechanics, Golden, CO, June 18-20. 25 26 27 NEPA. 1969. National Environmental Policy Act of 1969. Pub. L. No. 91-190, 83 Stat, 852. 28 Neretnieks, I., and A. Rasmussen. 1984 "An Approach to Modeling Radionuclide Migration in 29 30 a Medium with Strongly Varying Velocity and Block Sizes along the Flow Path." Water 31 Resources Research vol. 20, no. 12: 1823-1836. 32 Novak, C. F. 1991. An Evaluation of Radionuclide Batch Sorption Data on Culebra Dolomite 33 for Aqueous Compositions Relevant to the Human Intrusion Scenario for the Waste Isolation Pilot 34 Plant (WIPP). SAND91-1299. Albuquerque, NM: Sandia National Laboratories. 35 36 Nowak, E. J., and J. C. Stormont. 1987. Scoping Model Calculations of the Reconsolidation of Crushed Salt in WIPP Shafts. SAND87-0879. Albuquerque, NM: Sandia National 37 38 Laboratories. 39 40 Nowak, E. J., and L. D. Tyler. 1989. "The Waste Isolation Pilot Plant (WIPP) Seal System 41 Performance Program," Proceedings of the Joint NEA/CEC Repositories, Braunschweig, FRG, 42 May 22-25, 1989. 43 44 Nowak, E. J., D. F. McTigue, and R. Beraun. 1988. Brine Inflow to WIPP Disposal Rooms: 45 Data, Modeling and Assessment. SAND88-0112. Albuquerque, NM: Sandia National 46 Laboratories. 47 48 Nowak, E. J., J. R. Tillerson, and T. M. Torres. 1990. Initial Reference Seal System Design: 49 Waste Isolation Pilot Plant (WIPP). SAND90-0355. Albuquerque, NM: Sandia National 50 Laboratories. 51 52 Numbere, D., W. E. Grigham, and M. B. Standing. 1977. Correlations for Physical Properties 53 of Petroleum Reservoir Brines. Palo Alto, CA: Petroleum Research Institute, Stanford 54 University. 55 56

OCD. 1988. State of New Mexico, Energy, Minerals, and Natural Resources Department, Oil 1 Conservation Commission of Oil Conservation Division, Order No. R-111-P, April 21, 1988. 2 з Oldroyd, J. G. 1958. Proceedings of the Royal Society (London) A245: 278. 4 5 Pace, R. O. 1990. Manager, Technology Exchange Technical Services, Baroid Drilling Fluids, 6 Inc., 3000 N. Sam Houston Pkwy. E., Houston, Texas. (Expert Opinion). Letter 1b in Appendix 7 A of Rechard et al. 1990. Data Used in Preliminary Performance Assessment of the Waste 8 Isolation Pilot Plant (1990). SAND89-2408. Albuquerque, NM: Sandia National Laboratories. 9 10 Paine, R. T. 1977. Chemistry Related to the WIPP Site, Draft Final Report, Sandia Contract 11 GTK/07-1488. Albuquerque, NM: Chemistry Department, University of New Mexico. 12 13 Palmer, A. R. 1983. The Decade of North American Geology, 1983 Geologic Time Scale. 14 Geological Society of North America. 15 16 17 Parry, G. W. 1988. "On the Meaning of Probability in Probabilistic Safety Assessment." Reliability Engineering and System Safety 23: 309-314. 18 19 Parthenaides, E., and R. E. Paaswell. 1970. "Erodibility of Channels with Cohesive Boundary," 20 Proceedings of the American Society of Civil Engineers, Journal of the Hydraulics Division, 99: 21 555-558. 22 23 Paté-Cornell, M. E. 1986. "Probability and Uncertainty in Nuclear Safety Decisions." Nuclear 24 Engineering and Design 93: 319-327. 25 26 Perry, R. H., C. H. Chilton, and S. D. Kirkpatrick. 1969. Chemical Engineer's Handbook. New 27 York: McGraw-Hill Book Company. 28 29 Peterson, A. C. 1990. "Preliminary Contact Handled (CH) and Remote Handled (RH) 30 Radionuclide Inventories," Memo 7 in Appendix A of Rechard et al. 1990. Data Used in 31 Preliminary Performance Assessment of the Waste Isolation Plant (1990). SAND89-2408. 32 Albuquerque, NM: Sandia National Laboratories. 33 34 Pickens, J. F., and G. E. Grisak. 1981. "Modeling of Scale-Dependent Dispersion in 35 Hydrolgeologic Systems." Water Resources Research vol. 17, no. 6: 1701-11. 36 37 Popielak, R. S., R. L. Beauheim, S. R. Black, W. E. Coons, C. T. Ellingson, and R. L. Olsen. 38 1983. Brine Reservoirs in the Castile Formation, Southeastern New Mexico, Waste Isolation Pilot 39 Plant (WIPP) Project. TME-3153. Carlsbad, NM: U.S. Department of Energy. 40 41 Powers, D. W., S. J. Lambert, S. E. Shaffer, L. R. Hill, and W. D. Weart, ed. 1978. Geological 42 Characterization Report, Waste Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico. 43 SAND78-1596, vols. 1 and 2. Albuquerque, NM: Sandia National Laboratories. 44 45 Prausnitz, J. M. 1969. Molecular Thermodynamics of Fluid-Phase Equilibria. Englewood 46 Cliffs, NJ: Prentice-Hall, Inc. 47 48 Public Law 96-164. 1979. Department of Energy National Security and Military Applications 49 of Nuclear Energy Authorization Act of 1980. 50 51 RCRA. 1976. Resource, Conservation, and Recovery Act of 1976. Pub. L. No. 94-580, 90 Stat. 52 53 2795. 54

- Rechard, R. P. 1989. Review and Discussion of Code Linkage and Data Flow in Nuclear Waste
 Compliance Assessments. SAND87-2833. Albuquerque, NM: Sandia National Laboratories.
- Rechard, R. P., H. J. Iuzzolino, J. S. Rath, R. D. McCurley, and D. K. Rudeen. 1989. User's
 Manual for CAMCON: Compliance Assessment Methodology Controller. SAND88-1496.
 Albuquerque, NM: Sandia National Laboratories.
- Rechard, R. P., H. J. Iuzzolino, and J. Sandha. 1990a. Data Used in Preliminary Performance
 Assessment at the Waste Isolation Pilot Plant (1990). SAND89-2408. Albuquerque, NM:
 Sandia National Laboratories.
- Rechard, R. P., W. Beyeler, R. D. McCurley, D. K. Rudeen, J. E. Bean, and J. D. Schreiber.
 1990b. Parameter Sensitivity Studies of Selected Components of the Waste Isolation Pilot Plant
 Repository/Shaft System. SAND89-2030. Albuquerque, NM: Sandia National Laboratories.
- Reeves, M., G. Freeze, V. Kelly, J. Pickens, D. Upton, and P. Davies. 1991. Regional Double Porosity Solute Transport in the Culebra Dolomite under Brine-Reservoir-Breach Release
 Conditions: An Analysis of Parameter Sensitivity and Importance. SAND89-7069.
 Albuquerque, NM: Sandia National Laboratories.
- Rice, J. R., and M. P. Cleary. "Stress Diffusion Solutions for Fluid-Saturated Elastic Porous
 Media with Compressible Constituents." *Review of Geophysics and Space Physics* vol. 14, no. 2
 (May 1976): 227-241.
- Richey, S. F., J. G. Wells, K. T. Stephens. 1985. Geohydrology of the Delaware Basin and
 Vicinity, Texas and New Mexico. U.S. Geological Survey Water Resources Investigations Report
 84-4077. Washington, DC: U.S. Geological Survey.
- Riese, A. C. 1982. "Adsorption of Radium and Thorium onto Quartz and Kaolinite: A
 Comparison of Solution/Surface Equilibria Models," Ph.D. Thesis. Colorado School of Mines,
 Golden, CO.
- Rose, W., and W. A. Bruce. 1949. "Evaluation of Capillary Character in Petroleum Reservoir
 Rock." Transactions of the American Institute of Mining and Metallurgical Engineers 186:
 127-142.
- 37 Ross, S. M. 1985. Introduction to Probability Models. 3rd ed. New York: Academic Press, Inc.
- 39 Ross, B. 1989. "Scenarios for Repository Safety Analysis." Engineering Geology 26: 285-299.
- Sargunam, A., P. Riley, K. Arulanadum, and R. B. Krone. 1973. "Physico-Chemical Factors in
 Erosion of Cohesive Soils." Journal of the Hydraulics Division, American Society of Civil
 Engineers 99: 555-558.
- Saulnier, G. J., Jr. 1987. Analysis of Pumping Tests of the Culebra Dolomite Conducted at the
 H-11 Hydropad at the Waste Isolation Pilot Plant (WIPP) Site. SAND87-7124. Albuquerque,
 NM: Sandia National Laboratories.
- Savins, J. G., and G. C. Wallick. 1966. "Viscosity Profiles, Discharge Rates, Pressures, and
 Torques for a Rheologically Complex Fluid in Helical Flow." A.I.Ch.E. Journal vol. 12, no. 2
 (March 1966).
- 52

11

15

20

24

28

36

38

40

- Scheetz, B. E., P. H. Licastro, and D. M. Roy. 1986. A Full Scale Borehole Sealing Test in
 Anhydrite Under Simulated Downhole Conditions, vols. 1 and 2. BMI/ONWI-573(2). Columbus,
 OH: Office of Nuclear Waste Isolation, Battelle Memorial Institute.
- 56

Shakoor, A., and H. R. Hume. 1981. Physical Properties Data for Rock Salt: Chapter 3, 1 Mechanical Properties, NBS Monograph 167. Washington, DC: National Bureau of Standards: 2 103-203. 3 4 Siegel, M. D. 1990. "Representation of Radionuclide Retardation in the Culebra Dolomite in 5 Performance Assessment Calculations," Memo 3a in Appendix A of Rechard et al. 1990. Data 6 Used in Preliminary Performance Assessment of the Waste Isolation Pilot Plant (1990). 7 SAND89-2408. Albuquerque, NM: Sandia National Laboratories. 8 9 Sjaardema, G. D., and R. D. Krieg. 1987. A Constitutive Model for the Consolidation of WIPP 10 Crushed Salt and Its Use in Analysis of Backfilled Shaft and Drift Configurations. 11 SAND87-1977. Albuquerque, NM: Sandia National Laboratories. 12 13 Skokan, C., J. Starrett, and H. T. Andersen. 1988. Final Report: Feasibility Study of Seismic 14 Tomography to Monitor Underground Pillar Integrity at the WIPP Site. SAND88-7096. 15 Albuquerque, NM: Sandia National Laboratories. 16 17 SNL (Sandia National Laboratories). 1979. Summary of Research and Development Activities in 18 Support of Waste Acceptance Criteria for the WIPP. SAND79-1305. Albuquerque, NM: Sandia 19 National Laboratories. 20 21 SNL (Sandia National Laboratories) and U.S. Geological Survey. 1982a. Basic Data Report for 22 Drillhole WIPP 11 (Waste Isolation Pilot Plant - WIPP). SAND79-0272. Albuquerque, NM: 23 Sandia National Laboratories. 24 25 SNL (Sandia National Laboratories) and U.S. Geological Survey. 1982b. Basic Data Report for 26 Drillhole ERDA 9 (Waste Isolation Pilot Plant - WIPP), SAND79-0270, Albuquerque, NM: 27 28 Sandia National Laboratories. 29 SNL (Sandia National Laboratories) and D'Appolonia Consulting Engineers. 1983. Basic Data 30 Report for Drillhole WIPP 12 (Waste Isolation Pilot Plant - WIPP). SAND82-2336. 31 Albuquerque, NM: Sandia National Laboratories. 32 33 34 Stone, W. J. 1984. Recharge in the Salt Lake Coal Field Based on Chloride in the Unsaturated Zone. Open File Report 214. Socorro, NM: New Mexico Bureau of Mines and Mineral 35 Resources. 36 37 Streeter, V. L., and E. B. Wylie. 1975. Fluid Mechanics. 6th ed. New York: McGraw-Hill 38 39 Book Co. 40 41 Sutherland, H. J., and S. Cave. 1978. Gas Permeability of SENM Rock Salt. SAND78-2287. Albuquerque, NM: Sandia National Laboratories. 42 43 Swanson, J. L., 1986. Organic Complexant-Enhanced Mobility of Toxic Elements in Low-Level 44 45 Wastes: Final Report. NUREG/CR-4660, PNL-4965-10. Richland, WA: Pacific Northwest 46 Laboratory. 47 Thomas, L. K., D. L. Katz, and M. R. Tek. 1968. "Threshold Pressure Phenomena in Porous 48 Media." Society of Petroleum Engineers Journal vol. 8, no. 2: 174-184. 49 50 51 Tien, P. L., F. B. Nimick, A. B. Muller, P. A. Davis, R. V. Guzowski, L. E. Duda, and R. L. Hunter. 1983. Repository Site Data and Information in Bedded Salt: Palo Duro Basin, Texas. 52 SAND82-2223, NUREG/CR-3129. Albuquerque, NM: Sandia National Laboratories. 53 54

 Tierney, M. S. 1990a. Constructing Probability Distributions of Uncertain Variables in the Models of the Performance of the Waste Isolation Pilot Plant (WIPP). SAND90-2510.
 Albuquerque, NM: Sandia National Laboratories.

5 Tierney, M. S. 1990b. "Values of Room Porosity and Hydraulic Conductivity," Memo 6 in 6 Appendix A of Rechard et al. 1990. Data Used in Preliminary Performance Assessment of the 7 Waste Isolation Pilot Plant (1990). SAND89-2408. Albuquerque, NM: Sandia National 8 Laboratories.

Tierney, M. S. 1991. Combining Scenarios in a Calculation of the Overall Probability
 Distribution of Cumulative Releases of Radioactivity from the Waste Isolation Pilot Plant,
 Southeastern New Mexico. SAND90-0838. Albuquerque, NM: Sandia National Laboratories.

14 Tomovic, R. 1963. Sensitivity Analysis of Dynamic Systems. New York: McGraw Hill.

Torstenfelt, B., H. Kipatsi, K. Anderson, B. Allard, and U. Olofsson. 1982. "Transport of
 Actinides Through a Bentonite Backfill" in W. Lutze, ed., Scientific Basis for Radioactive Waste
 Management V. New York: Elsevier Science Publishing Co.

- Trauth, K. M., S. C. Hora, and R. P. Rechard. 1991. "Expert Judgment as Input to Waste Isolation Pilot Plant Performance-Assessment Calculations: Probability Distributions of Significant System Parameters" in *Proceedings of the First International Mixed Waste* Symposium, Baltimore, MD, August 26-29, 1991.
- 24

28

32

36

39

42

45

4

9

13

15

19

 Tyler, L. D., R. V. Matalucci, M. A. Molecke, D. E. Munson, E. J. Nowak, and J. C. Stormont.
 1988. Summary Report for the WIPP Technology Development Program for Isolation of Radioactive Waste. SAND88-0844. Albuquerque, NM: Sandia National Laboratories.

- U.S. DOE (Department of Energy). 1982a. Basic Data Report for Borehole DOE-1, Waste
 Isolation Pilot Plant (WIPP) Project, Southeastern New Mexico. TME 3159. Albuquerque, NM:
 Sandia National Laboratories.
- U.S. DOE (Department of Energy). 1982b. Basic Data Report for Borehole WIPP-12
 Deepening, Waste Isolation Pilot Plant (WIPP) Project, Southeastern, New Mexico. TME 3148.
 Albuquerque, NM: Sandia National Laboratories.
- U.S. DOE (Department of Energy). 1983a. Drawing number 35-R-004-01D Rev. A. San
 Francisco, CA: Bechtel National, Inc.
- 40 U.S. DOE (Department of Energy). 1983b. Drawing number 31-R-013-01D Rev. A. San 41 Francisco, CA: Bechtel National, Inc.
- 43 U.S. DOE (Department of Energy). 1987a. Radioactive Source Term for Use at the Waste 44 Isolation Pilot Plant. DOE/WIPP88-005. In preparation.
- 46 U.S. DOE (Department of Energy). 1987b. Drawing number 33-R-012-34A Rev. 5. San 47 Francisco, CA: Bechtel National, Inc.
- 48
- U.S. DOE (Department of Energy). 1989a. Waste Isolation Pilot Plant Compliance Strategy for
 40 CFR Part 191. WIPP-DOE-86-013. Carlsbad, NM: U.S. Department of Energy.
- 51
- 52 U.S. DOE (Department of Energy). 1989b. Addendum to No-Migration Variance Petition for 53 WIPP. DOE/WIPP 89-003. Carlsbad, NM: U.S. Department of Energy.

U.S. DOE (Department of Energy). 1990a. WIPP Test Phase Plan: Performance Assessment. 1 DOE/WIPP 89-011, Rev. O. Carlsbad, NM: U.S. Department of Energy. 2 3 U.S. DOE (Department of Energy). 1990b. Final Supplemental Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026-FS. Washington, DC: U.S. Department 4 5 of Energy, Office of Environmental Restoration and Waste Management. 6 7 U.S. DOE (Department of Energy). 1990c. Geologic Mapping of the Air Intake Shaft at the 8 Waste Isolation Pilot Plant. DOE-WIPP-90-051. Albuquerque, NM: IT Corporation. 9 10 U.S. DOE (Department of Energy). 1990d. Final WIPP Safety Analysis Report, Waste Isolation 11 Pilot Plant. Carlsbad, NM: U.S. Department of Energy. 12 13 U.S. DOE (Department of Energy). 1991. Recommended Strategy for the Remote-Handled 14 Transuranic Waste Program. DOE/WIPP 90-058, Revision 1. Carlsbad, NM: Waste Isolation 15 Pilot Plant. 16 17 U.S. DOE (Department of Energy) and State of New Mexico. 1984. U.S. Department of Energy and State of New Mexico, 1981, First Modification to the July 1, 1981 "Agreement for 18 19 Consultation and Cooperation" on WIPP by the State of New Mexico and U.S. Department of 20 Energy, November 30, 1984. 21 22 U.S. NRC (Nuclear Regulatory Commission). 1990. Severe Accident Risks: An Assessment of 23 Five U.S. Nuclear Power Plants. Summary Report of NUREG 1150. Washington, D.C.: U.S. 24 Nuclear Regulatory Commission. 25 26 Vargaftik, N. B. 1975. Tables on the Thermophysical Properties of Liquids and Gases in 27 Normal and Dissociated States. New York: John Wiley & Sons, Inc. 28 29 Vennard, J. K., and R. L. Street. 1975. Elementary Fluid Mechanics, 5th ed. New York: John 30 Wiley & Sons. 31 32 Vesely, W. E., and D. M. Rasmuson. 1984. "Uncertainties in Nuclear Probabilistic Risk 33 Analyses." Risk Analysis 4: 313-322. 34 35 Voss, C. I. 1984. SUTRA (Saturated-Unsaturated TRAnsport): A Finite-Element Simulation 36 Model for Saturated-Unsaturated Fluid Density Dependent Groundwater Flow and Energy 37 Transport or Chemically Reactive Single Species Solute Transport. Reston, VA: U.S. Geological 38 Survey National Center. 39 40 Walas, S. M. 1985. Phase Equilibrium in Chemical Engineering. Boston, MA: Butterworth 41 42 Publishers. 52-54. 43 44 Walker, R. E., and W. E. Holman. 1971. "Computer Program Predicting Drilling-Fluid Performance." Oil and Gas Journal (March 29, 1971): 80-90. 45 46 Ward, J. S., and N. R. Morrow. 1985. "Capillary Pressures and Gas Permeabilities of Low-47 Permeability Sandstone." SPE/DOE 13882. Paper presented at the SPE/DOE 1985 Low 48 Permeability Gas Reservoirs, Denver, CO, May 19-22, 1985. 49 50 Ward, R. G., C. G. St. C. Kendall, and P. M. Harris. 1986. "Upper Permian (Guadalupian) 51 Facies and Their Association with Hydrocarbons - Permian Basin, West Texas and New 52 Mexico." American Association of Petroleum Geologists Bulletin 70: 239-262. 53 54

Wawersik, W. R., and C. M. Stone. 1985. Application of Hydraulic Fracturing to Determine 1 Virgin In Situ Stress Around Waste Isolation Pilot Plant--In Situ Measurements. SAND85-1776. 2 Albuquerque, NM: Sandia National Laboratories. 3 4 Weast, R. C., and M. J. Astle, eds. 1981. Handbook of Chemistry and Physics. 62nd ed. 5 Cleveland, OH: CRC Press. 6 7 WEC (Westinghouse Electric Corporation). 1985a. TRU Waste Acceptance Criteria for the Waste 8 Isolation Pilot Plant, Revision 2. WIPP-DOE-069-Rev. 2. Carlsbad, NM: Westinghouse 9 Electric Corporation. 10 11 12 WEC (Westinghouse Electric Corporation). 1989. TRU Waste Acceptance Criteria for the Waste Isolation Pilot Plant, Revision 3. WIPP-DOE-069-Rev. 2. Prepared for U.S. Department of 13 Energy. Carlsbad, NM: Westinghouse Electric Corporation. 14 15 WEC (Westinghouse Electric Corporation). 1990. Waste Isolation Pilot Plant No-Migration 16 Variance Petition. DOE/WIPP 89-003. Prepared for U.S. Department of Energy. Carlsbad. 17 NM: Westinghouse Electric Corporation. 18 19 Williamson, C. R. 1978. Depositional Processes, Diagenesis and Reservoir Properties of Permian 20 Deep-Sea Sandstone, Bell Canyon Formation, Ph.D. Dissertation. University of Texas, Austin, 21 22 TX. 23 WIPP Act. 1980. Department of Energy National Security and Military Applications of Nuclear 24 Energy Authorization Act of 1980, Title II - General Provisions: Waste Isolation Pilot Plant, 25 Delaware Basin, NM. Pub. L. No. 96-164, 93 Stat. 1259. (Clarify 79 or 80). 26 27 28 Wyllie, M. R. J., and W. D. Rose. 1950. "Some Theoretical Considerations Related to the Quantitative Evaluation of the Physical Characteristics of Reservoir Rock from Electric Log 29 Data." Transactions of the American Institute of Mining and Metallurgical Engineers 189: 30 105-118. 31 32 33 Yaglom, A. M. 1962. An Introduction to the Theory of Stationary Random Functions. Englewood Cliffs, NJ: Prentice-Hall, Inc. 34 35 36 40 CFR 191. Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes. U.S. Environmental

Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes. U.S. Environmental
 Protection Agency (EPA), Title 40 Code of Federal Regulations Part 191 (40 CFR 191).
 40

APPENDIX A: MEMORANDA REGARDING REFERENCE DATA

8	Referenced Memoranda
9	Beauheim et al., June 10, 1991 A-7
10	Beauheim, June 14, 1991 A-19
11	Brush, July 8, 1991 A-25
12	Davies, June 2, 1991 A-37
13	Drez, May 9, 1989 A-43
14	Finley and McTigue, June 17, 1991 A-55
15	Howarth, June 12, 1991 A-59
16	Howarth, June 13, 1991 A-69
17	McTigue et al., March 14, 1991 A-79
18	Novak, September 4, 1991 A-99
19	Swift, October 10, 1991 A-107
20	
21	Related Memoranda
22	Gorham, July 2, 1991 A-123
23	Anderson, October 25, 1991 A-131
24	Mendenhall and Butcher, June 1, 1991 A-139
25	Siegel, July 14, 1989 A-145
26	Siegel, June 25, 1991 A-151
27	

APPENDIX A: 3 MEMORANDA REGARDING REFERENCE DATA 4 5 **Referenced Memoranda** 6 The memoranda referenced are as follows: 7 8 9 Beauheim et al., June 10, 1991 10 Date: 6/10/91 To: D. R. Anderson (6342) 11 From: R. L. Beauheim (6344), T. F. Corbet (6344), P. B. Davies 12 (6344), J. F. Pickens (INTERA) 13 Recommendations for the 1991 Performance Assessment 14 Subject: Calculations on Parameter Uncertainty and Model Implementation 15 for Culebra Transport Under Undisturbed and Brine-Reservoir-16 Breach Conditions 17 18 Beauheim, June 14, 1991 19 6/14/91 20 Date: To: Rob Rechard (6342) 21 Rick Beauheim (6344) From: 22 Subject: Review of Salado Parameter Values to be Used in 1991 23 Performance Assessment Calculations 24 25 Brush, July 8, 1991 26 7/8/91 Date: 27 To: D. R. Anderson (6342) 28 L. H. Brush (6345) 29 From: Current Estimates of Gas Production Rates, Gas Production 30 Subject: 31 Potentials, and Expected Chemical Conditions Relevant to Radionuclide Chemistry for the Long-Term WIPP Performance 32 Assessment 33 34 Davies, June 2, 1991 35 6/2/91 Date: 36 To: D. R. Anderson (6342) 37 From: 38 P. B. Davies (6344) 39 Subject: Uncertainty Estimates for Threshold Pressure for 1991 Performance Assessment Calculations Involving Waste-Generated 40 41 Gas 42 Drez, May 9, 1989 43 Date: 5/9/89 44 45 To: L. Brush (6334) Paul Drez (International Technology Corporation) From: 46 Subject: Preliminary Nonradionuclide Inventory of CH-TRU Waste 47 48

```
Finley and McTigue, June 17, 1991
2
3
        Date:
                   6/17/91
                   Elaine Gorham, 6344
4
        To:
        From:
                   S. J. Finley, 6344, and
5
                   D. F. McTigue, 1511
6
                   Parameter Estimates from the Small-Scale Brine Inflow
        Subject:
7
                   Experiments
8
9
    Howarth, June 12, 1991
10
        Date:
                   6/12/91
11
                   Elaine Gorham (6344)
        To:
12
                   Susan Howarth (6344)
        From:
13
                   Pore Pressure Distributions for 1991 Performance Assessment
        Subject:
14
                   Calculations
15
16
    Howarth, June 13, 1991
17
        Date:
                   6/13/91
18
        To:
                   Elaine Gorham (6344)
19
                   Susan Howarth (6344)
20
        From:
21
        Subject:
                   Permeability Distributions for 1991 Performance Assessment
                   Calculations
22
23
    McTigue et al., March 14, 1991
24
                   3/14/91
25
        Date:
26
        To:
                   Distribution
                   D. F. McTigue, 1511; S. J. Finley, 6344, J. H. Gieske, 7552;
27
        From:
28
                   K. L. Robinson, 6345
                   Compressibility Measurements on WIPP Brines
29
         Subject:
30
31
    Novak, September 4, 1991
32
        Date:
                   9/4/91
        To:
                   K. M. Trauth, 6342
33
                   Craig F. Novak, 6344
        From:
34
                   Rationale for K<sub>d</sub> Values Provided During Elicitation of the
35
        Subject:
                   Retardation Expert Panel, May 1991
36
37
    Swift, October 10, 1991
38
        Date:
                   10/10/91
39
40
        To:
                   R. P. Rechard
                   Peter Swift, 6342/Tech Reps
41
         From:
42
         Subject:
                   Climate and recharge variability parameters for the 1991 WIPP
                   PA calculations
43
44
```

```
Related Memoranda
2
3
    Gorham, July 2, 1991
4
        Date:
5
                   7/2/91
                   Rob Rechard (6342)
        To:
6
                   Elaine Gorham (6344)
7
        From:
        Subject:
                  Aggregated Frequency Distributions for Permeability, Pore
8
                   Pressure and Diffusivity in the Salado Formation
9
10
    Anderson, October 25, 1991
11
        Date:
                   10/25/91
12
13
        To:
                   File
        From:
                   D. R. (Rip) Anderson (6342)
14
        Subject:
                   Modifications to Reference Data for 1991 Performance
15
                   Assessment
16
17
18
    Mendenhall and Butcher, June 1, 1991
19
        Date:
                   6/1/91
        To:
20
                   R. P. Rechard (6342)
        From:
                   F. T. Mendenhall (6345) and B. M. Butcher
21
        Subject:
                   Disposal room porosity and permeability values for use in the
22
                   1991 room performance assessment calculations
23
24
    Siegel, July 14, 1989
25
        Date:
                   7/14/89
26
        To:
                   P. Davies (6331) and A. R. Lappin (6331)
27
28
        From:
                   M. D. Siegel
29
        Subject:
                   Supplementary Information Concerning Radionuclide Retardation
30
    Siegel, June 25, 1991
31
32
        Date:
                   6/25/91
                   K. Trauth (6342)
        To:
33
34
        From:
                   M. D. Siegel
        Subject: Kd Values for Ra and Pb
35
36
```

Beauheim et al., June 10, 1991 3 4 Date: 6/10/91 5 6 To: D. R. Anderson (6342) R. L. Beauheim (6344), T. F. Corbet (6344), P. B. Davies From: 7 (6344), J. F. Pickens (INTERA) 8 Recommendations for the 1991 Performance Assessment Subject: 9 Calculations on Parameter Uncertainty and Model 10 Implementation for Culebra Transport Under Undisturbed and 11 Brine-Reservoir-Breach Conditions 12 13 14

Sandia National Laboratories

Albuquerque, New Mexico 87185

1 2	Date:	June 10,1991
2 3 4 5	To:	D.R. Anderson (6342)
6 7 8 9 10	From:	R.L. Beauheim (6344) 6 7 T.F. Corbet (6344) 7 P.B. Davies (6344) 7 J. F. Pickens (INTERA)
11 12 13 14 15	Subject:	Recommendations for the 1991 Performance Assessment Calculations on Parameter Uncertainty and Model Implementation for Culebra Transport Under Undisturbed and Brine-Reservoir-Breach Conditions
16 17 18 19 20 21 22	Performance segments,	provides input for modeling radionuclide transport for the 1991 e Assessment calculations. Recommendations are divided into two one on double porosity-transport parameters and one on model ion for brine-reservoir-breach scenarios.
23	Double-Poro	sity Transport
24 25 26 27 28 29 30 31 32 33 34 35	to a given tra performance porosity tran Also, we no concisely ch We recomm structured a effort and el	he parameters used for double-porosity transport calculations are specific ansport code. We recommend that at some time, the code being used for assessment calculations be analyzed and benchmarked with the double- hsport code used to interpret tracer tests (SWIFT II, Reeves et al., 1986). Due that the effect of many of the double-porosity parameters can be haracterized using dimensionless parameter groups (Reeves et al., 1991). Hend that in future years, consideration be given to parameter sampling bround dimensionless groups. This may save significant computational iminate inconsistencies associated with sampling correlated parameters.
36 37 38 39		or the 1990 PA calculations (Rechard et al., 1990).
40 41 42 43	The values r 1990 and in	reported from laboratory analyses of Culebra core in Kelley and Saulnier, Lappin et al., 1989 <u>are grain densities, not bulk densities</u> . Correct range able to 2.76 x 10 ³ to 2.86 x 10 ³ kg/m ³ . Also correct arithmetic mean to

```
2.82 x 10^3 kg/m<sup>3</sup> and median to 2.83 x 10^3 kg/m<sup>3</sup>. Change table source reference to
1
   Kelley and Saulnier, 1990, Tables 4.1, 4.2 and 4.3.
2
з
4
   Dispersivity
5
6
   No new information.
7
8
9
   Fracture Spacing
10
11
   The most recent results of tracer test interpretations for the H-3, H-6, and H-11
12
   hydropads to obtain best-fit double-porosity parameters (fracture spacing and fracture
13
   porosity) are summarized in Table 1 (Cauffman, et al., in prep.). It is our opinion that
14
   there are too few data to construct a meaningful distribution for fracture spacing.
15
   Therefore, we recommend that the low end of the range be represented by the
16
   smallest fracture spacing interpreted from field experiments (0.06 meters) and be
17
   assigned to the 5th percentile. For the median value, we recommend the use of the
18
   average value from the limited number of available tests, 0.4 meters. For the upper
19
   end of the range, we recommend the continued use of the total Culebra thickness, 8
20
   meters, and that this value be assigned to the 95th percentile.
21
22
23
24
   Fracture Porosity
25
26
   Fracture porosity is derived from the same analysis of tracer tests that produces
27
   fracture spacing (Table 1). Therefore, it is our opinion that there are too few data to
28
   construct a meaningful distribution for fracture porosity. Therefore, we recommend
29
   that the average value, 0.001, be used for the median of the distribution. Given the
30
   absence of additional data, the range should continue to be taken as one order of
31
   magnitude above and below this average value.
32
33
34
   Matrix Porosity
35
36
   The most comprehensive and up to date information on Culebra matrix porosity is
37
    Kelley and Saulnier, 1990. Table 2 is a list of porosity measurements on 79 core
38
    samples from 15 locations. The mean value is 0.15 and the median value is 0.14. The
39
    range is from 0.03 to 0.30. Note error in value reported in Table II-6 of SAND89-2408
40
    where median value is reported as 15.2. This should be 0.152.
41
42
43
44
    Storage Coefficient
45
```

```
<sup>46</sup> No change from previous year. Correct reference in last sentence to LaVenue et al.,
```

```
1990, Table 2.5.
1
2
з
   Thickness
4
5
    Note error in Table II-6, where Culebra thickness is reported as 77 meters.
6
7
8
    Tortuosity
9
10
    The most comprehensive and up to date information on Culebra tortuosity is Kelley
11
    and Saulnier, 1990. Table 3 is a list of tortuosity measurement on 15 core samples
12
    from 11 locations. The mean value is 0.14 and the median value is 0.12. The range
13
    is from 0.03 to 0.3. Note that tortuosity is strongly related to fracture spacing.
14
    Dimensional analysis of Reeves et al. (1991) shows that the half-fracture spacing
15
    squared interpreted from a tracer test is inversely proportional to the assumed
16
    tortuosity. Therefore, we recommend that these parameters not be sampled
17
    independently.
18
19
20
21
22
    Modeling of Brine-Reservoir Breach Scenarios
23
24
    We have reviewed the draft text on proposed brine reservoir modeling and have the
25
    following comments:
26
27
          The discussion of the justification for the simplified representation of brine-
           reservoir response to a borehole should cite the analysis of Reeves et al. (1991)
28
           that develops and tests the technical basis for this assumption. Also the
29
           limitations of the simplified approach should be stated. For example, while this
30
           approach is valid for time scales of less than 10,000 years, for longer time
31
           periods, there is increased sensitivity to intact Castile properties (transmissivity
32
33
           and storage).
34
           The rationale for estimating a range of initial pressures is unnecessarily complex
35
           and may not be defensible. As an alternative approach, we suggest the
36
           following. The data show that pressures in the brine pockets are all greater
37
           than or equal to hydrostatic. No upper limit is indicated by the data, however
38
           lithostatic pressure is a defensible limit. Therefore, we suggest using the range
39
40
           from hydrostatic to lithostatic, calculated for the depth of the brine pocket at
41
           WIPP 12. This range is approximately 11 to 22 MPa (which compares with
42
           10.4 to > 16.6 MPa for the original approach).
43
           One general comment is that for technical accuracy, this discussion should cite
44
45
           original sources rather that second or third generation material.
```

1	cc: V	V.D. Weart (6340)
2	N	1.G. Marietta (6342)
3	R	.P. Rechard (6342)
4	E	.D. Gorham (6344)

Path	Fracture Porosity	Fracture Spacing	Matrix Porosity	Tortuosity	Dispersivi
H-3 Test		F			T
H-3b1 to H-3b3	1.2E-3	1.2 m	0.20	0.15	1.5 m
H-362 to H-363	1.2E-3	0.23 m	0.20	0.15	1.5 m
H-6b to H-6c H-6a to H-6c	1.5E-3 1.5E-3	0.41 m 0.056 m	0.16	0.15 0.15	1.5 m
H-6 Test #2 H-6b to H-6c	1.5E-3	0.44 m	0.16	0.15	1.5 m
H-11 Test			T		
H-11b3 to H-11b1	5.0E-4	0.32 m	0.16	0.11	1.5 m
H-1162 to H-1161	5.0E-4	0.11 m	0.16	0.11	1.5 m
H-1164 to H-1161	5.0E-4	0.28 m	0.16	0.11	1.5 m

(2) Matrix porosity and tortuosity values are devrived from core tests at each specific hydropad. Dispersivity is assumed to be approximately 5 percent of a typical transport path length.

Table 1. Summary of best-fit double-porosity model-input parameters from Cauffman
 et al. (in prep).

	Borehole	Sample	Porosity
1	Number	Number	e or our cy
2	-		
3 4			
4 5	H-2a	N-2a-1	0.116
5 6		N-28-2	0.131 *
7			
, 8	N-2b	1-1	0.141
9		2-1/3-1	0.154 **
10		1-2	0,118
11		2-2/3-2	0.103 **
12			
13	N-2b1	N2b1-1	0.082
14		N261-1F	0.105
15		N261-2	0.142 *
16		N2b1-3	0.153
17			
18	N-352	1-3	0.188
19		1-4	0.168
20			• • • • •
21	H-363	2-3/3-3	0.180 **
22		2-4/3-4V 1-6/3-6V	0.202 ** 0.244
23		2-5/3-5	0.205 **
24		2-2/3-3	0.203
25 26	H-46	1-9	0.297
20		2-6/3-6V	0.208 **
28			
29	N-55	N-55-1a	0.128 *
30		H-56-16	0.155
31		H-56-2	0.228
32		N-56-2F	0.248
33		N-20-3	0.133
34			
35	N-66	2-7	0.108
36		2-8	0.116
37		1-7	0.107
38		1-8/3-8V	0.255
35			
40	N-7D1	H-761-1	0.177
41		N-761-1F	0.149
42		N-761-2a N-761-26	0.206 •
43		#-701-2D	0.278
44			
45			
46			
47			
48			
49	T 1 1 A A A	70 0	
50			samples representing 15 locations
51	(Saulnier and Kelley, 1990,	Table 4.4).	

	Borehole	Sample	Porosíty
	Number	Number	
:221	******************	*****************************	************************
	H-762	H-762-1	0.159 *
		H-762-2	0.118
	N-7c		
	M-7C	H-7c-1e H-7c-1b	0.130 + 0.165
		N-7c-16	0.138
		N-7C-1F	0.136
	N-106	N-106-1	0.089 -
		N-106-2	0.115
		N-10b-2F	0.066
		N-1-b-3	0.112
			•••••
	H-11	N-11-1	0.155
		H-11-2	0.105 *
		H-11-2F	0.104
		H-11b3-1	0.303
		H-1163-1F	0.223
		H-11b3-2	0.099
		H-11b3-2F	0.123
		H-1163-3	0.130
		H-1163-4	0.152 *
		H-1163-4F	0.224
	WIPP-12	W-12-1a	0.028
		W-12-16	0.114 *
		W-12-2	0.126 *
		W-12-2F	0.135
		W-12-3	0.134
	WIPP-13	W-13-1	0.143
		₩-13-2	0.219
		W-13-2F	0.260
		W-13-3a	0.179 •
		¥-13-36	0.097

Table 2 (continued). Porosity measured on 79 Culebra core samples representing 15

⁴⁵ locations (Saulnier and Kelley, 1990, Table 4.4).

1	Borehole	Sample	Porosity	
2	Number	Number		
3	***************************************	****************	****************************	
4				
5	¥IPP-25	¥-25-1	0.115	
6				
7	WIPP-26	W-26-1	0.124	
8		W-26-1F	0.112	
9		W-26-2	0.126	
10		₩-26-3	0.127 *	
11				
12	WIPP-28	¥-28-1a	0.142	
13		¥-28-16	0.130 •	
14		¥-28-2	0.187	
15		¥-28-3	0.170	
16 17		W-28-3F	0.179	
18	W1PP-30	¥-30-1	0.128	
19	HIPP-30	W-30-2	0.150	
20		W-30-2 W-30-3a	0.176	
21		¥-30-35	0.178	
22		¥-30-3F	0.149	
23		¥-30-4	0.239 *	
24			0.27	
25	AEC-8	AEC+8-1	0.079	
26		AEC-8-1F	0.122	
27		AEC-8-2	0.109	
28				
29		******************		
3 0	Number of samples = 79	Number of samples = 79		
31	Average porosity = 0.153			
32	Standard deviation = 0.053			
33	Range = 0.028 - 0.303			
34				
35	Represents an average value	from porosity determ	inations from	
36	Terra Tek Laboratories and B	(& A Laboratories.		
37				
38	** Represents an average of p	-		
39 40	bulk volume estimated from	n pressured sample di	mensions and from	
41	fluid displacement.			
42				
43				
43 64				
45	Table 2 (continued). Porosity measur	ed on 79 Culebr	a core samples representing 15	
45	locations (Saulnier and Kelley, 1990,	Table 4.4).		
-0				

1	Sample	Helium	Formation	
2	Number	Porosity	Factor	Tortucsity *
3	***********************	*********************	***************************************	· · · · · · · · · · · · · · · · · · ·
4 5	AEC-8-1F	0.122	90.09	0.091
6 7	₩-2b1-1F	0.105	326.77	0.029
8 9	N-2P-51	0.248	12.2	0.331
10 11	H-701-1F	0.149	73.49	0.091
12 13	N-7C-1F	0.138	79.61	0.091
14 15	M-106-2F	0.066	406.78	0.037
16 17	N-11-2F	0.104	94.82	0.101
18 19	H-1163-1F	0.223	36.35	0.123
20 21	H-1163-2F	0.123	101.93	0.080
22 23	H-1163-4F	0.224	32.74	0.136
24 25	W-12-2F	0.135	47.3	0.157
26 27	W-13-2F	0.26	13.26	0.290
28 29	W-26-1F	0.112	68.77	0.13 0
30 31 32	W-28-3F	0.179	26.3	0.212
32 33 34	W-30-3F	0.149	31.49	0.213
35	************************			
36				
37	 Tortuosity cal 	culated from Equation ((9) using formation factor	
38	determined fro	m electrical-resistivit	ty measurements.	
39				
40				
41				
42	Table 3 Tortucation	impted from unly	on of formation factor	
43	Culobro and and a		es of formation factor	and porosity for 15
44 45	4.6).	representing 11 i	ocations (Saulnier and I	Kelley, 1990, Table

REFERENCES

2

4

5

6

7 8

12

17

21

- Cauffman, T.L., V.A. Kelley, J.F. Pickens, and D.T. Upton. (in preparation). Integration of Interpretation Results of Tracers Tests Performed in the Culebra Dolomite at the Waste Isolation Pilot Plant Site. SAND91-7076. Albuquerque, New Mexico: Sandia National Laboratories.
- Kelley, V.A., and G.J. Saulnier. 1990. Core Analysis for Selected Samples from the
 Culebra Dolomite at the Waste Isolation Pilot Plant Site. SAND90-7011.
 Albuquerque, New Mexico: Sandia National Laboratories.
- Lappin, A.R., R.L. Hunter, D.P. Garber, and P.B. Davies (editors). 1989. Systems
 Analysis, Long-Term Radionuclide Transport, and Dose Assessments, Waste
 Isolation Pilot Plant (WIPP), Southeastern New Mexico; March, 1989.
 SAND89-0462. Albuquerque, New Mexico: Sandia National Laboratories.
- Rechard, R.P., H. Iuzzolino, and J.S. Sandha. 1990. Data Used in Preliminary
 Performance Assessment of the Waste Isolation Pilot Plant (1990). SAND89 2408. Albuquerque, New Mexico: Sandia National Laboratories.
- Reeves, M., D.S. Ward, N.D. Johns, and R.M. Cranwell. 1986. Theory and Implementation for SWIFT II, the Sandia Waste-Isolation Flow and Transport Model, Release 4.84. NUREG/CR-3328 and SAND83-1159. Albuquerque, New Mexico: Sandia National Laboratories.
- 26

Reeves M., G.A. Freeze, V.A. Kelley, J.F. Pickens, D.T. Upton, and P.B. Davies.
 1991. Regional Double-Porosity Solute Transport in the Culebra Dolomite
 Under brine-Reservoir-Breach Release Conditions: An Analysis of Parameter
 Sensitivity and Importance. SAND89-7069. Albuquerque, New Mexico:
 Sandia National Laboratories.

3		Beauheim, June 14, 1991
4		
5	Date:	6/14/91
6	To:	Rob Rechard (6342)
7	From:	Rick Beauheim (6344)
8	Subject:	Review of Salado Parameter Values to be Used in 1991
9		Performance Assessment Calculations
10		

Sandia National Laboratories

Albuquerque, New Mexico 87185

June 14, 1991 1 Date: 2 Rob Rechard, 6342 To: 3 4 5 Rick Bèauheim, 6344 From: 6 7 Review of Salado Parameter Values to be Used in 1991 Performance Subject: 8 Assessment Calculations 9 10 11 From the Salado permeability testing program, we produce three types of data 12 used in PA calculations: permeabilities, pore pressures, and specific 13 storage/compressibility values. Presented below are the latest data in each of 14 these three categories. At this time, I do not have a good feel for how to 15 assign probabilities across the uncertainty ranges. I generally feel that the 16 middle or base-case values are more probable than the extremes, particularly in 17 the case of pore pressure. 18 19 Permeability 20 21 22 Permeability data can be divided on the basis of rock type (halite vs. anhydrite) and on the basis of whether they represent conditions in the far 23 24 field or in the DRZ. All permeabilities presented below are considered to have 25 an uncertainty of <u>+</u> one-half order of magnitude. 26 27 Halite Data: 28 Reference 29 Test Permeability Uncertainty Range Comments (m^2) (m^2) 30 31 8.6E-19 to 8.6E-18 DRZ SAND90-0083 32 C2H01-A 2.7E-18 1.7E-21 to 1.7E-20 C2H01-B 5.3E-21 far field? SAND90-0083 33 6.0E-22 to 6.0E-21 far field? 1.9E-21 SAND90-0083 34 C2H01-B-GZ 1.9E-21 to 1.9E-20 far field? L4P51-A 6.1E-21 SAND90-0083 35 2.6E-21 to 2.6E-20 SOP01 8.3E-21 far field? SAND90-0083 36 S1P71-A 5.4E-20 1.7E-20 to 1.7E-19 far field? SAND90-0083 37 S1P72-A-GZ 8.6E-22 2.7E-22 to 2.7E-21 far field? preliminary 38 39 40 Anhydrite Data: 41 42 43 Test Permeability Uncertainty Range Comments Reference 44 (m^2) (m^{2}) 45 3.0E-19 to 3.0E-18 far field? 46 C2H01-C 9.5E-19 SAND90-0083 2.5E-20 to 2.5E-19 47 C2H02 7.8E-20 far field SAND90-0083 <1.8E-18 to <1.8E-17 48 SOP01-GZ <5.7E-18 DRZ SAND90-0083 2.6E-20 to 2.6E-19 49 SCP01-A 8.2E-20 far field preliminary 2.2E-20 to 2.2E-19 far field L4P51-B 6.8E-20 50 preliminary 6.8E-20 2.2E-20 to 2.2E-19 51 S1P71-B far field preliminary

1 <u>Pore Pressure</u>

To date, most of our pore-pressure data appear to reflect some degree of depressurization around the repository. Only two tests provided estimates of pore pressure that I think might be representative of far-field conditions. Both of these tests were of Marker Bed 139. From C2HO2, we estimated a pressure of 9.3 MPa (SAND90-0083), and from SCPOI-A we estimated a pressure of 12.55 MPa (preliminary). Our estimated uncertainty is ± 0.5 MPa.

9 10

11

2

Specific Storage/Compressibility

12 For our test interpretations, we typically input a value of specific storage 13 based on laboratory measurements of rock properties. We use the range of 14 laboratory measurements to define a range of uncertainty in specific storage, 15 and this uncertainty is one of the factors leading to our uncertainty in permeability. When we have performed only pressure-pulse tests, we have no way 16 17 of telling where within the expected range for specific storage a particular 18 test actually falls. For those tests, we simply use our base-case values of 19 specific storage. More recently, we have been combining constant-pressure flow tests with the pulse tests. This combination allows us to identify the 20 particular values of specific storage that best fit our data. We do not as yet 21 have many of these combined interpretations, however, and those that we do have 22 are still preliminary. Significantly, all of our preliminary values fall 23 within the range established from laboratory measurements. For this year's PA 24 25 calculations, therefore, I think you are safe using the laboratory range. Next 26 27 year we may be able to refine the range somewhat.

For halite, we use a specific storage range from 2.8E-8 to 1.4E-6 m⁻¹, with a base-case value of 9.5E-8 m⁻¹. For anhydrite, we use a specific storage range from 9.7E-8 to 1.0E-6 m⁻¹, with a base-case value of 1.4E-7 m⁻¹.

To get from specific storage to compressibility, you can rearrange the following equation: 34

35

 $S_s = \rho_f g(\alpha + \phi \beta)$

38 37 $\rho_{f} =$ fluid density where: 38 g = acceleration of gravity 39 $\bar{\alpha}$ = formation compressibility 40 ϕ = formation porosity 41 β = fluid compressibility 42 43 To define our ranges for specific storage, we used the following ranges of 44 parameter values: 45 ρ_{f} : 1200 to 1250 kg/m³, base-case value of 1220 kg/m³ 46 47 ϕ : 0.001 to 0.03, base-case value of 0.01 2.9E-10 to 3.3E-10 Pa^{-1} , base-case value of 3.1E-10 Pa^{-1} 48 β: 49 You can use these values to get to a range for formation compressibility. 50 The reason I can't just give you the range is that we use a more complicated 51

52 expression for specific storage than the one I presented above. I expect,

however, that your model does use the expression presented above, and therefore you need to go through this calculation exercise to get at the right values for your model. All of this specific-storage information can be referenced to SAND90-0083. I hope you find this information useful. Please contact me if you have any questions. 40 cc: W.D. Weart, 6340 E.D. Gorham, 6344 S.M. Howarth, 6344 S.J. Finley, 6344 D.R. Anderson, 6342

2		Brush, July 8, 1991
4		
5	Date:	7/8/91
6	To:	D. R. Anderson (6342)
7	From:	L. H. Brush (6345)
8	Subject:	Current Estimates of Gas Production Rates, Gas Production
9		Potentials, and Expected Chemical Conditions Relevant to
10		Radionuclide Chemistry for the Long-Term WIPP Performance
11		Assessment
12		

Sandia National Laboratories

Albuqueraue, New Mexico 87185

1 date July 8, 1991 2 to D. R. Anderson, 6342 3 4 5 L. H. Erush 6 7 trom L. H. Brush, 6345 8 9 10 11 12 subject Current Estimates of Gas Production Rates, Gas Production Potentials, 13 and Expected Chemical Conditions Relevant to Radionuclide Chemistry for 14 the Long-Term WIPP Performance Assessment 15 16 17 This memorandum justifies the estimates of gas production rates, 18 gas production potentials, and expected chemical conditions relevant to 19 radionuclide chemistry in WIPP disposal rooms for design-basis 20 transuranic (TRU) waste provided to R. P. Rechard last month (Table 1). 21 Many of these estimates are new; some are based on recently obtained 22 data from laboratory studies of anoxic corrosion. 23 24 I will provide similar estimates for the Engineered Alternatives 25 Task Force's (in prep.) Alternatives 2 and 6 by August 1, 1991. 26 27 28 ANOXIC CORROSION 29 30 31 R. E. Westerman (1990, 1991a) of Pacific Northwest Laboratory (PNL) 32 has observed significant H₂ production from anoxic corrosion of two 33 heats each of ASTM A 366 and ASTM A 570 steels by WIPP Brine A under 34 inundated conditions when N_2 is present at low pressures (about 35 150 psig) in the headspace above the brine. The low-C, cold-rolled 36 steel alloy ASTM A 366 simulates the drums to be emplaced in the 37 repository; the medium-C, hot-rolled steel alloy ASTM A 570 simulates 38 the boxes. The H₂ production rate was essentially constant during 3-39 and 6-month experiments; the average value for all four heats obtained 40 from the 6-month experiments is 0.21 moles per m^2 of steel per year. 41 Based on my estimate of 6 m^2 of steels per equivalent drum of waste, 42 which includes steels used to fabricate waste containers (drums and 43 boxes) and steels contained in the waste, this is equivalent to 44 1.26 mole of H₂ per drum per year. Westerman also reported an average 45 corrosion rate of 1.72 μm of steel per year for the 6-month runs. The 46 H₂ production rates of 0.2 moles per m^2 per year or 1 mole per drum per 47 year and the corrosion rate of 2 μ m per year are my best estimates for 48 inundated conditions, rounded to one significant figure (Table 1). 49 50 51

Strictly speaking, the H2 production rates and the corrosion rate are not equivalent. Although he obtained both rates from each

1 experiment, Westerman used independent techniques to obtain them 2 (pressure measurements and posttest analysis of the headspace gases for 3 the H₂ production rate and gravimetric, or weight-loss, analysis for 4 These techniques agreed well, but not exactly, the corrosion rate). 5 when applied to the 6-month experiments, but not as well for the 6 3-month experiments. (The best estimates described above are from the 7 6-month runs.) The discrepancies between these techniques probably 8 result from uncertainties as to the identity and composition of the corrosion product or products formed during these experiments. 9 10 (Characterization of the corrosion product is necessary to write the 11 chemical reactions used to convert corrosion rates to H₂ production 12 rates.) We are still attempting to characterize the corrosion product 13 from these runs. 14

15 Although the H_2 production rate has been constant for 6 months when 16 N_2 is present at low-pressures, the results of high-pressure experiments at PNL imply that the build-up of H2 pressure would 17 18 eventually reduce this rate significantly (Westerman, 1991b). After 19 6 months, the corrosion rate of two heats of ASTM A 366 steel under inundated conditions with H₂ at a pressure of 1,000 psig was 0.356 μ m 20 per year, 21.8% of the rate of 1.63 μ m per year observed for the same 21 two heats of ASTM A 366 steel under low-pressure, inundated conditions 22 23 with N₂. Multiplying 1.72 μ m per year, the average rate for all four heats, by 0.218 gives 0.375 μm per year, my estimate of the average corrosion rate for all four heats of steel at 1,000 psig H_2. However, 24 25 26 at an N_2 pressure of 1,000 psig the corrosion rate of two heats of ASTM A 366 steel was 2.96 μ m per year, 81.6% higher than the low-27 pressure, inundated rate of 1.63 μ m per year observed for the same two 28 29 heats of ASTM A 366 steel. The product of 1.72 μ m per year and 1.82 is 3.13 μ m per year, my estimated average corrosion rate for all four 30 heats of steel at 1,000 psig N₂. Westerman did not report H₂ 31 production rates for the high-pressure experiments. Furthermore, we 32 have still not identified the corrosion product or products yet. 33 34 However, the corrosion product appears to be the same phase that formed 35 in the 6-month, low pressure experiments. It is thus possible to estimate an H₂ production rate by multiplying the 6-month, low-pressure 36 rates of 0.21 moles per m^2 or 1.26 moles per drum of waste by 0.218 37 $(1,000 \text{ psig H}_2)$ and 1.82 $(1,000 \text{ psig N}_2)$ to obtain 0.046 moles per m² 38 per year or 0.275 moles per drum per year (1,000 psig H_2) and 0.38 moles per m^2 per year or 2.29 moles per drum per year 39 40 $(1,000 \text{ psig } N_2)$. At present, we do not have corrosion rates for any 41 pressures other than 150 and 1,000 psig. Westerman will, however, 42 report 12-month data for 500 psig H₂ and 1,000 psig H₂ in November or 43 December 1991. The adjusted, measured corrosion rate of 3 μ m per year 44 and the estimated H₂ production rate of 0.4 mole per m^2 per year or 45 2 moles per drum per year with N_2 at 1,000 psig are my maximum 46 estimates for inundated conditions, rounded to one significant figure 47 (Table 1). 48

49

50 Under low-pressure, inundated conditions with CO₂, H₂ production 51 occurred for about 3 months, then virtually stopped after 3 or 4 months 52 due to formation of a passivating layer of FeCO₃, or siderite

1 (Westerman, 1991a). This suggests that, if microbially produced CO₂ 2 were present, passivation of steel surfaces by FeCO3 could stop H2 3 production before the generation of significant quantities of this gas. 4 However, we do not know the partial pressure of CO2 required to form 5 FeCO3. Furthermore, crushing of drums and boxes during room closure could disrupt the layer of FeCO3 and lead to some additional H2 6 production. Nevertheless, the passivation observed after 3 or 4 months 7 8 is the basis for my minimum estimates of 0 moles of H₂ per m^2 per year 9 or 0 moles of H₂ per drum per year and 0 μ m of steel per year for 10 inundated conditions (Table 1).

12 Because we have still not identified the corrosion product or products, we cannot calculate the number moles of H₂O consumed per mole 13 of Fe consumed or the number moles of H_2O consumed per mole of H_2 14 produced from anoxic corrosion of steels. 15 However, the corrosion 16 reaction that produces Fe(OH)₂ (amakinite) a possible corrosion product identified by Brush and Anderson (1988) and Brush (1990), would consume 17 2 moles of H_2O per mole of Fe consumed, or consume 2 moles of H_2O per 18 mole of H₂ produced. The corrosion reaction that produces Fe_3O_4 19 20 (magnetite), another possible corrosion product, would consume 21 1.33 mole of H_2O per mole of Fe consumed, or consume 1 mole of H_2O per mole of H₂ produced. These values are probably typical of other 22 corrosion reactions. 23

25 In 3- and 6-month, low-pressure, humid experiments with either CO2 26 or N₂, Westerman (1990, 1991a) observed no H_2 production except for very limited quantities from corrosion of the bottom 10% of the 27 28 specimens splashed with brine during pretest preparation of the 29 containers. These results and modeling studies conducted by Davies (personal communication) suggested to me that anoxic corrosion could be 30 31 self-limiting; small quantities of brine in the repository could produce H₂, increase the pressure, prevent additional brine inflow or 32 even cause brine outflow, and thus prevent additional H₂ production. 33 However, the thin film of brine introduced by capillary rise or 34 condensation followed by dissolution of salts from the backfill, or H_{20} 35 36 absorbed by crushed salt or bentonite in the backfill, which will be in contact with drums and boxes, could cause additional anoxic corrosion 37 of steels and H₂ production after brine is driven away from corroding 38 39 steels.

41 Westerman (1991c) has just started a study to quantify H₂ production from anoxic corrosion of steels in contact with noninundated 42 backfill materials and will report preliminary results by the end of 43 September 1991. Until then, I propose the following arbitrarily 44 45 estimated rates for humid conditions: minimum estimates of 0 moles of H₂ per m^2 of steel per year or 0 moles per drum of waste per year and 0 46 47 μ m of steel per year; best estimates of 0.02 moles of H₂ per m² per year or 0.1 moles of H₂ per drum per year and 0.2 μ m per year; and 48 maximum estimates of 0.2 moles of H₂ per m₂ per year or 1 moles of H₂ 49 per drum per year and 2 μ m per year (Table 1). 50

51 52

40

11

24

Finally, I propose that the estimated gas production potential from

anoxic corrosion remain at 900 moles per drum of waste. This value,
estimated by Brush and Anderson (1989), Lappin et al. (1989), and Brush
(1990), is 60% of the total gas production potential.

4 5

6 7 8

9

10

11

12

13 14

15

16

17

18

19

20

21

22 23

32

41

50

MICROBIAL ACTIVITY

D. Grbic-Galic and her colleagues at Stanford University observed significant microbial gas production by halophilic microorganisms in brine collected from G Seep in the WIPP underground workings with glucose, a relatively biodegradable substrate, but did not report significant gas production with cellulose, a much less biodegradable substrate. Furthermore, brine from G Seep inhibited significant gas production by nonhalophilic microorganisms, although a few experiments did show some evidence for possible microbial activity. These results seem to suggest that microbial gas production may be significant under overtest conditions (relatively biodegradable substrates, amendment of brine with nutrients, etc.), but not under realistic conditions. However, I believe that, for the reasons described below, the results obtained by Grbic-Galic and her colleagues do not rule out significant microbial gas production.

First, N. Black of Stanford University, R. H. Vreeland of West 24 Chester University, and I compared the recent study at Stanford 25 University and studies carried out during the 1970s (Barnhart et al., 26 1980; Caldwell, 1981; Caldwell et al., 1988; Molecke, 1979; Sandia 27 National Laboratories, 1979). We concluded, as others have before us 28 (Molecke, 1979; Brush and Anderson, 1989; Lappin et al., 1989), that 29 the earlier results implied significant microbial gas production under 30 both realistic and overtest conditions. 31

Second, Vreeland observed significant degradation of filter paper 33 by his enrichments of halophilic and halotolerant microorganisms from 34 the salt lakes in Nash Draw. Although he could not quantify gas 35 production rates from these experiments, the results suggest that 36 microorganisms could consume paper under realistic conditions in WIPP 37 disposal rooms. Paper constitutes 70% of the 10 kg of cellulosics per 38 equivalent drum of contact handled TRU waste to be emplaced in the 39 40 repository (Brush, 1990).

Third, Black, Vreeland, and I reviewed the methods used in the 42 earlier and recent studies in detail. We concluded that the study at 43 Stanford University was not sensitive enough to detect gas production 44 rates equivalent to a few tenths of a mole of gas per drum of waste per 45 year. Davies (1990) has demonstrated that gas production rates greater 46 than about 0.1 mole per equivalent drum of waste per year are 47 significant from the standpoint of the long-term performance of the 48 repository. 49

51 Because the results obtained at Stanford University do not rule out 52 significant microbial gas production under realistic conditions, I

propose using the same best estimate for the microbial gas production 1 2 rate under inundated conditions proposed by Brush and Anderson (1989). 3 Lappin et al. (1989), and Brush (1990), 1 mole of various gases per 4 drum per year. However, I propose new minimum and maximum rates for 5 inundated conditions, 0 and 5 moles per drum per year, respectively. 6 The minimum estimate is analogous to the minimum estimate for anoxic 7 corrosion under inundated conditions. The maximum estimate is Molecke's (1979) maximum estimate for microbial activity under 8 9 inundated conditions. I also propose new minimum and best estimates 10 for microbial gas production rates under humid conditions, 0 and 0.1 moles per drum per year. These estimates, both arbitrary, are 11 12 analogous to the arbitrary minimum and best estimates for anoxic 13 corrosion under humid conditions. The maximum estimate for microbial 14 activity under humid conditions remains unchanged from the value estimated by Brush and Lappin (1990), 1 mole per drum per year (Table 15 16 1).

17

37

42 43

44 45 46

To convert these estimates of microbial gas production rates to 18 units of moles per kg of cellulosics per year, I divided each rate by 19 10 kg of cellulosics per drum, the estimate used by Brush (1990), to 20 obtain the estimates given in Table 1. Strictly speaking, this is 21 inconsistent with the fact that the rate of 1 mole per drum per year is 22 based on experiments carried out with simulated waste that included 23 24 materials other than cellulosics (Molecke, 1979). It is also inconsistent with the assumption of Molecke (1979), Brush and Anderson 25 26 (1979), and Lappin et al. (1989) that microorganisms will degrade 100% of the cellulosics, 50% of the Hypalon, and 50% of the Neoprene in the 27 However, about 90% of the microbial gas production potential 28 waste. (below) and hence 90% of the microbial gas production rate estimated by 29 30 Brush and Anderson (1989) and Lappin et al. (1989) would result from biodegradation of cellulosics and only 5% each from Hypalon and 31 Furthermore, Francis will use cellulosics as the sole 32 Neoprene. substrate in his study of microbial gas production, at least initially. 33 Finally, it will be much easier to use rates normalized only to the 34 mass of cellulosics present than rates normalized to cellulosics, 35 Hypalon, and Neoprene in performance-assessment calculations. 36

I also propose that the estimated gas production potential from microbial activity stay at 600 moles per drum of waste, the value estimated by Brush and Anderson (1989), Lappin et al. (1989), and Brush (1990). This is 40% of the total gas production potential.

RADIOLYSIS

47 D. T. Reed of Argonne National Laboratory is carrying out a low-48 pressure study of gas production by α radiolysis of Brine A as a 49 function of dissolved Pu concentration. He has observed small, linear 50 pressure increases from the solution with the highest dissolved Pu 51 concentration, $1 \cdot 10^{-4}$ M, but does not have enough data to convert 52 these rates to moles of gas per drum of waste per year yet. As

A-31

expected, he has not observed pressure increases yet from the solutions 1 with lower dissolved Pu concentrations, $1 \cdot 10^{-6}$ and $1 \cdot 10^{-8}$ M. After 2 3 completion of these 3-month experiments, Reed will carry out 2-month 4 runs with a dissolved Pu concentration of $1 \cdot 10^{-4}$ M in other WIPP brines to determine the effect of compositional variations on the 5 6 radiolytic gas production rate.

7

11

13

15

17

19

20 21 22

23

24 25 26

27

33

34

37 38

8 As soon as he obtains longer-term data from Brine A with a dissolved Pu concentration of 1 \cdot 10⁻⁴ M, data with lower dissolved Pu 9 concentrations in Brine A, and results from other WIPP brines with a 10 dissolved Pu concentration of $1 \cdot 10^{-4}$ M, Reed will calculate 12 experimentally based radiolytic gas-production rates for the radionuclide concentrations estimated by the Radionuclide Source Term In addition to rates in units of moles of gas per drum 14 Expert Panel. of waste per year, he will provide rates in moles per cubic meter of brine for various concentrations. Until then, I propose using the 16 radiolytic gas production rates proposed by Brush and Lappin (1990), who estimated a minimum rate of $1 \cdot 10^{-7}$ mole of various gases per drum 18 of waste per year, a best rate of 1 \cdot 10⁻⁴ mole per drum per year, and a maximum rate of $1 \cdot 10^{-1}$ mole per drum per year (Table 1).

EXPECTED CHEMICAL CONDITIONS RELEVANT TO RADIONUCLIDE CHEMISTRY

Development of the source term for radionuclide-transport calculations will require: 28 (1) estimates of the quantity of each nonradioactive constituent of design-basis TRU waste to be emplaced in 29 the repository; (2) predictions of the microenvironments (Eh, pH, and 30 the concentrations of organic and inorganic ligands) for each 31 nonradioactive waste constituent; (3) quantification of the chemical 32 behavior of the important radionuclides in the waste for each of these microenvironments; (4) construction of a frequency distribution of radionuclide concentrations based on the relative quantity of each 35 nonradioactive waste constituent and the concentration associated with 36 that constituent.

Currently, inventories of radioactive and nonradioactive waste 39 constituents and estimates of radionuclide concentrations in brines as 40 a function of Eh and pH are available. However, the high priority 41 placed on the gas issue in laboratory studies of repository chemistry 42 has precluded efforts to predict microenvironment for waste 43 Therefore, I propose that oxidizing, acidic conditions, 44 constituents. oxidizing, basic conditions, reducing, acidic conditions, and reducing, 45 basic conditions be considered equally probable for interpreting Eh-pH-46 dependent estimates of radionuclide concentrations in WIPP brines. 47

REFERENCES

1	REFERENCES
2	
2	
3 4 5 6 7	 Barnhart, B. J., E. W. Campbell, E. Martinez, D. E. Caldwell, and R. Hallett (1980). Potential Microbial Impact on Transuranic Wastes Under Conditions Expected in the Waste Isolation Pilot Plant (WIPP), Annual Report, October 1, 1978-September 30, 1979. LA-
8 9	8297-PR, Los Alamos Scientific Laboratory, Los Alamos, NM.
10 11 12 13	Brush, L. H. (1990). Test Plan for Laboratory and Modeling Studies of Repository and Radionuclide Chemistry for the Waste Isolation Pilot Plant, SAND90-0266, Sandia National Laboratories, Albuquerque, NM.
14 15 16 17 18 19	Brush, L. H., and D. R. Anderson (1989). Estimates of Gas Production Rates, Potentials, and Periods, and Dissolved Radionuclide Concentrations for the WIPP Supplemental Environmental Impact Statement, unpublished memorandum to B. M. Butcher, February 14, 1989. Sandia National Laboratories, Albuquerque, NM.
20 21 22 23 24	Brush, L. H., and A. R. Lappin (1990). Additional Estimates of Gas Production Rates and Radionuclide Solubilities for Use in Models of WIPP Disposal Rooms, unpublished memorandum to D. R. Anderson, August 1, 1990. Sandia National Laboratories, Albuquerque, NM.
25 26 27 28	Caldwell, D. E. (1981). Microbial Biogeochemistry of Organic Matrix Transuranic Waste, unpublished report submitted to M. A. Molecke, June 17, 1981, University of New Mexico, Albuquerque, NM.
29 30 31 32 33 34	Caldwell, D. E., R. C. Hallett, M. A. Molecke, E. Martinez, and B. J. Barnhart (1988). Rates of CO ₂ Production From the Microbial Degradation of Transuranic Wastes under Simulated Geologic Isolation Conditions. SAND87-7170, Sandia National Laboratories, Albuquerque, NM.
35 36 37 38 39 40	Davies, P. B. (1990). Results from Recent Variable-Rate Gas Simulations that Examine the Impact of Vapor-Limited ("Humid") Gas- Generation Rates, unpublished memorandum to L. H. Brush and A. R. Lappin, December 6, 1990. Sandia National Laboratories, Albuquerque, NM.
41 42 43 44 45 46	Engineered Alternatives Task Force (in prep.). Evaluation of the Effectiveness and Feasibility of the Waste Isolation Pilot Plant Engineered Alternatives: Final Report of the Engineered Alternatives Task Force, Vol. I and II, DOE/WIPP 91-007, Rev. 2, US Department of Energy Waste Isolation Pilot Plant, Carlsbad, NM.
40 47 48 49 50 51	Lappin, A. R., R. L. Hunter, D. P. Garber, and P. B. Davies, Eds. (1989). Systems Analysis, Long-Term Radionuclide Transport, and Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern New Mexico; March, 1989. SAND89-0462, Sandia National Laboratories, Albuquerque, NM.

Molecke, M. A. (1979). Gas Generation from Transuranic Waste 1 Degradation: Data Summary and Interpretation. SAND79-1245, Sandia 2 National Laboratories, Albuquerque, NM. 3 4 Sandia National Laboratories (1979). Summary of Research and 5 Development Activities in Support of Waste Acceptance Criteria for 6 the WIPP. SAND79-1305, Sandia National Laboratories, Albuquerque, 7 NM. 8 9 Westerman, R. E. (1990). Corrosion of Low-Carbon Steel in Simulated 10 Waste Isolation Pilot Plant (WIPP) Environments, Quarterly Progress 11 Report for the Period July 1 - September 30, 1990, unpublished 12 report submitted to L. H. Brush, September 28, 1990. Pacific 13 Northwest Laboratory, Richland, WA. 14 15 Westerman, R. E. (1991a). Corrosion of Low-Carbon Steel in Simulated 16 Waste Isolation Pilot Plant (WIPP) Environments, Progress Report 17 for the Period October 1, 1990 to March 31, 1991, unpublished 18 report submitted to L. H. Brush, March 29, 1991. Pacific Northwest 19 Laboratory, Richland, WA. 20 21 Westerman, R. E. (1991b). April 1991 Monthly Report, Corrosion of Low-**2**2 Carbon Steel in Simulated WIPP Environments, unpublished report 23 submitted to L. H. Brush, April 26, 1991. Pacific Northwest 24 Laboratory, Richland, WA. 25 26 Westerman, R. E. (1991c). May 1991 Monthly Report, Corrosion of Low-27 Carbon Steel in Simulated WIPP Environments, unpublished report 28 submitted to L. H. Brush, May 28, 1991. Pacific Northwest 29 Laboratory, Richland, WA. 30

	Gas Product	ion Rate (vari	ous units
Process	Minimum	Best	Maximu
Anoxic corrosion, inundated:	1		
moles/m ² · year	0	0.2	0.4
moles/drum · year	0	1	2
µm/year	0	2	3
Anoxic corrosion, humid: ¹			
moles/m 2 · year	0	0.02	0.2
moles/drum · year	0	0.1	1
μ m/year	0	0.2	2
Microbial activity, inundate	ed:		
moles/drum · year	0	1	5
moles/kg cellulosics · y	year O	0.1	0.5
Microbial activity, humid:			
moles/drum · year	0	0.1	1
moles/kg cellulosics · y	year O	0.01	0.1
Radiolysis of brine:			
moles/drum · year	0.000000	1 0.0001	0.1

TABLE 1. CURRENT ESTIMATES OF GAS PRODUCTION RATES

1	Distribution:
2	
3	V. Daub, DOE/WPO
4	J. Carr, DOE/WPO
5	D. Blackstone, DOE/WPO
6	W. D. Arnold, Oak Ridge National Laboratory
7	J. N. Butler, Harvard University
8	G. R. Choppin, Florida State University
9	A. J. Francis, Brookhaven National Laboratory
10	J. B. Gillow, Brookhaven National Laboratory
11	J. K. Lanyi, University of California at Irvine
12	R. E. Meyer, Oak Ridge National Laboratory
13	H. Nitsche, Lawrence Livermore National Laboratory
14	D. T. Reed, Argonne National Laboratory
15	R. H. Vreeland, West Chester University
16	R. E. Westerman, Pacific Northwest Laboratory
17	6340 W. D. Weart
18	6341 R. C. Lincoln
19	6341 SWCF (6): XXXRC, XXXRC/AC, XXXRC/MA, XXXRC/R, XXXRNC, XXXRNC/SOL
20	6342 Staff
21	6343 T. M. Schultheis
22	6344 E. D. Gorham
23	6344 P. B. Davies
24	6345 B. M. Butcher
2 5	6345 Staff
26	6346 J. R. Tillerson

3		Davies, June 2, 1991
4		
5	Date:	6/2/91
6	To:	D. R. Anderson (6342)
7	From:	P. B. Davies (6344)
8	Subject:	Uncertainty Estimates for Threshold Pressure for 1991
9		Performance Assessment Calculations Involving Waste-
10		Generated Gas
11		

Sandia National Laboratories

Albuquerque, New Mexico 87185

1	Date:	June 6, 1991
2 3	То:	D.R. Anderson (6342)
4 5 6		P.B. Qavies
6 7 8	From:	P.B. Davies (6344)
8 9 10 11 12 13	Subject:	Uncertainty Estimates for Threshold Pressure for 1991 Performance Assessment Calculations Involving Waste-Generated Gas
14 15 16 17 18 19 20 21 22 23 24 25 50	1991 performan important role is pressures gas fl model used to c and LaVenue, parameters sho follows. First	emorandum contains the recommended uncertainty distribution for the threshold pressure for nec assessment calculations involving waste-generated gas. Threshold pressure may play an n controlling which Salado lithologies are accessible as gas migration flow paths and at what gas ow will be initiated. Threshold pressure is also a key parameter in the Brooks and Corey (1964) haracterize the 2-phase properties of analogue materials for preliminary gas calculations (Davies 1990). Threshold pressure is strongly related to intrinsic permeability and, therefore, these build not be sampled independently. The recommended approach for 1991 calculations is as sample for the intrinsic permeability for a given unit (either interbed or halite), then use the mpirical correlation for threshold pressure from Davies (1991) to compute a median value for ure:
26 27 28 29	P, [MF	$a] = 5.6 \times 10^{-7} (k [m^2])^{-0.346}$
29 30 31 32 33 34 25 36 37 38 39 40 41 42 43	associated with correlation is t intrinsic perme estimation error variations in th measurement e independently. estimated mea uncertainty asso Presumably, th permeability. span a wide ra	avies (1991), threshold pressure estimates based on this empirical correlation have uncertainty in the correlation itself and with factors external to the correlation. One uncertainty in the he error associated with estimating the true mean value of the threshold pressure for a given ability. Because of the relatively strong correlation (goodness-of-fit, R ² , is equal to 0.93), the per is fairly small. A second uncertainty in the correlation is prediction error due to random reshold pressure in any given rock type and to measurement error in the original data. Because error in the original data was not quantified, these two sources of uncertainty cannot be evaluated The interval between the bounds of this prediction error is approximately three times the n threshold pressure. One source of uncertainty that is external to the correlation is the bociated with measurements of intrinsic permeability in various lithologies of the Salado Formation. is uncertainty will be accounted for in performance assessment calculations by sampling on Another very important source of uncertainty is the fact that while the data for the correlation nge of consolidated rock types (shale, anhydrite, carbonate, and sandstone), the data do not ctual measurements from the Salado Formation at the WIPP repository nor do the data
44 45		ctual measurements on halite.

46 Clearly the total uncertainty in the estimates described in the previous paragraph is quite large. Given 47 the present lack of any WIPP-specific data, it is not possible to rigorously quantify this uncertainty. Therefore,

1		mmended that a relatively simple representation of uncertainty should be used for purposes of the 1991		
2	performance assessment calculations. For these calculations, it is recommended that a log normal distribution			
3		be assumed, with plus/minus one order of magnitude for one standard deviation and plus/minus two orders of		
4		magnitude for two stardard deviations (Figure 1). This large uncertainty should produce a wide range of		
5	hydrolog	hydrologic responses to waste-generated gas, which is appropriate given the present lack of WIPP-specific data.		
6				
7				
8 9				
10				
11	REFER	ENCES		
12				
13				
14	Brooks,	R.H., and A.T. Corey. 1964. Hydraulic Properties of Porous Media. Colorado State University,		
15		Hydrology Paper No. 3.		
16				
17	Davies,	P.B. 1991. Evaluation of the Role of Threshold Pressure in Controlling Flow of Waste-		
18		Generated Gas into the Bedded Salt at the Waste Isolation Pilot Plant. SAND90-3246.		
19		Albuquerque, New Mexico: Sandia National Laboratories.		
20				
21	Davies,	P.B. and LaVenue, A.M. 1990. "Additional Data for Characterizing 2-Phase Flow Behavior in Waste-		
22		Generated Gas Simulations and Pilot Point Information for Final Culebra 2-D Model (SAND89-		
23		7068/1)." memorandum to R.P. Rechard (11-19-91). Albuquerque, New Mexico: Sandia National		
24		Laboratories.		
25				
25				
27				
28				
29				
30				
31				
32 33				
34				
35				
36				
37				
38	cc:	W.D. Weart (6340)		
39		M.G. Marietta (6342)		
40		R.P. Rechard (6342)		
41		P. Vaughn (Applied Physics Inc.)		
42		E.D. Gorham (6344)		
43		S.M. Howarth (6344)		
44		S.W. Webb (6344)		

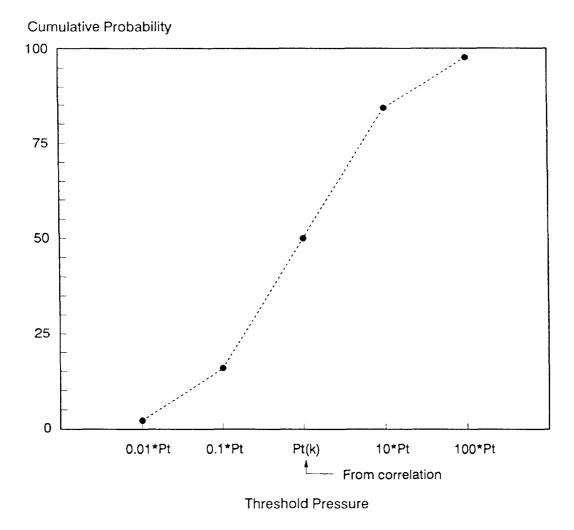


Figure 1. Uncertainty distribution for threshold pressure.

2		Drez, May 9, 1989
4		
5	Date:	5/9/89
6	To:	L. Brush (6334)
7	From:	Paul Drez (International Technology Corporation)
8	Subject:	Preliminary Nonradionuclide Inventory of CH-TRU Waste
9		(Note: Following the letter are Tables 3.5, 3.6, and 3.9,
10		which were taken from the draft report, "Preliminary
11		Nonradionuclide Inventory for CH-TRU Waste," by P. E. Drez
12		and P. James-Lipponer, International Technology
13		Corporation, Albuquerque, NM, May, 1989.)
14		

A-43

May 9, 1989

Project No. 301192.88.01

1	Dr.	L. Brush	
2	San	dia National Laboratories	
3	Division 6334		
4	P. O. Box 5800		
5	Alb	uquerque, NM 87185	
6			
7			
8		Preliminary Nonradionuclide Inventory of CH-TRU Waste	
9			
10			
11	Dea	r Dr. Brush:	
12			
13	Att	ached is a preliminary report on the status of the Nonradionuclide Inventory	
14		abase and detailed tabulations of waste materials as requested in the last	
15		ndment to the IT Sandia Support contract. I am sorry for the slight delay in	
16	com	pleting the report, but the CH-TRU generator/storage sites were late in their	
17	res	ponses and the process of tabulating the appropriate data proved to be a difficult	
18	tas	k. Part of the difficulty has to do with the slight variations in the way the	
19	sít	es report data.	
20			
21	Lis	ted below is the information contained in this package:	
22			
23	0	Report entitled: "Preliminary Nonradionuclide Inventory for CH-TRU Waste." The	
24		report includes a description of how the data was collected from the CH-TRU waste	
25		generator/storage sites, a description of the database used to compile the data,	
26		and examples of how the calculations were made including any limitations (Item	
27		7 in Statement of Work).	
28			
29	ð	Table 3-5 in the report summarizes the total quantity of combustible materials	
30		in the waste, including cellulosics, plastics and other combustibles (Item 3 in	
31		Statement of Work).	
32			
33		Although only total cellulosics were requested, data on plastics and other	
34		combustibles were also tabulated, anticipating their eventual need to support	
35		the Performance Assessment program.	
36			
37	0	Table 3-5 in the report estimates the quantity of various types of cellulosic	
38		materials in the total cellulosic inventory (Item 4 in Statement of Work).	
39			
40		A breakdown of the various types of plastic and rubber materials has also been	
41		provided in Table 3-5. <u>Caution is advised in the interpretation of the plastics</u>	
42		in the tables, since two sites choose to report the weight of plastic bagging and	
43		rigid liners as part of the waste totals.	

Regional Office5301 Central Avenue, N.E. • Suite 700 • Albuquerque, New Mexico 87108 • (505) 262-8800

Dr. L. Brush

May 9, 1989

1 2 3 4	O	Table 3-6 in the report estimates the total quantity of metals in the CH-TRU waste and also provides a breakdown of the various types of metals in the waste (Item 5 in Statement of Work).
5 6 7 8 9		<u>Caution is advised in the interpretation of this table, since two sites choose</u> to report the amount of metal in the waste packaging as part of the waste <u>contents in this table</u> . I have no way of separating out the weight of the waste cannister from the database at this time.
10 11 12 13 14 15		In an attempt to provide a complete inventory (including waste packaging), Table 3-8 provides a preliminary estimate of the amount of plastic and other internal packaging in addition to an estimate of the metal included in the waste. Variations in the method of packaging from site to site have been accounted for in the tabulation of the data.
16 17 18 19 20	0	Table 3-7 in the report estimates the total quantity of nitrates and total inorganic carbon (TIC) in the waste (Items 2 and 6 in Statement of Work). Graphite or charcoal is not considered part of this summary, only inorganic carbonate.
21 22 23 24 25	O	Table 4-2 in the report lists quantitative information on selected chelating agents that occur in the waste. All chelating agents requested in your statement of work (Item 1) have been included plus any additional chelating agents that have been reported by the sites.
26 27 28	0	Printouts for each generator/storage site that represent <u>complete</u> data dumps of the Nonradionuclide Inventory Database (Item 7 of Statement of Work).
29 30 31 32 33	0	Floppy disks containing all the dBASE files for the database. An explanation of the files is provided in Appendix 2.0 of the report (Item 7 of Statement of Work).
34 35 36 37 38	In of a	am very pleased to transmit this preliminary report on the Nonradionuclide ventory Database to you. This database is important step towards an understanding the composition and quantities of CH-TRU waste to be emplaced in WIPP. This is "living" database that should be updated periodically as more precise information provided by the CH-TRU waste generator/storage sites.

Dr. L. Brush

3

May 9, 1989

Do not hesitate to contact me at 262-8800 if you need any clarification of the data contained in this packet of information. Pamela James (262-8800) can provide any information about the structure and output of the database.

Sincerely,

4 5

6

7

10

12

Paul ! . Inez Paul E. Drez

Paul E. Drez
 Senior Technical Associate

11 Edilosures

¹³ cc: M. Devarakonda, IT-Albuquerque (report only)

- P. James, IT-Albuquerque (report only)
- ¹⁵ J. Myers, IT-Albuquerque (report only)

Dr. L. Brush

May 9, 1989

¹ Do not hesitate to contact me at 262-8800 if you need any clarification of the data ² contained in this packet of information. Pamela James (262-8800) can provide any ³ information about the structure and output of the database.

3

5 Sincerely, Paul ! Inen 6 7 Paul E. Drez 🗲 8

9 Senior Technical Associate

10

4

11 Ecolosures

¹³ cc: M. Devarakonda, IT-Albuquerque (report only)

- P. James, IT-Albuquerque (report only)
- ¹⁵ J. Myers, IT-Albuquerque (report only)

aste Material	Weight (Ki
OMBUSTIBLES	
-Cellulosics	
-Paper/Kimwipes	3,890,000*
-Cloth	226,000
-Other Paper	51
-Lumber (untreated)	73,100
-Lumber (treated)	36,700
-Plywood	98,400
-Other Wood (rulers)	<1
-Other Wood (all types)	23,700
-Other Cellulose (with phenolic binder	r) 1,720
Cellulosics Subtotal	4,350,000

32

33

Table 3-5.Total Quantity of CH-TRU CombustibleWaste to be Shipped to WIPP

* All numbers, including totals, rounded off to a maximum of three significant number.

Waste Material	Weight (Kilogram
COMBUSTIBLES	
-Plastics	
-Polyethylene	1,540,000*
-Polyvinyl Chloride	1,040,000
-Surgeon's Gloves (latex)	582,000
-Leaded Rubber Gloves (Lead-Hypalon-Neoprene)	596,000
-Hypalon	114,000
-Neoprene	129,000
-Viton	133
-Teflon	41,000
-Plexiglas (including Lucite)	18,900
-Styrofoam	330
-Plastic Prefilters (polypropylene?)	33,600
-Polystyrene	2,560
-Conwed Pads (plastic fibers)	2,030
-Other Plastic	75,500
-Other Rubber (Kalrez)	<1
-Other Rubber (undefined)	7,530
-Plastics Subtotal	4,180,000

Table 3-5. Total Quantity of CH-TRU Combustible Waste to be Shipped to WIPP (Continued)

* All numbers, including totals, rounded off to a maximum of three significant number.

	Waste to be Shipped	to WIPP (Continued)
<u>Waste</u>	Material	Weight (Kilogra
COMBU	STIBLES	
COMBO	511DLE5	
-0t	her	
- :	Blacktop	18,800*
- (Other	41,700
0.5	her Subtotal	60,500
-01	ner Sublolal	80,300
-Ce	llulosics Subtotal	4,350,000
-P1	astics Subtotal	4,180,000
_		<i></i>
-0t	her Subtotal	60,500
COMBU	STIBLES TOTAL IN CH-TRU WASTE	8,590,000
001120		0,000,000

Table 3-5. Total Quantity of CH-TRU Combustible

4 5	Waste Material	Weight (Kilograms)
6 7	Metals	
8 9	-Aluminum	666 ,000 [*]
10 11	-Beryllium	8,640
12 13	-Cadmium	5
14 15	-Chromium	5
16 17	-Copper	300,000
18 19	-Iron	2,620,000
20 21	-Lead	
22 23	- Metallic	513,000
24 25	- Glass (includes weight of glass)	1,120,000#
26 27	- Gloves (includes weight of gloves)	596,000#
28 29	-Lithium (batteries)	1,030
30 31	-Mercury	120
32 33	-Paint Cans	547,000
34 35	-Platinum	1,500
36 37	-Selenium	5
38 39 40	-Silver	5

Ĩ.

Table 3-6. Total Quantity of CH-TRU Metal Waste to be Shipped To WIPP

All numbers, including totals, rounded off to a maximum of three * significant number.

The reported weights for lead include the weight of the matrix, therefore, the values are conservative (too high).

1	Table 3-6. Total Quantity of CH-TRU Metal Waste to be Shipped To WIPP (Continued)		
2 3	waste to be shipped to wirr (continued)		
4 5	Waste Material	Weight (Kilograms)	
6 7	Metals		
8 9 10 11	-Steel (including stainless, crushed drums inner drums, carbon steel, etc.)	9,170,000*#	
12	-Shipping Cans	217	
13 14 15	-Tantalum	125,000	
16	-Tungsten	20,000	
17 18 19	-Other	146,000	
20 21 22 23	Total Metals	15,800,000	
24 25 26	* All numbers, including totals, rounded off to significant number.	a maximum of three	
27 28 29	# The weight of steel quoted in the table inclution the waste containers (drums and boxes) for I	-	

A-52

Table 3-9. Average Weights Used for Calculationof Container and Packaging Materials		
Type of Packaging Material	<u>Weight (Kilograms)</u>	
Drums -		
	00 r*	
Weight of 17C drum	29.5	
Weight of 90-mil high-density polyethylene liner		
Weight of Polyvinyl Chloride drum liner bag	0.7	
Weight of Polyethylene drum liner bag	0.7	
Weight of Fiberboard liner for 55 gallon drum	2.0	
4x4x7 Boxes -		
Weight of 4x4x7 metal box	217.7	
Weight of Plywood liner for 4x4x7 metal box	175.5	
Weight of PVC liner bag for 4x4x7 box	5.0	
Weight of fiberboard liner for 4x4x7 box	11.8	
Weight of wooden 4x4x7 box	208.7	
Weight of fiberglass reinforced wooden box	322.0	
Standard Waste Boxes -		
	4	
Weight of Standard Waste Box	310.7#	
Weight of PVC liner bag	4.0	
* All weights are based on containers and packagin	g materials	
used at the Rocky Flats Plant, except for the we	eight of the	
Standard Waste Box.		
# Trupact-II Safety Analysis Report, Appendix 1.3.	4, Revision 0, 1989.	

3		Finley and McTigue, June 17, 1991
4		
5	Date:	6/17/91
6	To:	Elaine Gorham, 6344
7	From:	S. J. Finley, 6344, and D. F. McTigue, 1511
8	Subject:	Parameter Estimates from the Small-Scale Brine Inflow
9		Experiments
10		

A-56

Sandia National Laboratories

Albuquerque, New Mexico 87185

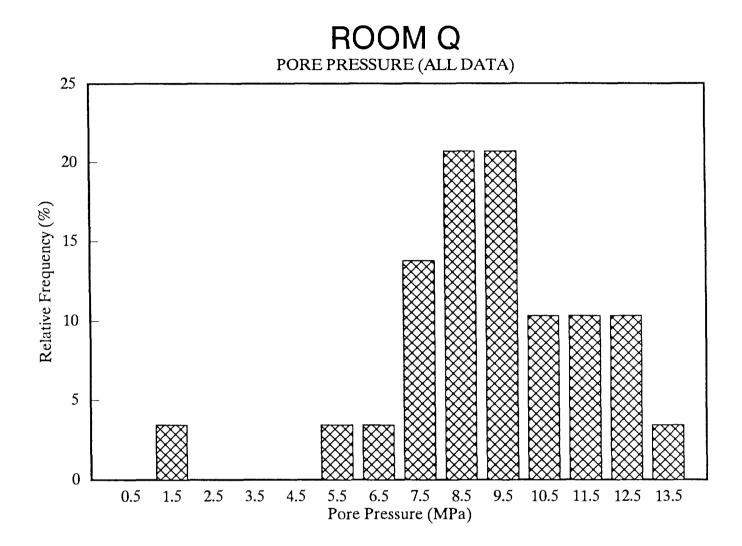
The

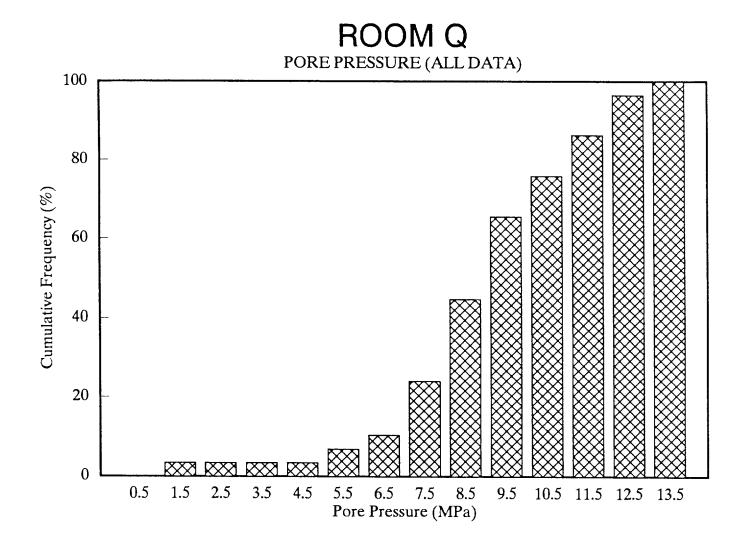
1 date: June 17, 1991 2 3 to: Elaine Gorham, 6344 4 5 S.J. Falen D.7. Jun Tigen 6 7 from: S. J. Finley, 6344 and D. F. McTigue, 1511 8 9 10 11 12 subject: Parameter Estimates from The Small-Scale Brine Inflow Experiments 13 14 15 16 Data from the small-scale brine inflow experiments has been analyzed using the one-dimensional, radial, Darcy flow model. Brine inflow data 17 from 10 boreholes in halite and 3 boreholes testing Marker Bed 139 has 18 been used to estimate permeability and hydraulic diffusivity. 19 diffusivity is determined from the time scale of the decay of the flux 20 (inflow rate/unit area), and the product of the pore pressure and 21 permeability is determined from the magnitude of the flux. 22 23 All of the results of the two parameter fit to the flux data are given in 24 Table 1. Permeability values reported are estimated by assuming a 25 uniform pore pressure of 10 MPa, 5 MPa, and 1 Mpa. (Susan Howarth and 26 Rick Beauheim have both made measurements of pore pressure in the WIPP 27 underground and should be consulted about the pore pressure assumptions.) 28 Uncertainty in all parameter estimates is reported as plus or minus one 29 standard deviation. This uncertainty is a measure of how good the fit is 30 assuming a random error of the order of the expected measurement error is 31 included in the data set. Any uncertainty in the model itself or the 32 pore pressure assumed are not included in the uncertainty measure 33 reported. 34 35 All of the boreholes included in this set of experiments are drilled from 36 an underground excavation. Boreholes vary from 3 m to 6 m in length. 37 For all halite tests, brine inflow was averaged over the entire length of 38 the borehole. For the boreholes testing Marker Bed 139, the brine inflow 39 was averaged over the thickness of Marker Bed 139 (3-feet). 40 41 Attachment 42 43 44 Copy to: 45 W. D. Weart, 6340 46 D. R. Anderson, 6342 47 R. P. Rechard, 6342 48 R. L. Beauheim, 6344 40 S. M. Howarth, 6344 50

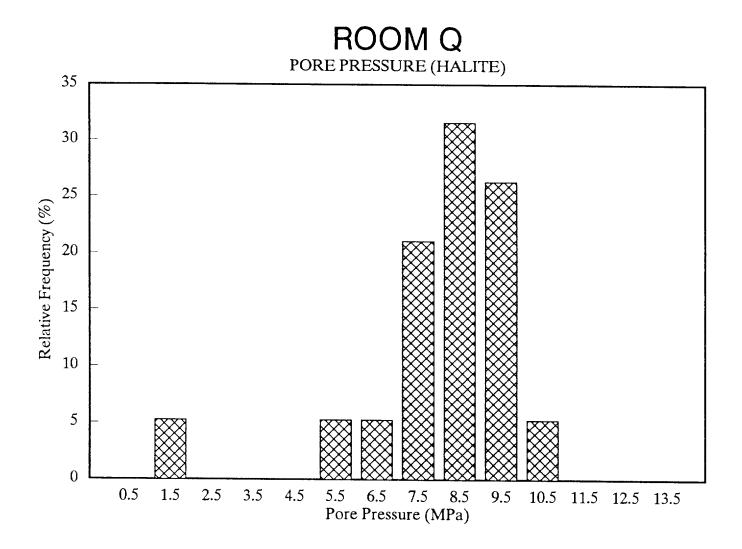
1 2			Table 1: Parameter	r Estimates from Bore	chole Experiments	
3 4 5 6 7	Borehole #	Rock Type	Permeability @Po <mark>-</mark> 10 MPa (m ²)	Permeability @Po = 5 MPa (m ²)	Permeability @Po = 1 MPa (m ²)	Diffusivity (m ² /sec)
7 8	DBT10	Halite	2 .9E-22 <u>+</u> .18E-22	5.8E-22 <u>+</u> .36E-22	2.9E-21 <u>+</u> .18E-21	4.7E-11 <u>+</u> .78E-11
9 10	DBT11	Halite	1 .1E-21 <u>+</u> .09E-21	2.3E-21 <u>+</u> .18E-21	1.1E-20 <u>+</u> .09E-20	3.5E-9 <u>+</u> .63E-9
11 12	DBT12	Halite	6.4E-22 <u>+</u> .72E-22	1.3E-21 <u>+</u> .14E-21	6.4E-21 <u>+</u> .72E-21	1.0E-8 <u>+</u> .65E-8
13 14	DBT13	Halite	1 .7E-22 <u>+</u> .26E-22	3.4E-22 <u>+</u> .52E-22	1.7E-21 <u>+</u> .26E-21	5.9E-11 <u>+</u> 2.3E-11
15 16	DBT14A	Halite	7 . 8E- 22 <u>+</u> 2.4E-22	1.6E-21 <u>+</u> .48E-21	7.8E-21 <u>+</u> 2.4E-21	2.8E-8 <u>+</u> 4.6E-8*
17 18	DBT14B	Halite	2 .2E-20 <u>+</u> .28E-21	4.5E-21 <u>+</u> .56E-21	2.2E-21 <u>+</u> .28E-21	4.3E-8 <u>+</u> 3.3E-8
19 20	DBT15A	Halite	3 .2E-22 <u>+</u> .55E-22	6.4E-22 <u>+</u> 1.1E-22	3.2E-21 <u>+</u> .55E-21	1.8E-10 <u>+</u> .86E-10
21 22	DBT15B	Halite	1.8E- 22 <u>+</u> .59E-22	3.6E-22 <u>+</u> 1.1E-22	1.8E-21 <u>+</u> .59E-21	1.3E-10 <u>+</u> 1.2E-10
23 24	L4B01	Halite	.67E-22 <u>+</u> .43E-22	1.3E-22 <u>+</u> .86E-22	.67E-21 <u>+</u> .43E-21	5.8E-11 <u>+</u> 9.1E-11*
25 26	DBT31A	Halite	9 .0E-22 <u>+</u> 2.4E-22	1.8E-21 <u>+</u> .48E-21	9.0E-21 <u>+</u> 2.4E-21	1.27E-10 <u>+</u> 1.22E-11
27 28	QPB01 *1	Anhydrite	4.8E-21 <u>+</u> .3E-21	9.6E-21 <u>+</u> .06E-21	4.8E-20 <u>+</u> .3E-20	1.1E-8 <u>+</u> .34E-8
29 30	QPB02 *1	Anhydrite	8 .2E-20 <u>+</u> .03E-20	1.6E-19 <u>+</u> .006E-19	8.2E-19 <u>+</u> .03E-19	1.2E-9 <u>+</u> .014E-9
31 32	QPB03 *1	Anhydrite	4.8E-21 <u>+</u> 1.5E-21	9.6E-21 <u>+</u> 3E-21	4.8E-20 <u>+</u> 1.5E-20	6.4E-7 <u>+</u> 18.8E-7*
33 34						
35	* The lower	r limit of the	ese uncertainty bound	s should be assumed	to be zero.	
36		C . 1 1			•. •.	

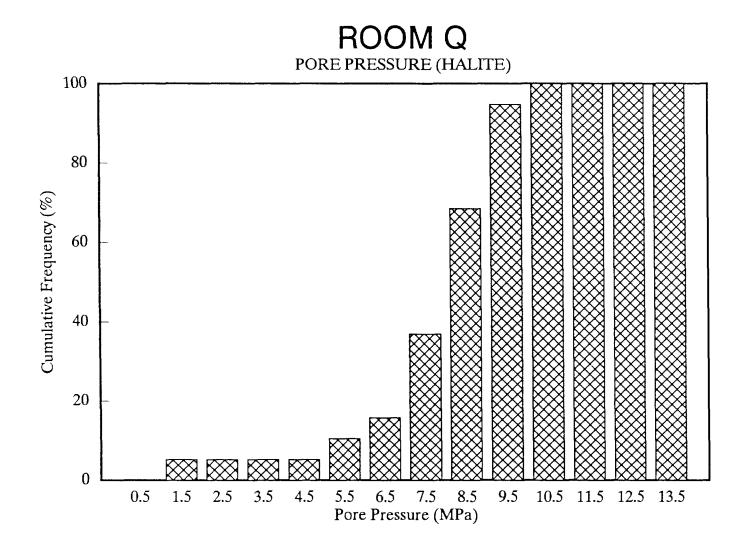
*1 For all of these borehole tests, the length of the productive unit was assumed to be equal to 37 the average thickness of Marker Bed 139 (3-feet). 38

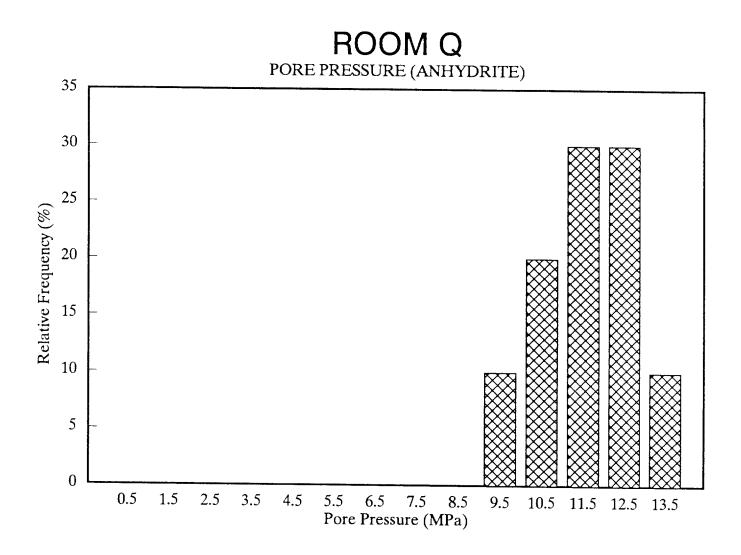
2		Howarth, June 12, 1991
4		
5	Date:	6/12/91
6	To:	Elaine Gorham (6344)
7	From:	Susan Howarth (6344)
8	Subject:	Pore Pressure Distributions for 1991 Performance Assessment
9		Calculations
10		

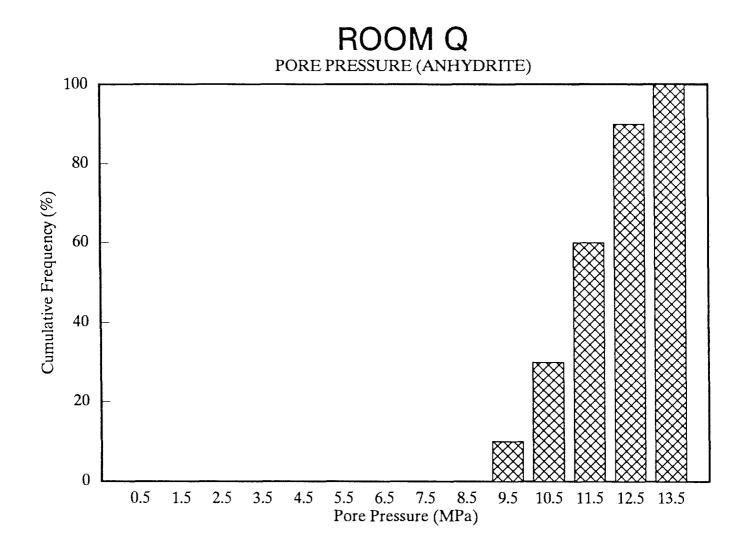

Sandia National Laboratories


Albuquerque, New Mexico 87185


1 2	DATE:	June 12, 1991
- 3 4	то:	Elaine Gorham, 6344
5 6		Sucon MAL
- 7 8	FROM:	Susan Howarth, 6344
9 10 11 12 13 14	SUBJECT:	Pore Pressure Distributions for 1991 Performance Assessment Calculations
15 16 17 18 19 20 21 22	distributions for excavation boreho graphs: 1) all d tests. On each fr centered above a p of the pressure r	e Relative Frequency and Cumulative Frequency r pore pressure as determined from the pre- ole tests at Room Q. There are three sets of ata, 2) halite only tests, and 3) anhydrite only requency distribution graph, the vertical bars are pore pressure value which represents the midpoint range. For example, the bar above the 9.5 value ta in the 9.0 to 9.9 range.
23 24 25 26 27 28 29 30 31 32	pressure test, pr the Horner method pressure values excavation pressu is the Horner ex- weighed equally. found below in Ta	
33 34 35 36 37 38 39	region was locate these pressure te any similar tests far-field conditi data from the Small	Accavation time period, each Room Q borehole test ed 75 feet from an existing excavation. Because ests are located farther from an excavation than s, they are thought to be most representative of cons. However, these data should be combined with 11-Scale Brine Inflow Program and the Permeability for use in Performance Assessment calculations.


2		Room Q Pre-e	xcavation Poi	re Pressure Ranges
3				
4				
5	-			
6		Borehol	e Pore	Pressure (MPa)
7	-			
8				
9		QPP01		9.3-13.9
10		QPP02		1.1-1.1
11		QPP03		11.5-12.8
12		QPP04		7.0-10.3
13		QPP05		Indeterminate
14		QPP11		Indeterminate
15		QPP12		5.8-8.6
16		QPP13		10.5-12.8
17		QPP14		Indeterminate
18		QPP15		Indeterminate
19		QPP21		Indeterminate
20		QPP22		8.5-9.1
21		QPP23		7.1-9.4
2 2		QPP24		8.7-9.4
23		QPP25		7.2-9.4
24				
25				
26		_		
27				
28				
29				
30				
31				
32				
33				
34				
35	Copy to:			
36	•• • ••			
37		t, 6340 (w/o	attachments)	
38	D. R. Ande	rson, 6342		
39	R. P. Rech	ard, 6342		
40	R. L. Beau			
41	S. J. Finl	ey, 6344		


TABLE 1. Room Q Pre-excavation Pore Pressure Ranges



2		Howarth, June 13, 1991
4		
5	Date:	6/13/91
6	To:	Elaine Gorham (6344)
7	From:	Susan Howarth (6344)
8	Subject:	Permeability Distributions for 1991 Performance Assessment
9		Calculations
10		

Sandia National Laboratories

Albuquerque, New Mexico 87185

DATE: June 13, 1991

Elaine Gorham, 6344

Susan Howarth, 6344

FROM:

TO:

1

2

3

> 8 9

10

11 12 13

21

SUBJECT:

Permeability Distributions for 1991 Performance Assessment Calculations

Attached are the Relative Frequency and Cumulative Frequency distributions for permeability as determined from the pre-excavation borehole tests at Room Q. There are three sets of graphs: 1) all tests, 2) halite only tests, and 3) anhydrite only tests. On each frequency distribution graph, the vertical bars are centered above a number which represents data within that order of magnitude. For example, the bar above the -23 value represents permeabilities within the LOG(1*10⁻²³) to LOG(9.9*10⁻²³) m² range.

Permeabilities were calculated using a 1-D radial Darcy-flow model with the following assumptions: 1) no damage zone, 2) constant capacitance (stiff-matrix), and 3) test zone fluid compressibility equals brine compressibility. Permeabilities calculated using these assumptions for the Room Q pre-excavation borehole tests are found in Table 1.

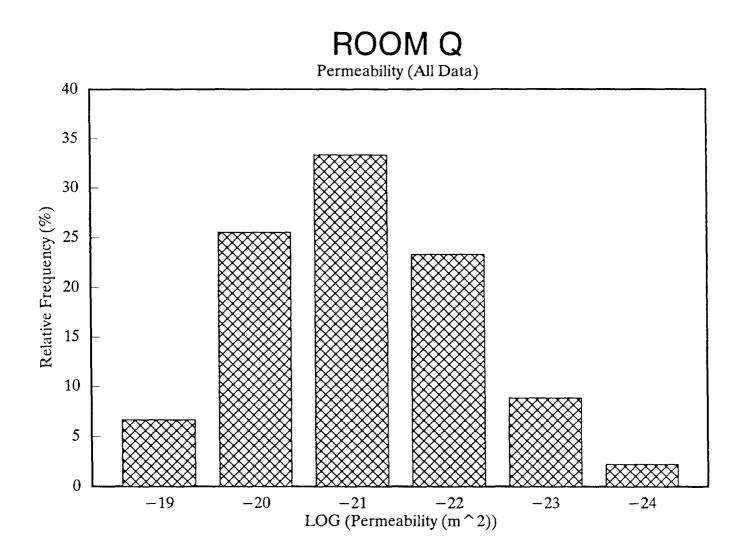
28 Division 6344 is in the process of standardizing permeability test interpretation. The current Standard Model has two important assumptions that 29 30 differ from those used in the permeabilities shown in Table 1 which could significantly change the inferred permeabilities. The Standard Model assumes that the material is poroelastic (not stiff-matrix) and uses measured values for 31 32 test zone fluid compressibility (not brine compressibility). Re-analysis of the 33 34 Room Q pre-excavation data using the current Standard Model is not complete but 35 it is expected that permeability values may increase by 1 to 2 orders of magnitude when re-analyzed. 36 37

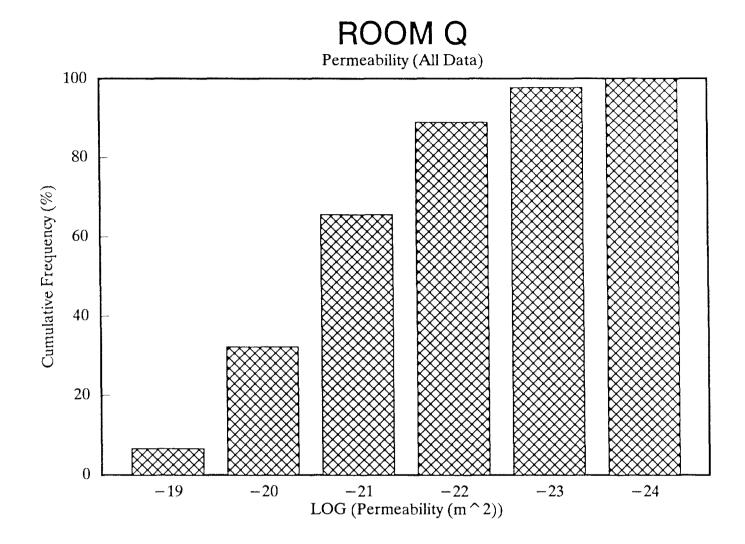
In order to account for this expected! change, uncertainty tails were added to 38 the Table 1 permeability values in the following manner. Because using the measured test zone fluid compressibility instead of the brine compressibility 39 40 41 will result in larger (1 to 2 orders of magnitude) permeabilities, a 2 order of 42 magnitude increase uncertainty tail was added. Then, because using a stiff-43 matrix results in a higher permeability (by 0.5 to 1 orders of magnitude) than 44 would be calculated using the poroelastic model a 1 order of magnitude decrease uncertainty tail was added. For example, for the QPPO1 data, Table 1 lists the permeability as 1.5×10^{-21} m². When uncertainty tails are added, the QPPO1 45 46 47 permeability range becomes 1.5×10^{-22} to 1.5×10^{-19} m².

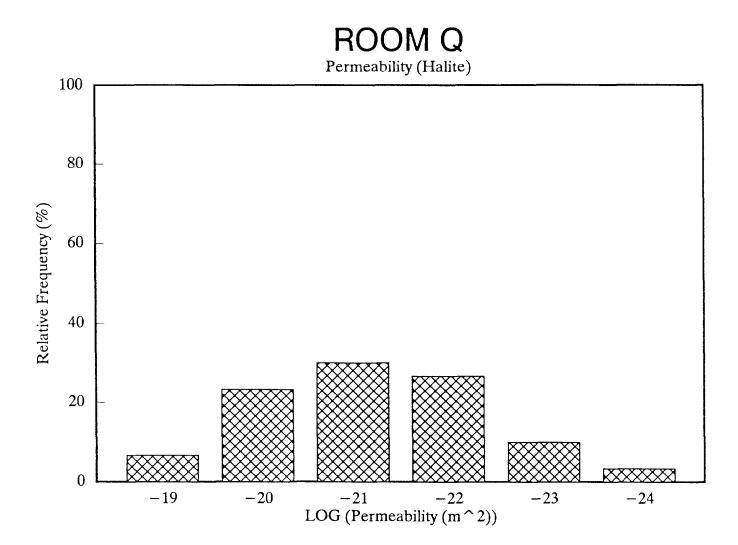
49 Confidence intervals were subsequently assigned to the permeabilities for each borehole. A 10% confidence was assigned to lowest permeability order of magnitude, 20% was assigned to the next larger order of magnitude, 50% to the 50 51 next higher order of magnitude and 20% was assigned to the highest order of 52 magnitude. Again using QPPO1 as an example, a 10% confidence was assigned to permeabilities in the 1 to $9.9*10^{22}$ m² range, 20% was assigned to permeabilities 53 54 in the 1 to 9.9×10^{-21} m² range, 50% was assigned to permeabilities in the 1 to 55 9.9×10^{-20} m² range, and 20% was assigned to permeabilities in the 1 to 9.9×10^{-19} m² 56 57 range. 58

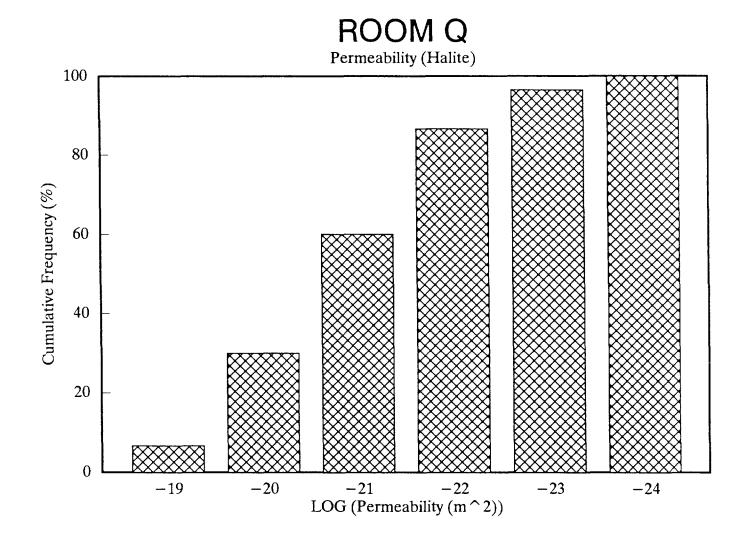
59 60

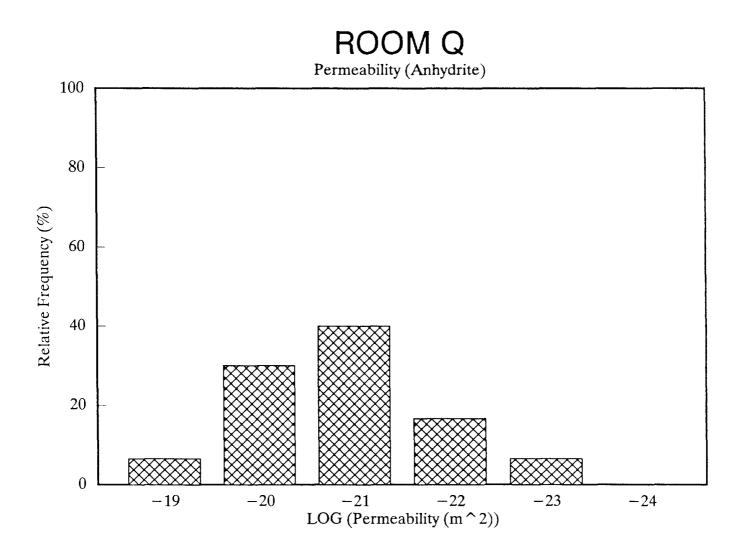
4R

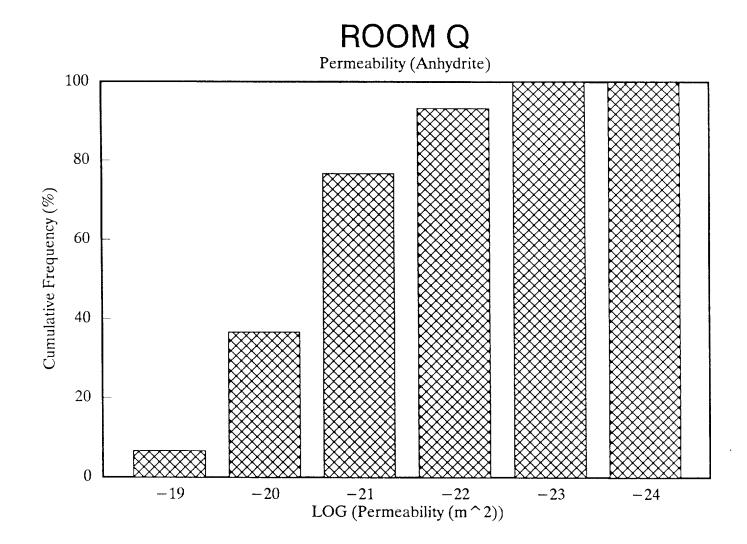

¹ R. L. Beauheim, Personal Communication, June 12, 1991.


Frequency distributions were calculated by assigning points equal to the confidence percentage for each permeability range for each borehole test. The points assigned to each range were then summed.


⁵ During the pre-excavation time period, each Room Q borehole test region was ⁶ located 75 feet from an existing excavation. Because these pressure tests are ⁷ located farther from an excavation than any similar tests, they are thought to ⁸ be most representative of far-field conditions. However, these data should be ⁹ combined with data from the Small-Scale Brine Inflow Program and the Permeability ¹⁰ Testing Program for use in Performance Assessment calculations.


	Borehole	Permeability (m ²)
	QPP01	1.5*10 ⁻²¹
	QPP02	TLTM
	QPP03	2.4×10^{-22}
	QPP04	5.0*10 ⁻²³
	QPP05	TLTM
	QPP11	TLTM
	QPP12	2.0×10^{-23}
	QPP13	3.0*10 ⁻²²
	QPP14 QPP15	TLTM TLTM
	QPP15 QPP21	TLTM
	QPP22	1.0×10^{-22}
	QPP23	1.0*10-21
	QPP24	1.0×10^{-21}
	QPP25	1.0*10-22
	L	100 10
Copy to:		
W. D. Weart, D. R. Anderso R. P. Rechard R. L. Beauhei S. J. Finley,	, 6342 m, 6344	


TABLE 1. Room Q Pre-excavation Permeability



3		McTigue et al., March 14, 1991
4		
5	Date:	3/14/91
6	To:	Distribution
7	From:	D. F. McTigue, 1511; S. J. Finley, 6344, J. H. Gieske,
8		7552; K. L. Robinson, 6345
9	Subject:	Compressibility Measurements on WIPP Brines
10		

Sandia National Laboratories Albuquerque, New Mexico 87185

date: March 14, 1991 1 2 to: Distribution з S.7. In Zin ASF-leg At Liceke Karen Robinson from: D. F. McTigue, 1511; S. J. Finley, 6344; J. H. Gieske, 7552; K. L. Robinson, 6345 7 A subject: Compressibility Measurements on WIPP Brines 9 10 11 **Preview Summary** 12 13 The compressibility of WIPP brines has been measured using an acoustic method. For 14 six samples collected from Room D and the Room Q access drift, measured compress-15 ibilities fall in the range $(2.40-2.54) \times 10^{-10}$ Pa⁻¹ at temperatures from 20 to 40 °C. The 16 measurement error is estimated to be less than 1%. 17 18 19 Introduction 20 21 Most models for transient flow in porous media take into account the compressibility of the pore fluid. Compressibility allows for "storage" of fluid mass, *i.e.*, changes of 22 fluid mass per unit volume of the medium in response to changes of fluid pressure. In a 23 saturated medium in which the porous skeleton and the solid pore walls can be approxi-24 mated as rigid, fluid compressibility is the only source of storage (or "capacitance"). In 25 a deformable medium, there are contributions to the storage from compression of the 26 fluid, compression of the pores, and compression of the solid comprising the pore walls. 27 Virtually every model currently used to represent brine flow in WIPP salt requires a nu-28 merical value for the brine compressibility. To our knowledge, no direct compressibility 25 measurements have been made previously on WIPP brines. 30 The purpose of this memo is to report recent measurements of the compressibility of Sal-31 ado Formation brines collected from the WIPP underground. The method used exploits 32 the simple relationship between compressibility and the sound speed in a liquid, and 33 thus allows the use of highly developed ultrasonics technology. The direct measurement 34 of compressibility in a static test, although very simple conceptually, is relatively difficult 35 in practice. The compressibility of brine is of the order of 10^{-10} Pa⁻¹, indicating that 36 one would need to resolve a volume change of the order of one part in 10^4 in order to 37 obtain a compressibility measurement through an applied pressure change of 1 MPa (10 38 bars). 39

Definitions

1 2 3

4

5

6 7

8 9 10

11

12 13 14

16 17 18

19

20 21 22 As noted above, models for flow in porous media often take into account compressibilities of the fluid, the solid mineral constituent, and the porous skeleton. Thus, we adopt a subscript f here to emphasize that the present considerations address only the fluid phase.

The coefficient of compressibility, β_f , is defined by:

$$\beta_f = \frac{1}{\rho_f} \frac{\partial \rho_f}{\partial p} \quad , \tag{1}$$

where ρ_f is density and p is pressure. The compressibility is also simply the inverse of the bulk modulus, K_f :

$$\beta_f = \frac{1}{K_f} \quad . \tag{2}$$

The longitudinal wave speed, v_L , in an elastic body is given by

$$v_L = \sqrt{\frac{1}{\rho} \left(K + \frac{4}{3}G \right)} \quad , \tag{3}$$

where K and G are the bulk and shear moduli, respectively. In a fluid, in which G = 0, and we identify $K \equiv K_f$ and $\rho \equiv \rho_f$, (3) can be reduced and rearranged to give

$$K_f = \rho_f v_L^2 \quad . \tag{4}$$

Thus, the bulk modulus of a fluid is determined by measurements of its density and longitudinal wave speed.

24

23

26

²⁵ Sample Selection

Six samples of Salado brine collected at the WIPP site were used for these measurements. The samples were selected from the brine sample inventory for the small-scale brine-inflow experiments. During the course of these experiments, brine flowing into boreholes in the underground is periodically pumped out of the boreholes, weighed, and saved in plastic sample bottles. The sample bottles are currently stored in metal cabinets in a building on the surface at the WIPP site.

The six samples used are listed in Table 1. After pumping, all brine samples are labeled 33 with the borehole number and the date the sample was pumped out of the borehole. For 34 example, the brine sample designated DBT31 12-7-88 was pumped out of borehole DBT31 35 on December 7, 1988. All of the DBT boreholes are vertical boreholes collared in the 36 floor of Room D, which is situated in the northeastern corner of the WIPP underground 37 experimental area. All of the QPB boreholes are vertical boreholes collared in the floor 38 of the Q access drift, halfway between Room Q and the Air Intake Shaft. Brine samples 39 3 and 4 in Table 1, labeled QPB05A and QPB05C, respectively, were pumped from the 40 same borehole on December 10, 1990. The letter designators A and C indicate that 41 multiple sample bottles were filled when borehole QPB05 was pumped. 42

The particular samples chosen were from the subset of samples that are greater than 100 1 milliliters in volume, as this was assumed to be the minimum volume required for the 2 sound speed measurements. Within this subset of larger-volume samples, those selected 3 are believed to be representative of the Salado brine collected. Three of the samples are 4 from Room D. These boreholes are collecting brine from the waste facility horizon, which 5 includes Map Unit 6 and extends down through the top of Map Unit 0. The boreholes 6 7 in Room D were drilled in the fall of 1987, and the brine collecting in those boreholes 8 has been pumped out periodically since the drilling date. The Room D brine samples 9 selected were considered to be representative of the time interval over which the brine has been collected. The other three samples are from the Q access drift, where the boreholes 10 have been collecting brine from the lower section of Map Unit 0 and Marker Bed 139. 11 These boreholes were drilled in the spring of 1989. All of the Q access drift samples were 12 collected in December, 1990. 13

14 15

16

Density Measurements

17 The procedure used to measure the density of the brine samples is a standard laboratory procedure for measuring the density of liquids. An empty 50 ml beaker and watch glass 18 were weighed and then filled with an aliquot of brine from the sample bottle. The aliquot 19 was either 10 or 5 ml in volume, and was extracted from the sample bottle with a class 20 A volumetric pipet. The beaker and watch glass with the brine sample were weighed 21 22 again, and the weight of the empty beaker and watch glass was subtracted to obtain a weight for the brine itself. The weight of the brine was divided by the aliquot volume 23 24 to obtain a density in grams per milliliter. These measured densities were converted to units of kg/m^3 and are listed in Table 1. 25 26

The ambient temperature of the laboratory where all density measurements were made was 22 °C. The temperature of the air in the boreholes in Room D fluctuates between 28 °C and 32 °C. Temperatures have not been measured in the QPB boreholes, but are assumed to be in the same range as in the Room D boreholes.

In order to determine the standard deviation associated with any one density measurement, the above-mentioned procedure was repeated 14 times on sample 1 (DBT31 12-7-88). The average brine density calculated was 1.249 g/ml, with a standard deviation of 0.0026 g/ml. The 95% confidence interval based on the Student's t distribution is 1.247 g/ml to 1.251 g/ml.

Table	1.	Measured	density;	22 °C.	
-------	----	----------	----------	--------	--

Sample No.	Sample Loc. & Date	Density (kg/m ³)
1	DBT31 12-7-88	1.249×10^{3}
2	QPB02A 12-7-90	1.225×10^{3}
3	QPB05A 12-7-90	1.229×10^{3}
4	QPB05C 12-10-90	1.226×10^3
5	DBT32 1-18-90	1.240×10^3
6	DBT11 10-7-87	1.224×10^{3}

Sound Speed Measurements

The sound speed measurements reported here were obtained by the "pulse-echo-delay" method. An acoustic reflector in the shape of a "stair step" is placed in a vessel containing the brine sample (Figure 1). An acoustic transducer is positioned an arbitrary distance away from the step. The transducer is pulsed with a given waveform, and the reflections from the first and second step surfaces are recorded. The difference in travel time for the acoustic pulse can be determined very accurately from a digitized waveform of the two pulse echoes. The wave speed is related to the height of the step, L, and the time delay between echoes, T, by

$$v_L = \frac{2L}{T}.$$
(5)

The measurements reported here were made with a Lucite reflector with step height L = 0.955 cm. A 25 MHz transducer 0.635 cm in diameter was used, and the data were recorded with a LeCroy TR8828B 200 MHz transient recorder. The acoustic pulse was measured to have a frequency of 16 MHz. The pulse-echo time delay procedure was carried out on a 386 PC using a QuickBasic program. Temperatures were varied by placing the vessel in a heated water bath, and the temperature at the time of the subsequent test was recorded with a mercury thermometer with 0.1 °C graduations.

Temperature Corrections for Density

The fluid densities, ρ_f , used to compute the bulk moduli reported here are based on temperature corrections applied to a reference state.

For the pure water, densities are tabulated at discrete temperatures in [1, Table F-10]. In the temperature range from 15 to 45 °C, these data are very well represented by a four-term Taylor series expansion about a reference temperature of 30 °C:

3 . 5

6

7

.

9

19

20

28

29 30

41

1

2

$$\rho_f = \rho_{f0} [1 + d_1(\theta - 30) + d_2(\theta - 30)^2 + d_3(\theta - 30)^3], \tag{6}$$

where $\rho_{f0} = 0.99567$ is the density at the reference temperature of 30 °C, θ is the temperature of interest, and the coefficients take the values $d_1 = -3.0332 \times 10^{-4}$, $d_2 = -4.3866 \times 10^{-6}$, and $d_3 = 2.6828 \times 10^{-8}$. The fit was performed with the parameterestimation code ESTIM [2]. The densities used to compute the compressibilities of distilled water shown in Table 4 were calculated from equation (6) using these parameters. 10

11 For the brines, it was assumed that each sample was saturated with respect to its dissolved 12 species at the 22 °C laboratory temperature at which the initial density determinations 13 were done. The thermal expansion of NaCl brines was discussed in a recent memo [3]. Based on data reported by Kaufmann [4, Table 46, p. 612], it is estimated that a saturated 14 NaCl brine at 22 °C contains about 26.5 weight % salt. Extrapolation of the coefficients 15 reported in [3], which were determined for brines at lower concentrations, yields the 16 following expression for the density of brine saturated with respect to NaCl at 22 °C: 17 18

$$\frac{\rho_f}{\rho_{f0}} = 1 + d_1(\theta - 22) + d_2(\theta - 22)^2 + d_3(\theta - 22)^3,\tag{7}$$

where ρ_{f0} is the density at the reference temperature of 22 °C, and the coefficients take 21 the values $d_1 = -4.4294 \times 10^{-4}$, $d_2 = -6.3703 \times 10^{-7}$, and $d_3 = -1.3148 \times 10^{-9}$. 22 This expression was used to correct the reference densities measured at 22 °C (Table 1) 23 for calculations of the compressibility at different temperatures (Tables 2, 3, 5, 6). We 20 emphasize that the thermal expansion correction for brine is based on pure NaCl solutions 25 rather than on WIPP brines. However, the behavior of WIPP brines is not expected to 26 differ significantly. In any case, the density corrections are at most less than 1%. 27

Results

31 Results of the bulk modulus and compressibility determinations are shown in Tables 2–6. 32 Tables 2 and 3 show data for all six brine samples at 20 °C and 25 °C, respectively. Table 4 shows results for distilled water at temperatures from 20 to 40 °C. The data 33 from Table 4 are plotted as a function of temperature in Figure 2 along with reference 34 compressibility data from the CRC Handbook [1, Table F-15] for comparison. The data 35 from both the present study and the CRC Handbook appear to define a trend of decreasing зе compressibility with increasing temperature. Both data sets exhibit roughly the same 37 38 degree of scatter about the general trend, suggesting that the data from the present study are of an accuracy comparable to that of the reference data. Quantitative error estimates 39 for this study are discussed in the following section. 40

Tables 5 and 6 show results for two brines at temperatures from 20 to 40 °C. The brines 42 show no significant variation in compressibility over this temperature range. This is 43

in contrast to pure water (Table 4; Figure 2), which shows a distinct decrease in β_f with increasing θ . Thus, the presence of a high concentration of dissolved salt serves to moderate the temperature sensitivity of the compressibility.

Figure 4 shows all compressibility measurements made on WIPP brines, regardless of temperature, plotted against density (Tables 2, 3, 5, 6). There is a strong correlation, indicating decreasing compressibility with increasing density. A linear regression on the data shown in Figure 4 yields

$$\beta_f = 7.662 \times 10^{-10} - 4.217 \times 10^{-13} \rho_f, \tag{8}$$

with a correlation coefficient of $r^2 = 0.91$. (Here, β_f has dimension Pa⁻¹ and ρ_f dimension kg/m³.) This may provide a reasonable estimate for β_f for WIPP brines based solely on a density determination.

1 9 20 21 22	Sample No.	Velocity, v_L m/s, $\times 10^{-3}$	Density, ρ_f kg/m ³ , ×10 ⁻³	Bulk Modulus, K_f Pa, $\times 10^{-9}$	Compressibility, β_f Pa ⁻¹ , ×10 ¹⁰
23 24 25	1	1.825	1.250	4.163	2.402
26 27	2	1.803	1.226	3.984	2.510
28 29 30	3	1.806 1.805	1.230 1.227	4.013 3.998	2.492 2.501
31 32	5	1.811	1.241	4.071	2.456
33 34	6	1.808	1.225	4.003	2.498

2					
5 6	Sample No.	Velocity, v_L m/s, ×10 ⁻³	Density, ρ_f kg/m ³ , ×10 ⁻³	Bulk Modulus, K_f Pa, $\times 10^{-9}$	Compressibility, β_f Pa ⁻¹ , ×10 ¹⁰
7 8 9	1	1.828	1.247	4.166	2.400
10 11	2	1.807	1.223	3.993	2.504
12	3	1.818	1.227	4.056	2.466
14 15 16	4	1.814 1.813	1.224	4.027 4.070	2.483 2.457
17 18	6	1.811	1.224	4.009	2.494
19 20 21	pure water	1.493	0.997	2.223	4.498

Table 3. Acoustic velocity; 25 °C.

Table 4. Acoustic velocity; distilled water.

Temperature °C	Velocity, v_L m/s, $\times 10^{-3}$	Density, ρ_f kg/m ³ , ×10 ⁻³	Bulk Modulus, K_f Pa, ×10 ⁻⁹	Compressibility, β_f Pa ⁻¹ , ×10 ¹⁰
19.9	1.478	0.9983	2.181	4.586
21.0	1.483	0.9980	2.195	4.556
24.8	1.493	0.9971	2.223	4.499
30.7	1.494	0.9955	2.222	4.501
40.0	1.516	0.9922	2.280	4.385

March 14, 1991

Distribution

1

18

2					
3 4 5 6	Temperature °C	Velocity, v_L m/s, $\times 10^{-3}$	Density, ρ_f kg/m ³ , ×10 ⁻³	Bulk Modulus, K_f Pa, ×10 ⁻⁹	Compressibility, β_f Pa ⁻¹ , ×10 ¹⁰
7 8 9	20.0	1.825	1.250	4.163	2.402
10	24.9	1.828	1.247	4.167	2.400
11 12 13	29.7	1.827	1.245	4.156	2.406
14	35.1	1.830	1.242	4.159	2.404
15 16 17	39.6	1.820	1.239	4.104	2.437

Table 5. Acoustic velocity; sample #1, DBT31.

Table 6. Acoustic velocity; sample #2, QPB02A.

21 22 23 24	Temperature °C	Velocity, v_L m/s, $\times 10^{-3}$	Density, ρ_f kg/m ³ , ×10 ⁻³	Bulk Modulus, K_f Pa, ×10 ⁻⁹	Compressibility, β_f Pa ⁻¹ , ×10 ¹⁰
25 26 27	20.0	1.803	1.226	3.985	2.509
28 29	25.5	1.807	1.224	3.997	2.502
30 31	29.6	1.808	1.222	3.994	2.503
33 35	35.0	1.797	1.219	3.936	2.540
34	37.6	1.798	1.217	3.934	2.542

Estimates of the error in the compressibilities reported here were made in the following manner. The error estimate, $\lambda(x)$, for the measurement of each quantity x is given in Table 7.

In terms of measured quantities, the sound speed is given by equation (5). The error estimate for the sound speed, $\lambda(v_L)$, is then given by [5]:

11

1 2 3

4

6

7

a

$$\lambda^2(v_L) = \left(\frac{\partial v_L}{\partial L}\right)^2 \lambda^2(L) + \left(\frac{\partial v_L}{\partial T}\right)^2 \lambda^2(T),\tag{9}$$

or,

12 13 14

15

16 17

18

19 20 $\lambda^{2}(v_{L}) = v_{L}^{2} \left[\frac{\lambda^{2}(L)}{L^{2}} + \frac{\lambda^{2}(T)}{T^{2}} \right].$ (10)

For typical values of the measured quantities and the error estimates given in Table 7, equation (10) gives an estimated error for the reported wave speeds of about ± 5 m/s (Table 8).

Table	7.	Error	estimates	for	measurements.
-------	----	-------	-----------	-----	---------------

21						
22 23			$\lambda(x)$			
24	Quantity (x)	Symbol	Error Est. (As Reported)	Error Est. (SI Units)		
25						
26 27	Fluid density	$ ho_f$	± 0.003 g/ml	$\pm 3.0 \text{ kg/m}^3$		
28	Step Height	L	± 0.001 "	$\pm 2.5 \times 10^{-5}$ m		
29				1.0 10-8		
30	Time Delay		$\pm 0.01~\mu{ m s}$	$\pm 1.0 \times 10^{-8} \text{ s}$		
31 32	Temperature	θ	±0.1 °C	±0.1 K		
33						

34

35

36

37 38 In a similar fashion, the error estimates for the bulk modulus and compressibility can be shown to be:

$$\frac{\lambda^2(K_f)}{K_f^2} = \frac{\lambda^2(\beta_f)}{\beta_f^2} = \frac{\lambda^2(\rho_f)}{\rho_f^2} + \frac{4\lambda^2(L)}{L^2} + \frac{4\lambda^2(T)}{T^2}.$$
 (11)

Evaluation of (11) using typical values of the measured quantities and the error estimates from Table 7 yields an error of about 0.6% for the bulk modulus and compressibility, or about ± 0.025 GPa and $\pm 1.5 \times 10^{-12}$ Pa⁻¹, respectively (Table 8).

Quantity (x)	Symbol	Error Est. $\lambda(x)$
Sound Speed	v_L	± 5.0 m/s
Bulk Modulus	K_f	$\pm 2.5 \times 10^7$ Pa
Compressibility	eta_f	$\pm 1.5 \times 10^{-12} \text{ Pa}^{-1}$

Table 8. Error estimates for calculated quantities.

Consistency with Independent Data

In addition to the test against tabulated properties for pure water discussed above, a check for consistency of the present measurements with independent values from the lit-erature can be made for brines. The data presented here indicate a strong correlation of compressibility with fluid density (Figure 4). In fact, compressibility is reduced by nearly 50% by the addition of salt up to full saturation. The CRC Handbook [1, Table F-15] reports reference compressibilities for pure water, and Kaufmann [4, Table 40, p. 609] reports compressibilities determined acoustically for NaCl brines of varying concentra-tions. These data are shown in Figure 5 along with the present results for measurements at 25 °C, plotted against density. The conversion of weight-percent NaCl to density ap-plied to the Kaufmann data was obtained from Kaufmann [4 Table 44, p. 611]. All the available data fall on a very smooth trend; a second-order polynomial fits this trend very well:

$$\beta_f = 4.492 \times 10^{-10} - 1.138 \times 10^{-12} (\rho_f - 1000.) + 1.155 \times 10^{-15} (\rho_f - 1000.)^2, \quad (12)$$

where ρ_f is in units of kg/m³, and β_f is in units of Pa⁻¹.

Summary

The principal results outlined in this memo are:

- The compressibilities of six Salado brines from Room D and the Room Q access drift fall in the range $(2.40-2.54) \times 10^{-10}$ Pa⁻¹.
- The measurements were carried out over a temperature range of 20 to 40 °C; brine compressibility exhibits no significant dependence on temperature over this range.
- Compressibility exhibits a strong correlation with brine density, with β_f decreasing with increasing ρ_f ; a linear relationship (eq. 8) correlates the data for WIPP brines well over the small range of densities tested.

2

3

4

5 6

7

8 9

10

17

19

20

21

22

23 24

25

26 27

28

29

30

31 32

33

34

35

36

37 38

39

40

41

42

- The results from this study are consistent with published results for NaCl brines at lower concentration; a smooth trend of decreasing β_f with increasing density (concentration) encompasses pure water, published data for lower-concentration NaCl brines, and the WIPP brines considered here (Figure 5). A quadratic relationship (eq. 12) describes this trend very well.
 - The acoustic method was validated by measurements made on distilled water. Results compare very well with reference data.
 - Error in the compressibility measurements is estimated to be approximately 0.6%.

¹² Note that a number of previous calculations of flow in WIPP salt [e.g., 6-8] used values ¹³ for brine compressibility of 5.0×10^{-10} Pa⁻¹ (bulk modulus 2.0×10^9 Pa). This high ¹⁴ value for β_f (low K_f) was based on an estimate for pure water (one-place accuracy for ¹⁵ K_f). The results shown here indicate that the presence of a high concentration of salt ¹⁶ reduces the compressibility by nearly a factor of two.

18 References

- 1. Weast, R. C., ed., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 1985.
- 2. Hills, R. G., ESTIM: A parameter estimation computer program, SAND87-7063, Sandia National Laboratories Technical Report, August 1987.
- 3. McTigue, D. F., "Thermal expansion coefficient for brine," memo to Distribution, January 22, 1991.
- Kaufmann, D. W., Physical properties of sodium chloride in crystal, liquid, gas, and aqueous solution states, in *Sodium Chloride: The Production and Properties* of Salt and Brine, D. W. Kaufmann, ed., American Chemical Society, Washington, D. C. 587-626, 1960.
 - 5. Shoemaker, D. F., Garland, C. W., and Steinfeld, J. I., "Propagation of errors," Experiments in Physical Chemistry, McGraw-Hill, New York, 1974, 51-55.
 - Nowak, E. J., and McTigue, D. F., "Interim results of brine transport studies in the Waste Isolation Pilot Plant (WIPP), Sandia National Laboratories Technical Report, SAND87-0880, May 1987.
- McTigue, D. F., and Nowak, E. J., "Brine transport in the bedded salt of the Waste Isolation Pilot Plant (WIPP): Field Measurements and a Darcy Flow Model," Scientific Basis for Nuclear Waste Management XI, M. J. Apted and R. E. Westerman, eds., Materials Research Society, Pittsburgh, 209-218, 1987.

Distribution

1	8. Nowak, E. J., McTigue, D. F., and Beraun, R., "Brine inflow to WIPP disposal
2	rooms: data, modeling, and assessment," Sandia National Laboratories Technical
3	Report, SAND88-0112, September 1988.
4	
5	
6	
7	
в	
9	
10	
11	
12	
13	
14	
15	
16	DFM:1511:dfm
17	
18	Key Words: radioactive waste, Waste Isolation Pilot Plant (WIPP), material
19	properties, brine, compressibility

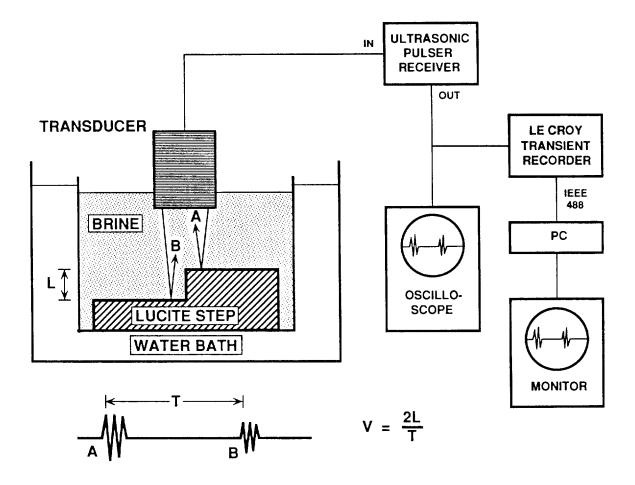


Figure 1. Schematic of the pulse-echo delay time technique for measuring acoustic velocity in a liquid.

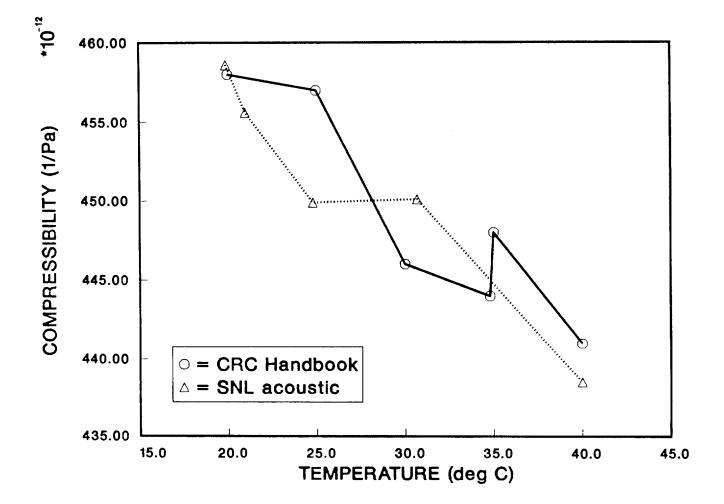


Figure 2. Comparison of compressibilities determined in this study with tabulated
 values [1] for distilled water.

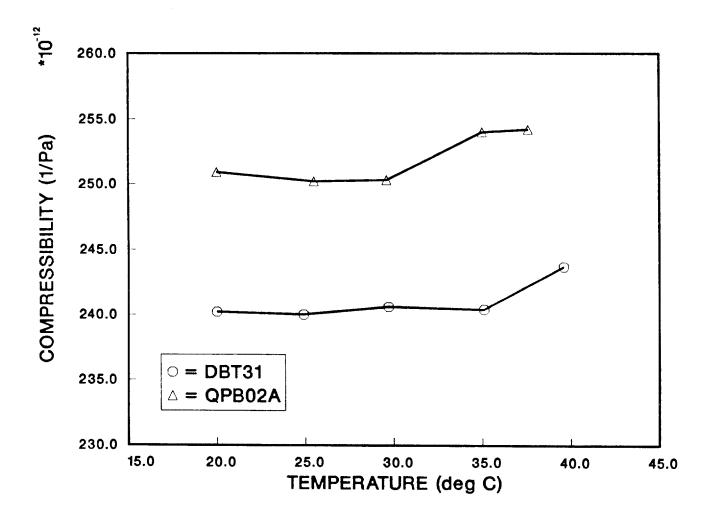
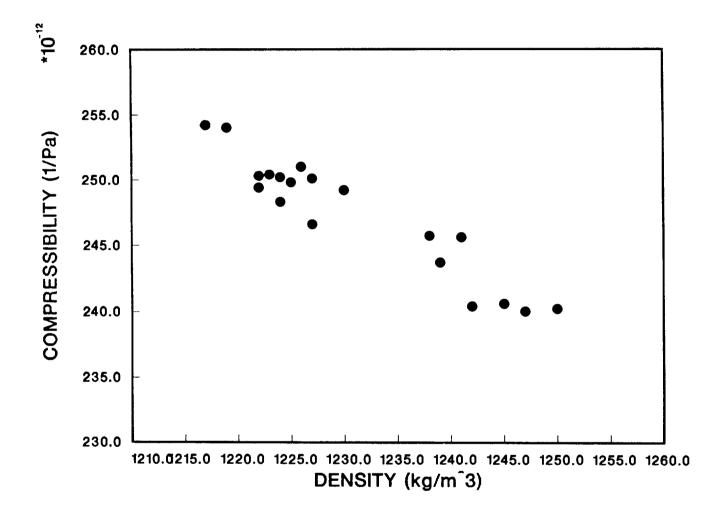



Figure 3. Compressibility of WIPP brines plotted against temperature.

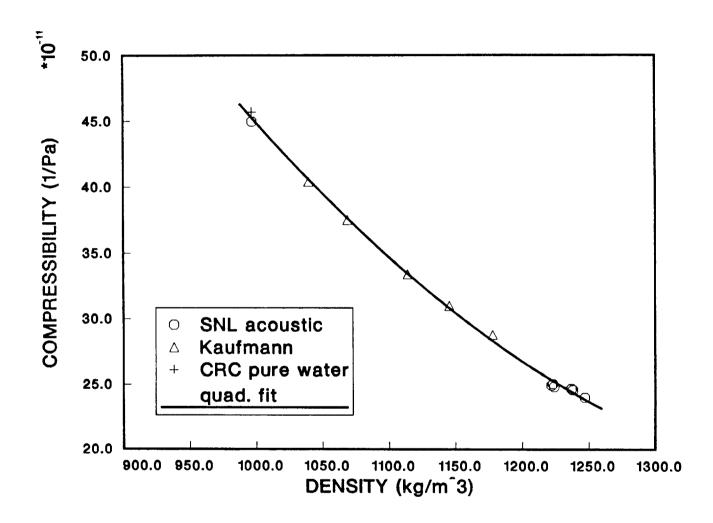


Figure 5. Compressibilities of WIPP brines and pure water determined in this study and literature values [1, 4] at 25 °C, plotted against density. Solid line shows a quadratic fit (eq. 12) to the 13 points shown. WIPP brine compressibilities appear to be on a consistent trend with the literature values.

Distribution

	Copy to:
1 2	1510 J. C. Cummings
2	1511 D. K. Gartling
4	1511 D. F. McTigue (day file)
5	1512 A. C. Ratzel
6	1513 Acting Supervisor
7	1514 H. S. Morgan
, 8	1514 J. G. Arguello, Jr.
9	1514 C. M. Stone
10	1514 J. R. Weatherby
11	1540 J. R. Asay
12	1550 C. W. Peterson, Jr.
13	6232 W. R. Wawersik
14	6257 J. L. Todd, Jr.
15	6340 W. D. Weart
16	6340 A. R. Lappin
17	6340 S. Y. Pickering
18	6341 R. C. Lincoln
19	6341 R. D. Klett
20	6342 D. R. Anderson
21	6342 R. P. Rechard
22	6344 E. D. Gorham
23	6344 R. L. Beauheim
24	6344 P. B. Davies
25	6344 S. J. Finley
26	6344 S. Howarth
27	6344 S. W. Webb
28	6345 B. M. Butcher
29	6345 F. T. Mendenhall
30	6345 K. L. Robinson
31	6346 J. R. Tillerson
32	6346 E. J. Nowak
33	6346 J. C. Stormont
34	7551 B. D. Hansche
35	7552 W. W. Shurtleff
36	7552 J. H. Gieske

Novak, September 4, 1991 3 4 9/4/91 Date: 5 6 To: K. M. Trauth, 6342 7 From: Craig F. Novak, 6344 Rationale for ${\tt K}_d$ Values Provided During Elicitation of the Subject: 8 Retardation Expert Panel, May 1991 9 (Note: Includes addendum with correction for typographical 10 error in Table 2.) 11 12 13

A-100

Sandia National Laboratories

Albuquerque, New Mexico 87185

1 date: 4 September 1991 2 to: K.M. Trauth, 6342 3 4 Craig F. Novak, 6344 5 6 8

7

15 16 17

27

40

13 subject: Rationale for K_d Values Provided During Elicitation of the 14 Retardation Expert Panel, May 1991

In May 1991, I was asked to participate on a panel for 18 estimating values of radionuclide retardation in the Culebra 19 Dolomite Member of the Rustler Formation. Estimates were to 20 be made using the K_d model for retardation, and according to 21 an "expert judgement" methodology (Tierney, 1991). 22 This memorandum summarizes my preparation for this task, and the 23 thought processes used in responding to this request. 24 The cumulative probability functions (CDFs) for K_d values 25 26 resulting from this elicitation are given in Tables 1 and 2.

28 I performed a detailed examination of available research reports describing experimental measurement of Kd's using 29 30 substrates and water compositions pertinent to transport in 31 the WIPP system. This study is documented in Novak (1991). Novak showed that data are not available for all elements of 32 33 interest, almost no data exist for clay substrates in the 34 Culebra, and existing data may not be applicable to current 35 human intrusion scenarios. Novak (1991) also questions the 36 utility of the Kd model for estimating retardation in the 37 Culebra. Despite these limitations, I endeavored to provide 38 K_d values for use in the 1991 performance assessment 39 calculations.

41 Estimates of K_d 's were requested for two scenarios differing 42 only in water composition. Within each scenario, Kd 43 estimates were needed for radionuclide sorption on the matrix 44 (i.e. dolomitic Culebra substrates) and in the fractures (i.e. on clay materials lining fractures). Scenario One 45 46 assumed that water reaching the Culebra would not change the 47 composition of Culebra water significantly, except for the 48 presence of radionuclides. Scenario Two assumed that water 49 reaching the Culebra would not be diluted, and thus a 50 concentrated brine contaminated with radionuclides would flow through the Culebra. These scenarios were chosen as bounding cases for hydrologic and chemical behavior in the Culebra under breach scenarios. Scenarios One and Two reflect the uncertainty involved with mixing in the Culebra and the observation that measured K_d values depend on water composition.

7

16

27

44

The eight elements for which K_d estimates were requested were 8 plutonium (Pu), americium (Am), curium (Cm), uranium (U), 9 neptunium (Np), thorium (Th), radium (Ra), and lead (Pb). 10 I chose to group Am with Cm, U with Np, and Ra with Pb, and to 11 provide a single CDF for each group. This choice was made 12 because of the limited amount of data and because of 13 analogies between the chemical behavior of the grouped 14 elements (Lappin et al., 1989). 15

Among the existing data, I feel that the water composition 17 called "Culebra H2O" is the most representative for Scenario 18 One, while Brine A is the most representative for Scenario 19 Thus, for Scenario One, data in "Culebra H2O" were used 20 Two. to estimate K_d values where the data were available. 21 Similarly for Scenario Two and data in Brine A. In the 22 absence of these data, values were provided based on subjective "expert judgement" and interpretation of other 23 24 The same CDFs were given for both scenarios for Th, data. 25 and for Ra and Pb, because of the lack of data. 26

The lower bounds for K_d 's in all CDFs are 0 ml/g because it 28 is possible that any of the elements could be transported 29 30 with the fluid velocity. The upper bounds in Tables 1 and 2 represent my opinions on the maximum values for K_d 's that 31 32 could be observed for these elements under the human 33 intrusion scenarios. Kd values for cumulative probabilities 34 of 0.25, 0.5, etc., represent best estimates resulting from 35 my assimilation of data and literature on this topic. 36

There is a paucity of data for sorption of radionuclides on clays for solutions with water compositions pertinent to WIPP breach scenarios. However, clays are known to have large adsorption capacities, and therefore should exhibit high K_d values for radionuclides. For these reasons, CDFs for the fractures were estimated to be a factor of ten larger than for the matrix.

The values provided through the elicitation process are 45 subjective estimates only. The human intrusion scenarios 46 large uncertainties with respect to contain water 47 compositions and mixing in the Culebra. Few experimental 48 measurements of K_d 's have been performed. In addition, the K_d 49 model may have limited applicability to the WIPP Culebra 50 These factors could render the CDFs given for $K_{\rm d}{\,}'\,s$ 51 system. 52 inadequate to represent the actual values for K_d 's that would 53 occur under human intrusion scenarios.

9/4/91 Memo to K.M. Trauth from C.F Novak, p. 2/5

The CDFs for K_d's are not a substitute for actual data, and should not be interpreted as such. Additional study is needed to quantify the potential for radionuclide retardation in the Culebra Dolomite Member of the Rustler Formation.

References

5 6

7 8

9

10

11

12

13

14

15

16

17

18

24 25 26

28

30

Lappin, A.R., and R.L. Hunter, eds. 1989. Systems Analysis, Long-Term Radionuclide Transport, and Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern New Mexico; March 1989. SAND89-0462. Albuquerque, New Mexico: Sandia National Laboratories.

- Novak, C.F. 1991. An Evaluation of Radionuclide Batch Sorption Data on Culebra Dolomite for Aqueous Compositions Relevant to the Human Intrusion Scenario for the Waste Isolation Pilot Plant (WIPP). SAND91-1299. Albuquerque, New Mexico: Sandia National Laboratories.
- 19Tierney, M.S.1991.Issue Statement for Elicitation of20Expert Judgement Concerning Magnitudes of Culebra21Distribution Coefficients for Use in the 1991 WIPP22Performance Assessment.8 May 1991.23Mexico: Sandia National Laboratories.
- 27 CFN:6344
- 29 Distribution:

31 6340 W.D. Weart
32 6342 D.R. Anderson
33 6344 E.D. Gorham
34 6344 C.F. Novak
35 DOE/WPO B. Becker

3			
4	Cumulative	Scenario One, Pu	Scenario Two, Pu
5	Probability	Matrix K _d , ml/g	Matrix K _d , ml/g
6			
7	0	0	0
8	0.1	5	0.55
9	0.25	80	10
10	0.5	300	50
11	0.75	1000	150
12	1	100000	100000
13			
14	Cumulative	Scenario One, Am	Scenario Two, Am
15	Probability	and Cm Matrix K _d ,	and Cm Matrix K _d ,
16		ml/g	ml/g
17			
18	00	0	0
19	0.25	90	10
20	0.5	150	40
21	0.75	400	100
2 2	0.9	1000	
23	0.99		1000
24	1	100000	100000
25			
26	Cumulative	Scenario One, U and	Scenario Two, U and
27	Probability	Np Matrix K _d , ml/g	Np Matrix K _d , ml/g
28			
29	00	0	0
30	0.2	0.25	1
60			
31	0.5	0.75	3.3
	0.8	1.5	8
31			
31 32 33 34	0.8	1.5 100	8
31 32 33 34 35	0.8 1 Cumulative	1.5 100 Scenarios One	8
31 32 33 34 35 36	0.8	1.5 100 Scenarios One and Two, Th	8
31 32 33 34 35 36 37	0.8 1 Cumulative	1.5 100 Scenarios One	8
31 32 33 34 35 36 37 38	0.8 1 Cumulative Probability	1.5 100 Scenarios One and Two, Th Matrix K _d , ml/g	8
31 32 33 34 35 36 37 38 39	0.8 1 Cumulative Probability 0	1.5 100 Scenarios One and Two, Th Matrix K _d , ml/g	8
31 32 33 34 35 36 37 38 39 40	0.8 1 Cumulative Probability 0 0.25	1.5 100 Scenarios One and Two, Th Matrix K _d , ml/g 0 5	8
31 32 33 34 35 36 37 38 39 40 41	0.8 1 Cumulative Probability 0 0.25 0.5	1.5 100 Scenarios One and Two, Th Matrix K _d , ml/g 0 5 10	8
31 32 33 34 35 36 37 38 39 40 41 42	0.8 1 Cumulative Probability 0 0.25 0.5 0.75	1.5 100 Scenarios One and Two, Th Matrix K _d , ml/g 0 5 10 100	8
31 32 33 34 35 36 37 38 39 40 41 42 43	0.8 1 Cumulative Probability 0 0.25 0.5	1.5 100 Scenarios One and Two, Th Matrix K _d , ml/g 0 5 10	8
31 32 33 34 35 36 37 38 39 40 41 42 43 44	0.8 1 Cumulative Probability 0 0.25 0.5 0.75 1	1.5 100 Scenarios One and Two, Th Matrix K _d , ml/g 0 5 10 100 1000	8
31 32 33 34 35 36 37 38 39 40 41 42 43 44	0.8 1 Cumulative Probability 0 0.25 0.5 0.75 1 Cumulative	1.5 100 Scenarios One and Two, Th Matrix K _d , ml/g 0 5 10 100 1000 Scenarios One and	8
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	0.8 1 Cumulative Probability 0 0.25 0.5 0.75 1	1.5 100 Scenarios One and Two, Th Matrix K _d , ml/g 0 5 10 100 100 1000 Scenarios One and Two, Ra and Pb	8
31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 44 45 46 47	0.8 1 Cumulative Probability 0 0.25 0.5 0.75 1 Cumulative	1.5 100 Scenarios One and Two, Th Matrix K _d , ml/g 0 5 10 100 1000 Scenarios One and	8
31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 44 45 46 47 48	0.8 1 Cumulative Probability 0 0.25 0.5 0.75 1 Cumulative Probability	1.5 100 Scenarios One and Two, Th Matrix K _d , ml/g 0 5 10 100 1000 Scenarios One and Two, Ra and Pb Matrix K _d , ml/g	8
31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 44 45 46 47 48 49	0.8 1 Cumulative Probability 0 0.25 0.5 0.75 1 Cumulative Probability 0	1.5 100 Scenarios One and Two, Th Matrix K _d , ml/g 0 5 10 100 1000 Scenarios One and Two, Ra and Pb Matrix K _d , ml/g 0	8
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	0.8 1 Cumulative Probability 0 0.25 0.5 0.75 1 Cumulative Probability 0 0 0.25	1.5 100 Scenarios One and Two, Th Matrix K _d , ml/g 0 5 10 100 1000 Scenarios One and Two, Ra and Pb Matrix K _d , ml/g 0 1	8
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	0.8 1 Cumulative Probability 0 0.25 0.5 0.75 1 Cumulative Probability 0 0 0.25 0.5 0.75 1	1.5 100 Scenarios One and Two, Th Matrix K _d , ml/g 0 5 10 100 1000 Scenarios One and Two, Ra and Pb Matrix K _d , ml/g 0 1 0 10 10 100 1000	8
31 32 33 34 35 36 37 38 39 40 41 42 43 40 41 42 43 44 45 46 47 48 49 50 51 52	0.8 1 Cumulative Probability 0 0.25 0.5 0.75 1 Cumulative Probability 0 0 0.25 0.75 1	1.5 100 Scenarios One and Two, Th Matrix K _d , ml/g 0 5 10 100 1000 Scenarios One and Two, Ra and Pb Matrix K _d , ml/g 0 10 100 1000	8
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	0.8 1 Cumulative Probability 0 0.25 0.5 0.75 1 Cumulative Probability 0 0 0.25 0.5 0.75 1	1.5 100 Scenarios One and Two, Th Matrix K _d , ml/g 0 5 10 100 1000 Scenarios One and Two, Ra and Pb Matrix K _d , ml/g 0 1 0 10 10 100 1000	8

Table 1. Estimates of Matrix $K_{\rm d}$ Values from Expert Elicitation

Cumulative	Scenario One, Pu	Scenario Two, Pu
Probability	Fracture K _d , ml/g	Fracture K _d , ml/g
0	0	0
0.1	50	5.5
0.25	800	100
0.5	3000	500
0.75	10000	1500
1	100000	1000000
	200000	
Cumulative	Scenario One, Am	Scenario Two, Am
Probability	and Cm Fracture K _d ,	and Cm Fracture K _d ,
	ml/g	ml/g
		0
0	0	0
0.25	900	100
0.5	1500	400
0.75	4000	1000
0.9	10000	
0.99	· · · · · · · · · · · · · · · · · · ·	10000
11	1000000	1000000
Cumulative	Connerte One II and	Scenario Two, U and
Probability	Scenario One, U and	
FIODADITICY	Np Fracture K _d , ml/g	Np Fracture K _d , ml/g
0	0	0
0.2	2.5	10
0.5	7.5	33
0.8	15	80
1	1000	1000
Cumulative	Scenarios One and	
Probability	Two, Th Fracture	
	K _d , ml/g	
0 25	0 50	
0.25	100	
	100	
~ 75		
0.75	1000	
0.75		
1	1000 10000	
1 Cumulative	1000 10000 Scenarios One and	
1	1000 10000	
1 Cumulative	1000 10000 Scenarios One and Two, Ra and Pb	
1 Cumulative Probability 0	1000 10000 Scenarios One and Two, Ra and Pb Fracture K _d , ml/g	
1 Cumulative Probability 0 0.25	1000 10000 Scenarios One and Two, Ra and Pb Fracture K _d , ml/g 0 1	
1 Cumulative Probability 0 0.25 0.5	1000 10000 Scenarios One and Two, Ra and Pb Fracture K _d , ml/g 0 1 1 10	
1 Cumulative Probability 0 0.25 0.5 0.75	1000 10000 Scenarios One and Two, Ra and Pb Fracture K _d , ml/g 0 1 10 100	
1 Cumulative Probability 0 0.25 0.5	1000 10000 Scenarios One and Two, Ra and Pb Fracture K _d , ml/g 0 1 1 10	

Table 2. Estimates of Fracture $K_{\rm d}$ Values from Expert Elicitation

Sandia National Laboratories

Albuquerque, New Mexico 87185

date: 9 September 1991 to: K.M. Trauth, 6342 from: Craig F. Novak, 6344 subject: Typographical Error in Memo of 4 September 1991 My memorandum of 4 September contained a typographical error in Table 2, the fracture Kd values for Ra and Pb for Scenarios One and Two. As the test states, the fracture Kd's were estimated to be a factor of ten larger than the matrix Kd's. Thus, the Ra and Pb section of Table 2 should read Cumulative Scenarios One and Probability Two, Ra and Pb Fracture K_d, ml/g 0.25 0.5 0.75 0.99 CFN:6344 Distribution: W.D. Weart D.R. Anderson E.D. Gorham C.F. Novak DOE/WPO B. Becker

3		Swift, October 10, 1991
4		
5	Date:	10/10/91
6	To:	R. P. Rechard
7	From:	Peter Swift, 6342/Tech Reps
8	Subject:	Climate and recharge variability parameters for the 1991
9		WIPP PA calculations
10		

1 Introduction

2

Ideally, it could be possible to describe variability in recharge within a 3 single conceptual model for flow in the Culebra using a single parameter-4 future recharge as a function of present recharge. I recommend, however, 5 separating recharge into two component functions: variability in mean 6 7 annual precipitation and variability in the amount of precipitation that reaches our Culebra model domain as recharge. This distinction allows 8 9 examining model sensitivity to climatic change independently of the 10 uncertainty in the physical recharge process. The distinction is meaningful because we can assess climatic variability relatively confidently, whereas 11 uncertainty about the recharge process is high. Sampling on separate 12 parameters will permit us to perform sensitivity analyses (to be reported by 13 14 Swift et al. [in prep.], separately from the 1991 Preliminary Comparison) on both climate variability and the assumed recharge function. 15 16

17 This memo defines climate and recharge functions and the associated parameters to be sampled. The memo does not address conceptual model 18 19 uncertainty about the location or amount of present recharge to the model domain, or about the location of future recharge. These model uncertainties 20 21 will be addressed in 1992 or later, as results become available from the 22 geostatistics project addressing uncertainty in the Culebra flow model. The 23 assumption is made here that future model recharge will be expressed as a function of nominal present flux into a calibrated steady-state flow model. 24 25

26 For the 1991 PA calculations, there appears to be little need to sample on a 27 distribution of climate parameter values. As explained below, we can select "best estimate" values for climate variability for the full-system 28 simulations, and wait for the separate sensitivity analysis report to 29 30 examine the impact of the assumptions. This does not mean that the 1991 calculations will not include climate variability. Climate variability will 31 be incorporated, and the results will reflect the knowledge that some future 32 33 climates will be wetter than that of the present. The function and values I am recommending will give us an "average" future precipitation roughly 1.3 34 35 times present, with peaks of just over 2 times present. 36

I do recommend sampling on the recharge function parameter. As defined 37 here, this parameter is a simple multiplier that is applied to the nominal 38 increase in precipitation, yielding the change in model recharge. The 39 40 multiplier represents uncertainty in numerous parameters, including (i) the location and extent of the surface recharge area, (ii) groundwater flow 41 42 between the surface recharge area and the boundary of the model domain, and 43 (iii) the relationship between precipitation and infiltration in the surface recharge area, which in turn is dependent on factors such as vegetation, 44 45 temperature, local topography, and soil characteristics. There is no particular reason to assume a 1-to-1 correlation between increases in 46 47 precipitation and increases in model recharge, and limited evidence for water-table conditions in semi-arid climates suggests that increases in 48 precipitation may result in substantially larger increases in infiltration. 49 50 I recommend that we incorporate recharge uncertainty in the 1991 51 calculations by sampling a uniformly distributed recharge parameter (defined 52 below) over a range that permits the relationship between mean annual 53 precipitation and model recharge to vary between 1-to-1 and 10-to-1. This

would mean that with precipitation at a maximum of 2x present, model
recharge could range from 2x to 20x present. Both the range and the
distribution are preliminary, and should be adjusted as new data or
interpretations warrant.

5 6

9

18

8 Description of Climate Variability

The basic premise for assessing climatic change at the WIPP is the 10 assumption that, because of the long-term stability of glacial cycles, 11 future climates will remain within the range defined by Pleistocene 12 variation. Present understanding does not suggest that short-term (century-13 scale) anthropogenic changes in the Earth's greenhouse effect will 14 invalidate this premise: published results of global-warming models do not 15 predict climatic changes of greater magnitude than those of the Pleistocene 16 (Swift, in prep.; Bertram-Howery et al., 1990). 17

Paleoclimatic data permit reconstruction of a precipitation curve for the 19 WIPP for the last 30,000 years (Figure 1). This curve shows two basic 20 styles of climatic fluctuation: relatively low-frequency increases in 21 precipitation that coincide with the maximum extent of the North American 22 ice sheet; and higher-frequency precipitation increases of uncertain causes 23 that have occurred both during the glacial maximum and in the 10,000 years 24 since the retreat of the ice sheet. Variability has also occurred in the 25 seasonality and intensity of precipitation. Most of the late Pleistocene 26 moisture fell as winter rain. Most of the Holocene precipitation falls 27 28 during during a summer monsoon, in local and often intense thunderstorms. This variability probably has affected recharge: no WIPP-specific data are 29 30 available, but, in general, higher temperatures increase evapotranspiration and decrease infiltration. The resulting variability in recharge is 31 included in the recharge function described below, however, and I have made 32 no effort to distinguish between winter and summer precipitation in the 33 climate function. 34

35

The amplitude of the low-frequency glacial precipitation peak is relatively 36 well-constrained by data from multiple sources. Amplitudes of the higher-37 frequency are less easily determined, but data indicate that none of the 38 Holocene precipitation peaks exceeded average glacial levels. I recommend 39 that we assume that high-frequency peaks with amplitudes comparable to those 40 of the Holocene could have been superimposed on the glacial maximum. 41 Therefore, there may have been relatively brief (i.e., on the order of 42 43 hundreds to perhaps thousands of years) periods during the glacial maximum when precipitation at the WIPP may have averaged three times present levels. 44 45 The curve shown in Figure 1 cannot be extrapolated into the future with any 46 confidence. The curve can be used, however, in combination with the general 47 understanding of glacial periodicity (see Swift, in prep.) to make a 48

reasonable approximation of likely future variability. The function I
propose is not in any sense a predictive function for future precipitation.
Rather, it is an admittedly simplistic function that can be readily adjusted
to approximate the variability that may occur.

53

54 Specifically, my proposed precipitation function is as follows:

```
P_{f} = P_{p} \times \left[ \left( \frac{3A + 1}{4} \right) - \left( \frac{A - 1}{2} \right) \left( \cos\beta t - \sin\frac{\alpha}{2} t + \frac{1}{2} \cos\alpha t \right) \right]
    where
12
13
       P_f =
              future mean annual precipitation
14
              present mean annual precipitation
15
        P_{D} =
              amplitude scaling factor (i.e., past precipitation maximum was
16
       A =
17
              A times the present)
              frequency parameter for Holocene-type climatic fluctuations
18
       \alpha
          =
              frequency parameter for Pleistocene glaciations
19
        β
              time (after present, in 10^4 years).
        t
20
21
22
23
    The equation can be simplified considerably by using available data. The
    three-year precipitation record from the site is too brief to be useful for
24
    determining a long-term mean, but examination of regional data suggests an
25
    approximate value of 30 cm/yr (estimated from data presented by Hunter,
26
    1985). Past precipitation maximums were approximately twice present (Swift,
27
    in prep.), and the amplitude scaling factor, A, can therefore be set at 2.
28
    The equation then becomes:
29
30
        P_{f}(cm/yr) = 52.5 - 15(cos\beta t - sin0.5\alpha + 0.5cos\alpha t)].
31
32
    My preferred values for \alpha and \beta have been chosen from examination of the
33
     past precipitation curve (Figure 1) and the glacial record. If \alpha = 20\pi, wet
34
    maximums will occur every 2000 years, approximately with the same frequency
35
     shown on Figure 1. Note that we are presently near a dry minimum, and the
36
     last wet maximum occurred roughly 1000 years ago. If \beta = \pi/6, the next full
37
     glacial maximum will occur in 60,000 years, approximately the time predicted
38
     by simple models of the astronomical control of glacial periodicity (e.g.,
39
     Imbrie and Imbrie, 1980). Figure 2 shows a plot of the climate function for
40
     these values.
41
42
43
     Figure 3 shows how varying \beta can affect the curve. Choosing \beta = \pi gives a
     wet maximum in 10,000 years, and results in extreme precipitation values 3
44
     times those of the present. This is not a realistic value for \beta---ice sheets
45
     grow relatively slowly, and it would be difficult to achieve full
46
     continental glaciation within 10,000 years. I do not recommend sampling on
47
     variations in \beta for the 1991 calculations, but I do plan to consider the
48
     case in the separate sensitivity analyses.
49
50
     Figure 4 shows the effect of varying \alpha, in this case to yield wet peaks
51
52
     every 4000 years. Changes in \alpha vary the frequency of the shorter-term
     fluctuations, but they do not change the ratio between wet and dry climates,
53
     and the average precipitation over 10,000 years remains the same.
54
55
56
     Examination of Figure 1 shows that Holocene climates have been predominantly
     dry, with wet peaks much briefer than dry minimums. The \alpha terms in the
57
     above equation give an oscillation in which the future climate is wetter
58
     than the present one-half of the time. I believe this value to be somewhat
59
     greater than the actual ratio, and, assuming that wet conditions are more
60
```

likely to result in releases from the WIPP, these terms provide a
 conservative approximation of Holocene variability. Furthermore, the choice
 of a single amplitude scaling factor for both Holocene and glacial peaks
 results in α peaks that are probably higher than all Holocene peaks and
 certainly higher than most.

Minor fluctuations during the dry minimums shown in Figures 2 through 4 are
an artifact of the three-term function, and are not intended to represent
any particular climatic variability. The minimum values of the "overshoots"
do, however, correspond reasonably well to the minimum values shown in
Figure 1 for the middle Holocene. Paleoclimatic data indicate that minimum
Holocene precipitation may have been approximately 90% of present values
(Swift, in prep.).

Glacial cycles have not been symmetric. Precipitation increases during 15 glacial advances have been gradual, whereas decreases at the end of 16 glaciation have been abrupt, giving a sawtooth characteristic to the curve. 17 The assumption of a cosine function for glacial cycles may therefore not be 18 conservative for WIPP performance assessment: precipitation during glacial 19 advances may be underestimated. The significance of this possible 20 underestimation will be examined in the separate sensitivity analyses by 21 using larger β values, and accelerating the next glacial peak (Swift et al., 22 23 in prep.).

24 25

28

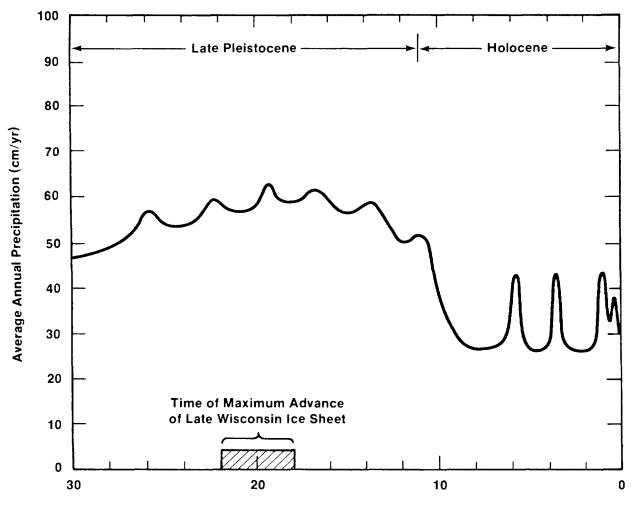
40

14

28 Description of Recharge Variability

We know little about recharge to the Culebra. Hydraulic head and isotopic 29 data (e.g., Holt et al., in prep.; Lambert and Harvey, 1987; Lambert and 30 Carter, 1987, Lappin et al., 1989) indicate that very little if any moisture 31 reaches the Culebra directly from the ground surface within the model 32 domain. Regionally, it is believed that recharge occurs several tens of 33 kilometers to the north, where the Culebra is near the ground surface 34 (Mercer, 1983; Brinster, 1991). It is unknown if water from this recharge 35 area presently reaches the model domain. Nominal recharge to the two-36 dimensional Culebra model has, in the past, been a prescribed boundary 37 condition estimated from head and density data from WIPP-area wells (LaVenue 38 et al., 1990). 39

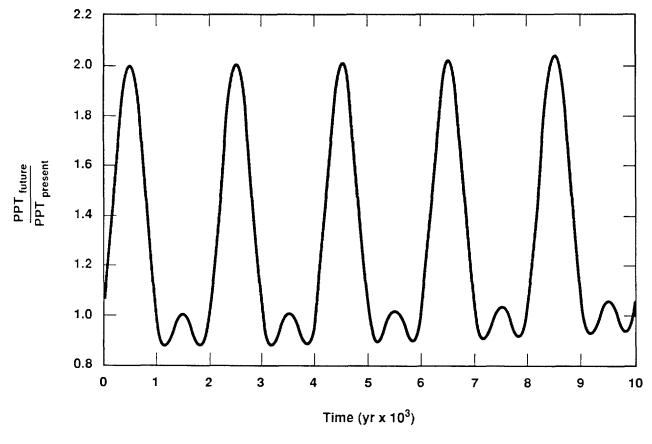
41 Available literature on the relationship between precipitation and recharge is limited to examinations of recharge to a water table by direct 42 infiltration. Environmental tracer research (e.g., Allison, 1988) suggests 43 that long-term increases in precipitation in deserts may result in 44 significantly larger increases in infiltration, particularly if the 45 increases in precipitation coincide with lower temperatures and decreased 46 evapotranspiration. As an extreme example, Stone (1984) estimated a 28-fold 47 increase in infiltration for one location at the Salt Lake coal field in 48 western New Mexico during the late Pleistocene wet maximum. Bredenkamp 49 (1988a,b) compared head levels in wells and and sinkholes with short-term 50 (decade-scale) precipitation fluctuations in the Transvaal, and suggested 51 that for any specific system there may be a minimum precipitation level 52 below which recharge does not occur. Above this uncertain level recharge to 53 the water table may be a linear function of precipitation. 54


1 Data of this sort could perhaps be applied quantitatively to the WIPP if we 2 (i) knew the location and extent of the surface recharge area for the 3 Culebra, (ii) knew how much, if any, infiltration occurs there at present, 4 and (iii) could include the recharge area in the model domain. We do not 5 know the first two, and it is not feasible to attempt the third. Even if we 6 could map the recharge area, uncertainty would remain about the extent of 7 the larger area in which significant inflow to the Culebra occurs as leakage 8 from overlying units. Even if we could quantify recharge from the surface 9 and inflow from overlying units, extending the model domain to include the 10 11 necessary area does not appear realistic. 12 Therefore, I recommend assigning a wide range to model recharge. 13 The specific function I suggest is: 14 15 10000000000 $R_{f} = R_{p} \times [1 + (\frac{Ar - 1}{A - 1})(\frac{P_{f} - P_{p}}{P_{p}})]$, if $P_f \ge P_p$, or 27 28 $R_f = R_p \text{ if } P_f < P_p;$ 29 30 with terms defined to be: 31 32 33 $R_{f} =$ future nominal flux into the modeled Culebra 34 $R_n =$ present nominal flux into the modeled Culebra 35 = recharge scaling parameter P_{f} = future mean annual precipitation, as calculated from the above 36 climate variability equation 37 P_p = present mean annual precipitation 38 A = precipitation amplitude scaling factor as in the climate 39 variability function above (i.e., past precipitation maximum was A 40 41 times the present). 42 43 Using values of 2 for A and 30 cm/yr for $P_{\rm D}$, the recharge function simplifies to: 44 45 $R_{f} = R_{p} \times [1 + (2r - 1)(\frac{P_{f} - 30}{30})]$ if $P_f \ge P_p$, or 57 58 $R_f = R_p \text{ if } P_f < P_p.$ 59 60 61 This function applies the recharge scaling factor only to that portion of future precipitation that represents an increase over present precipitation. 62 Thus, to achieve a 10-fold increase in recharge from a doubling of 63 64 precipitation (i.e., A = 2, $P_f = 2P_p$), it would be necessary to use an r value of 5. Regardless of the selected r value, if precipitation remains 65

value of 5. Regardless of the selected r value, if precipitation remains
constant, recharge also remains constant. The function does not allow for a
time lag between changes in precipitation and model recharge. This is
unrealistic, but of little consequence unless the lag is long relative to

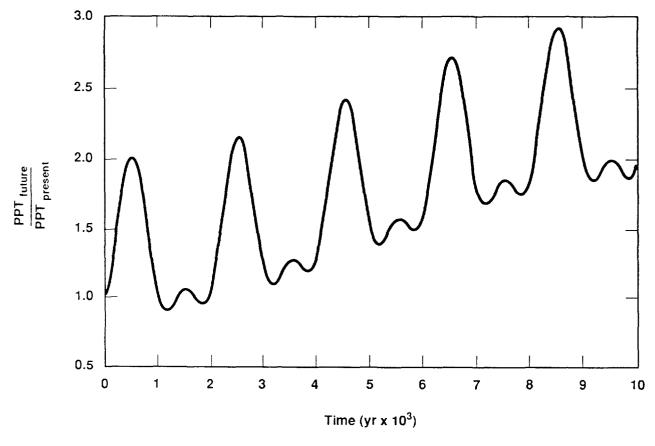
the 10,000-year period of interest, in which case the assumption of 1 2 instantaneous model recharge response is conservative. з The decision to hold recharge at the present level when calculated 4 precipitation falls below present avoids "negative" recharge for large 5 values of r. Flux across the model domain boundary may in fact have been 6 less in the past, during times when precipitation was slightly less than 7 present, but variation was probably slight, and it is unrealistic to assume 8 that the same function applies for lower levels of precipitation. 9 10 I recommend sampling a uniform distribution of r values from 1 to 10 to 11 cover variability in model recharge. Justification for the range and 12 distribution are as follows: 13 14 Lower bound, r = 1. This value yields a 1-to-1 correspondence between 15 16 precipitation and model recharge, which I believe to be a conservatively high lower bound. A less than 1-to-1 correspondence (r values less than 17 18 1) could occur if the transmissivity field between the surface recharge area and the model domain is such that precipitation fluctuations reach 19 20 the model domain with strongly muted amplitudes. An improved understanding of regional hydrology may indicate that it is appropriate 21 to include these lower values in future calculations. Circumstances can 22 also be imagined in which increases in precipitation result in a decrease 23 24 in infiltration (e.g., development of plant cover on previously barren land, or changes in topography resulting in runoff from a previously 25 26 closed drainage), but none appear plausible for the WIPP area. It is more likely that an increase in the cool-season component of 27 28 precipitation will result in higher infiltration and r values greater than 1. 29 30 Upper bound, r = 10. This value yields a 20-fold increase in model 31 recharge with a doubling of mean annual precipitation and a shift from a 32 monsoonal climate to a climate dominated by winter storms. This value is 33 arbitrary, but is generally representative of the infiltration data 34 reported by Stone (1984). It is less than his maximum value recorded at 35 a single point, reflecting my belief that it is improbable that local-36 scale variability in infiltration will have a significant effect on 37 confined groundwater flow tens of kilometers down-gradient. It is 38 greater than the mean value for his study area of a 12.5-fold increase in 39 40 infiltration during the late Pleistocene. My decision to use surface infiltration for an upper bound is based on the observation that the area 41 of surface recharge is apparently relatively small compared to the area 42 in which the Culebra is confined, and there is no reason to assume a 43 preferential flow path from the recharge area to the model domain. 44 45 Distribution. I suggest a uniform distribution in the absence of data 46 47 indicating otherwise. Choosing any distribution other than uniform would imply a greater understanding of the recharge process than we presently 48 have. 49 50 51 Both the range and distribution of the recharge parameter are preliminary. and may be adjusted for future calculations if new data or interpretations 52 53 warrant.

```
1
                                   References Cited
2
3
4
5
    Allen, B. D. 1991. "Effect of Climatic Change on Estancia Valley, New
6
    Mexico: Sedimentation and Landscape Evolution in a Closed-Drainage Basin,"
    in B. Julian and J. Zidek, eds., Field Guide to Geologic Excursions in New
7
    Mexico and Adjacent Areas of Texas and Colorado. New Mexico Bureau of Mines
8
    and Mineral Resources Bulletin 137. Socorro, New Mexico. pp. 166-171.
9
10
11
    Allison, G. B. 1988. "A Review of Some of the Physical, Chemical, and
12
    Isotopic Techniques Available for Estimating Groundwater Recharge," in I.
13
    Simmers (ed.), Estimation of Natural Groundwater Recharge. NATO ASI series,
    series C, vol. 222. Dordrecht, Holland: D. Reidel. pp. 49-72.
14
15
16
    Bertram-Howery, S. G., M. G. Marietta, R. P. Rechard, P. N. Swift, D. R.
    Anderson, B. L. Baker, J. E. Bean, Jr., W. Beyeler, K. Brinster, R. V.
17
    Guzowski, J. C. Helton, R. D. McCurley, D. K. Rudeen, J. D. Schreiber, and
18
    P. Vaughn. 1990. Preliminary Comparison with 40 CFR Part 191, Subpart B
19
20
    for the Waste Isolation Pilot Plant, December 1990. SAND90-2347.
21
    Albuquerque, NM: Sandia National Laboratories.
22
    Bredenkamp, D. B. 1988a. "Quantitative Estimation of Ground-Water Recharge
23
    in Dolomite," in I. Simmers (ed.), Estimation of Natural Groundwater
24
    Recharge. NATO ASI series, series C, vol. 222. Dordrecht, Holland: D.
25
26
    Reidel. pp. 449-460.
27
    Bredenkamp, D. B. 1988b. "Quantitative Estimation of Ground-Water Recharge
28
    in the Pretoria-Rietondale Area," in I. Simmers (ed.), Estimation of Natural
29
    Groundwater Recharge. NATO ASI series, series C, vol. 222. Dordrecht.
30
31
    Holland: D. Reidel. pp. 461-476.
32
33
    Brinster, K. F. 1991. Preliminary Geohydrologic Conceptual Model of the
    Los Medaños Region Near the Waste Isolation Pilot Plant for the Purpose of
34
    Performance Assessment. SAND89-7147. Albuquerque, NM: Sandia National
35
36
    Laboratories.
37
38
    Holt, R. M., D. W. Powers, R. L. Beauheim, and M. E. Crawley.
                                                                    in prep.
    Conceptual Hydrogeologic Model of the Rustler Formation in the Vicinity of
39
40
    the Waste Isolation Pilot Plant Site, Southeastern New Mexico. SAND89-0862.
41
    Albuquerque, NM: Sandia National Laboratories.
42
    Hunter, R. L. 1985. A Regional Water Balance for the Waste Isolation Pilot
43
    Plant (WIPP) Site and Surrounding Area. SAND84-2233. Albuquerque, NM:
44
    Sandia National Laboratories.
45
46
47
    Imbrie, J., and J. Z. Imbrie. 1980. "Modeling the Climatic Response to
    Orbital Variations." Science 207: 943-953.
48
49
    Lambert, S. J., and J. A. Carter. 1987. Uranium-Isotope Systematics in
50
    Groundwaters of the Rustler Formation, Northern Delaware Basin, Southeastern
51
52
    New Mexico. I: Principles and Methods. SAND87-0388. Albuquerque, NM:
53
    Sandia National Laboratories.
```


2 Lambert, S. J., and D. M. Harvey. 1987. Stable-Isotope Geochemistry of Groundwaters in the Delaware Basin of Southeastern New Mexico. SAND87-0138. 3 Albuquerque, NM: Sandia National Laboratories. 4 5 Lappin, A. R., R. L. Hunter, D. P. Garber and P. B. Davies, eds. 1989. 6 Systems Analysis, Long-Term Radionuclide Transport, and Dose Assessments, 7 Waste Isolation Pilot Plant (WIPP), Southeastern New Mexico; March 1989. 8 9 SAND89-0462. Albuquerque, NM: Sandia National Laboratories. 10 LaVenue, A. M., T. L. Cauffman, and J. F. Pickens. 1990. Ground-Water Flow 11 Modeling of the Culebra Dolomite. Volume I: Model Calibration. 12 SAND89-7068. Albuquerque, NM: Sandia National Laboratories. 13 14 Mercer, J. W. 1983. Geohydrology of the Proposed Waste Isolation Pilot 15 Plant Site, Los Medañs Area, Southeastern New Mexico. Albuquerque, NM: 16 United States Geological Survey Water Resources Investigation 83-4016. 17 18 Phillips, F. M., A. R. Campbell, C. Kruger, P. S. Johnson, R. Roberts, and 19 E. Keyes. in prep. A Reconstruction of the Response to Climate Change of 20 the Water Balance in Western United States Lake Basins. New Mexico Water 21 Resources Research Institute Report. Socorro, New Mexico. 22 23 Pierce, H. G. 1987. "The Gastropods, with Notes on Other Invertebrates." 24 in E. Johnson (ed.) Lubbock Lake: Late Quaternary Studies on the Southern 25 26 High Plains. College Station, TX: Texas A&M University Press. pp. 41-48. 27 Swift, P. N. in prep. Long-Term Climate Variability at the Waste Isolation 28 29 Pilot Plant. SAND91-7055J. Albuquerque, NM: Sandia National Laboratories. 30 Swift, P. N., B. L. Baker, K. F. Brinster, M. G. Marietta, and P. J. Roache. 31 in prep. Parameter and Boundary Conditions Sensitivity Studies Related to 32 Climate Variability and Scenario Screening for the Waste Isolation Pilot 33 34 Plant. SAND89-2029. Albuquerque, NM: Sandia National Laboratories. 35 Stone, W. J. 1984. Recharge in the Salt Lake Coal Field Based on Chloride 36 in the Unsaturated Zone. Open File Report 214. Socorro, NM: New Mexico 37 Bureau of Mines and Mineral Resources. 38 39 Van Devender, T. R., R. S. Thompson, and J. L. Betancourt. 1987. 40 41 "Vegetation History of the Deserts of Southwestern North America; the Nature and Timing of the Late Wisconsin-Holocene Transition," in W. F. Ruddiman and 42 H. E. Wright, Jr. (eds.), North America and Adjacent Oceans During the Last 43 44 Deglaciation. The Geology of North America Volume K-3. Boulder, CO: Geological Society of America. pp. 323-352. 45 46 47 Waters, M. R. 1988. "Late Quaternary Lacustrine History and Paleoclimatic 48 Significance of Pluvial Lake Cochise, Southeastern Arizona," Quaternary 49 Research 32: 1-11.

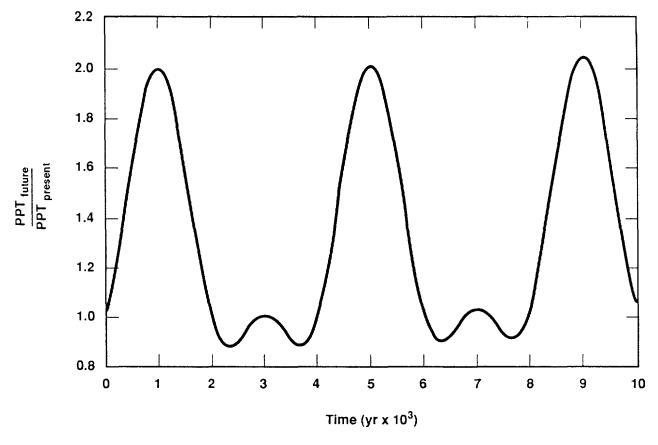
Thousands of Years before Present

TRI-6342-299-3


Figure 1. Estimated mean annual precipitation at the WIPP during the late
Pleistocene and Holocene (Swift, in prep.). Data from Van Devender et al.
(1987), Pierce (1987), Waters (1989), Phillips et al. (in prep.), Allen
(1991), and other sources cited by Swift (in prep.).

TRI-6342-1229-0

Figure 2. Ratio between future and present mean annual precipitation at the
WIPP, calculated using the climate function suggested in the text and the
suggested constants that yield a full glacial maximum in 60,000 years and


5 interglacial peaks every 2000 years.

TRI-6342-1231-0

2 Figure 3. Ratio between future and present mean annual precipitation at the

- 3 WIPP, calculated using the climate function suggested in the text and
- 4 constants that yield a full glacial maximum in 10,000 years and interglacial 5 peaks every 2000 years.

TRI-6342-1230-0

Figure 4. Ratio between future and present mean annual precipitation at the WIPP, calculated using the climate function suggested in the text and constants that yield a full glacial maximum in 60,000 years and interglacial peaks every 4000 years.

2		Gorham, July 2, 1991	
4			
5	Date:	7/2/91	
6	To:	Rob Rechard (6342)	
7	From:	Elaine Gorham (6344)	
8	Subject:	Aggregated Frequency Distributions for Permeability,	Pore
9		Pressure and Diffusivity in the Salado Formation	
10			

Sandia National Laboratories

Albuquerque, New Mexico 87185

to: Rob Rechard, 6342

date: July 2, 1991

1

2 3

4 5

6 7 8

16

17

18

19

20

21

22

23

24

25 26

31 32

33

34 35

36

37

42

43 44

51

Elaini Gordan

from Elaine Gorham, 6344

subject: Aggregated Frequency Distributions for Permeability, Pore
 Pressure and Diffusivity in the Salado Formation

Attached are the frequency distributions we recommend that you use in the December 91 calculations for values of the brine permeability, pore pressure and specific storage for the Salado formation. Separate frequency distributions have been derived for halite and anhydrite layers. As we have discussed in previous meetings, the data base cannot currently support a model that clearly differentiates a disturbed rock zone from the far field. Therefore we have included data that we believe may be representative of a DRZ in formulating our property distributions for the far field.

Data and suggested frequency distributions from various
 experiments supported by 6344 that have been included in
 formulation of the recommended distributions have been
 transmitted to you in the following memos:

1. "Pore Pressure Distributions for 1991 Performance Assessment Calculations", S. Howarth to E. Gorham, June 12, 1991.

2. "Permeability Distributions for 1991 Performance Assessment Calculations", S. Howarth to E. Gorham, June 13, 1991.

38 3. "Review of Salado Parameter Values to be Used in 1991
 39 Performance Assessment Calculations", R. Beauheim to R. Rechard,
 40 June 14, 1991.
 41

4. "Parameter Estimates from the Small Scale Brine Inflow Experiments", S. Finley and D. McTigue, June 17, 1991.

This memo combines the information in the memos listed above in a consistent manner with the attached table of pore pressure information from the Permeability Testing Program to produce aggregated distributions for the relevant parameters. I will provide you with a publishable description of the aggregation process by your August deadline.

Permeability values inferred from the Permeability Testing
 Program and from the Room Q tests depend upon the assumed
 specific storage. At this time we have not succeeded in
 quantifying the correlation between these two parameters and

therefore recommend that you sample from the permeability and specific storage distributions independently.

The formation compressibility α can be obtained from the values of specific storage using the formula:

$$\alpha = S_{S}/\rho/g - \phi\beta,$$

where g is the gravitational acceleration, ρ the fluid density, ϕ the formation porosity and β the fluid compressibility. I recommend using average values recommended by Beauheim in Reference 3 above for the parameters in this conversion formula, since I have included considerable parameter uncertainty in the frequency distribution for the specific storage. Thus, I recommend using the expression

$$\alpha = S_{s} * 8.5 \times 10^{-5} / Pa - 3.1 \times 10^{-12} / Pa$$

to obtain formation compressibility from specific storage. Further, for values of specific storage smaller than 3.6×10^{-8} , α may become negative. I recommend allowing it to become negative for values of specific storage larger then 3.4×10^{-8} at which value the total compressibility will equal the lowest recommended value of fluid compressibility (2.9×10^{-10} /Pa). For values of specific storage less than 3.4×10^{-8} , which comprise less than five percent of the frequency distributions, I recommend using a formation compressibility of zero and a value of fluid compressibility of 2.9×10^{-10} /Pa.

- If you have any questions please contact me.
 - Copies:

- 34 1511 D. McTigue
- 35 6340 W. D. Weart
- 36 6342 D. R. Anderson
- 37 6344 R. Beauheim
- 38 6344 S. Finley
- 39 6344 S. Howarth

1	ACCRECATED EDECLIENCY DI		PERMEABILITY IN THE SALADO
2	FORMATION:	SIRIBULIONS FOR	FERMERDIDITI IN THE SALADO
3			
4		HALITE	ANHYDRITE
5	-LOG(Permeability(m ²))	Cumulative	Cumulative
6		Frequency	Frequency
7			
в	16.50		0.0
9	17.00	0.0	0.018481
10	17.50	0.018481	0.036963
11	18.00	0.036963	0.073959
12	18.50	0.065434	0.126273
13	19.00	0.093906	0.247036
14	19.50	0.154012	0.476356
15	20.00	0.269430	0.636369
16	20.50	0.416616	0.819516
17	21.00	0.645037	0.922176
18	21.50	0.826056	0.948816
19	22.00	0.939442	0.975456
20	22.50	0.964834	0.987111
21	23.00	0.985230	0.998766
2 2	23.50	0.991890	0.998766
23	24.00	0.998550	0.998766
24	ACCRECAMER ERROURNOV RT		
2 5		STRIBUTIONS FOR	FORMATION PRESSURE IN THE
26 07	SALADO FORMATION:		
27 28	Pressure (MPa)	HALITE	
20 29	riessule (Mra)	Cumulative	ANHYDRITE Cumulative
29 30		Frequency	Frequency
31		rrequency	riequency
32	0.0	0.000	0.0
33	1.0	.1250	0.15
34	2.0	.1500	0.20
35	3.0	.2750	0.20
36	4.0	.3375	0.20
37	5.0	.4625	0.30
38	6.0	.5500	0.35
39	7.0	.5750	0.35
40	8.0	.6800	0.35
41	9.0	.8400	0.40
42	10.0	.9750	0.50
43	11.0	1.000	0.60
44	12.0	1.000	0.75
45	13.0	1.000	0.95
46	14.0	1.000	1.00

1 2 3	AGGREGATED FREQUENCY SALADO FORMATION:	DISTRIBUTIONS FOR	SPECIFIC STORAGE IN THE
4	-LOG(Specific	HALITE	ANHYDRITE
5	Storage(/m))	Cumulative	Cumulative
6	2 0 11	Frequency	Frequency
7	0.0		
8	2.3	0.050	0.027
9	2.4	0.053	0.042
10	2.9	0.070	0.11
11	3.0	0.075	0.12
12	3.1	0.084	0.15
13	3.3	0.10	0.20
14	4.0	0.17	0.21
15	4.4	0.24	0.25
16	4.5	0.26	0.26
17	4.7	0.28	0.27
18	4.8	0.29	0.28
19	5.1	0.33	0.30
20	5.2	0.34	0.31
21	5.4	0.36	0.34
2 2	5.8	0.40	0.40
23	5.9	0.40	0.41
24	5.9	0.41	0.41
25	6.0	0.44	0.41
26	6.4	0.54	0.53
27	6.8	0.66	0.67
28	7.0	0.70	0.92
29	7.1	0.77	0.93
30	7.5	0.98	0.95
31	7.7	0.99	0.96
32	8.0	0.99	0.97
33	8.5	1.0	1.0

FORMATION PORE PRESSURES FROM PERMEABILITY TESTING PROGRAM

2	TEST	INTERVAL (m)	PRESSURE (MPa)	LITHOLOGY
Э	C2H01-A	2.09-2. 9 2	0.50	halite
4	C2H01-A-GZ	0.50-1.64	0.00	halite
5	C2H01-B	4.50-5.58	3.15	halite
6	C2H01-B-GZ	2.92-4.02	4.12	halite
7	C2H01-C	6.80-7.76	8.05	MB139
8	C2H02	9.47-10.86	9.30	MB139
9	L4P51-A	3.33-4.75	2.75	halite
10	L4P51-A-GZ	1.50-2.36	0.28	MB139
11	S0P01	3.74-5.17	4.45	halite
12	S0P01-GZ	1.80-2.76	0.52	MB139
13	S1P71-A	3.12-4.56	2.95	halite
14	S1P71-A-GZ	1.40-2.25	0.00	MB139
15	S1P71-B	9.48-9.80	4.88	anhydrite "c"
16	S1P72	4.40-6.00	1.24	MB139
17	S1P72-GZ	2.15-3.18	5.15	halite
13	SCP01	10.50-14.78	12.55	MB139
19	L4P51-B	9.62-9.72	5.10	anhydrite "c"
20	S1P73-B	10.86-11.03	4.50	MB138

3		Anderson, October 25, 1991
4		
5	Date:	10/25/91
6	To:	File
7	From:	D. R. (Rip) Anderson (6342)
8	Subject:	Modifications to Reference Data for 1991 Performance
9		Assessment
10		
11		

A-131

Sandia National Laboratories

Albuquerque, New Mexico 87185

date: 25-0CT-91

to: File

D. R. Huduson

from: D. R. (Rip) Anderson, 6342

subject Modifications to Reference Data for 1991 Performance Assessment

1 Memoranda regarding reference data were provided to performance 2 assessment from principal investigators for use in the 1991 3 preliminary comparison. Data were requested early in the performance 4 assessment year (March) because consequence modeling depends on early 5 definition of conceptual models, division of summary scenarios into 6 computational scenarios, and robustness of different flow and 7 transport codes. Once the conceptual and computational model(s) and 8 the ranges and distributions of imprecisely known input parameters are 9 defined, the annual performance assessment calculations can be 10 designed and tested. 11 12 Concerns related to calculational design include distinguishing 13 conceptual models so CCDF comparisons, ceteris paribus, can be made; 14 ability to perform the calculations (i.e., acknowledging code 15 limitations); and the need to design consequence modeling so 16 sensitivity analysis results are interpretable. Consideration of 17 these concerns sometimes requires modification of data ranges and 18 distributions. For example, comparison of two different conceptual 19 models is best performed by comparing summary CCDFs derived from two 20 independent analyses using the same sample. Therefore, submitted data 21 may be divided between two different conceptual models, e.g., dual-22 and single-porosity (fracture) transport in the Culebra. 23 24 The flow and transport codes have fundamental limitations in their 25 ability to compute realistic results over wide parameter ranges 26 especially when there are orders of magnitude variations in material 27 properties between adjacent zones. Data must be made available in a 28 timely way so that codes can be tested before Monte Carlo simulations 29 have to start. Because last-minute adjustments cannot always be made, 30 new data or new interpretations of old data that are delivered late 31 may not be included until the next year's calculations. 32 33 For interim performance assessments like the 1991 preliminary 34 comparison, sensitivity analyses must be as realistic and 35 interpretable as possible because the comparison forms the basis for 36 providing guidance to DOE on the experimental program. The 37 performance assessment calculations must be designed so that different

1 conceptual models and different sources of uncertainty (e.g., 2 stochastic vs. subjective, various imprecisely known parameters, etc.) 3 can be clearly distinguished. Most important, data must be consistent 4 with model scales, e.g., measurements may be on a m^3 scale, but the 5 model needs information on a computational cell volume of 10^3 m³. 6 Therefore, realistic distribution functions on the right model scales 7 are required for providing meaningful sensitivity results on which to 8 base our guidance to DOE. Too much or too little emphasis on 9 distribution tails (e.g., arbitrarily wide ranges on uncertainty) can 10 skew results. In such cases for a parameter or submodel, more than 11 one distribution can be tested and results compared and documented in 12 the sensitivity analysis report. The CCDFs reported in the 13 preliminary comparison, however, must rely on realistic conceptual 14 models and parameter CDFs. 15 16 The following discussion lists changes in parameter distributions from 17 recommendations in submitted memoranda for the 1991 Preliminary 18 Comparison. 19 20 1. Pore Pressure Distribution (ref. E. Gorham to R. Rechard, Memo, 21 July 2, 1991) 22 23 The distribution as provided in Gorham, Memo, June 2, 1991, includes 24 data taken from Salado halite and anhydrite. The 10 measurements 25 included in the data and described in Howarth, Memo, June 12, 1991, 26 are from 7 experiments in halite and three in anhydrite. For each 27 experiment, two pressure values are reported: (1) a "shut-in" value 28 obtained during a pressure build-up test and (2) a Horner 29 extrapolation of this value. The Horner extrapolation provides an 30 estimate of a steady-state pore pressure by extrapolation to infinite 31 time. 32 33 For the 1991 PA calculations, we are using only the Horner 34 extrapolated pressure values for the anhydrite material (reported in 35 Howarth, Memo, June 12, 1991) and the two anhydrite values 36 (recommended in Beauheim, Memo, June 14, 1991) for our "far-field" 37 pore pressure distribution at the MB139 elevation. Because doing so 38 results in using only five experimental data, the distribution is 39 constructed using the PA standard procedure for sparse data. This 40 procedure involves determining the mean of the data and then extending 41 the range to $\pm 2.33\sigma$ about the mean. Since the maximum pressure of the 42 resulting range exceeds lithostatic pressure, we limit the maximum to 43 lithostatic. The following supports the changes made to the pore 44 pressure distributions of Gorham, Memo, July 2, 1991. 45 46 Reason 1: One difficulty with the Gorham distribution is that both 47 the shut-in and Horner values of each test were weighted equally and 48 used in the construction of the distribution. This "doubling up" of 49 data is not consistent with PA's understanding of capturing data 50 uncertainty with probability distributions. PA methodology requires 51 that the data points to be used in the construction of the parameter 52 cdfs be from independent experiments.

```
53
```

1 Reason 2: The model requires steady-state or long time estimates of 2 pore pressure that exist in the host rock prior to excavation. The 3 early time data or shut-in values obtained during the experiments are 4 not consistent with the model's application and should be excluded 5 from the distribution. The transient nature of pressure response to 6 the excavation is calculated by the model.

8 Reason 3: The pressure the model expects is one which is 9 representative of the pressure at repository elevation at a horizontal 10 distance far removed from the repository. Far removed as defined in 11 the model is a location where neither pressure nor saturation is 12 affected by changes occurring in the repository. The key words are 13 "far removed." During the course of the calculations, the model 14 BRAGFLO determines the changing pressure and saturation profiles as a 15 function of time and position. Results from BRAGFLO indicate that a 16 depressurized zone surrounding the waste is created at early times. 17 This depressurized zone is created in response to the low pressure 18 initially in the excavation. This zone is not to be confused with the 19 DRZ (disturbed rock zone) which, if it exists, is due to mechanical 20 stress in the surrounding rock. The size of this depressurized zone 21 varies with time and material properties, but it can extend tens of 22 meters into the Salado. For example, in vector 6 of this year's 23 input, sampling the simulated pressure field 25 m from the repository 24 into the Salado at a time 8 yr after the excavation results in a value 25 of 5.5 MPa, while the far-field pressure remains at 8.5 MPa. Using 26 the value of 5.5 MPa as representative of the "far-field" value. in 27 this case, would underestimate the potential for brine inflow into the 28 panel from the "far field" and would be 35% low. The distance from 29 the repository where the experiments were conducted is 23 m. 30

31 Reason 4: The data are not consistent with the models' intended use. 32 The model uses this pressure as the initial pressure at a particular 33 elevation in the reservoir. The key word is "initial." As mentioned 34 above, BRAGFLO calculates the magnitude and extent of the 35 depressurized zone as a function of time. The initial time is assumed 36 to be the time of excavation so that there is no depressurization due 37 to the presence of the excavation. The data, of course, are taken 38 some time after excavation.

39

40 Reason 5: The data are not consistent with our (PA) current 41 conceptual model assumption that the Salado and other materials are 42 homogeneous and consist of a network of interconnected pore space. 43 Many of the data fall below their hydrostatic pressure values at the 44 location of measurement. Assume for the moment that the low pressures 45 (as low as 1.1 MPa) that were measured were not influenced by the 46 presence of the excavation and that no leakage through the equipment 47 or unseen fractures occurred. This suggests an alternative conceptual 48 model for the Salado: one in which isolated pockets are separated by 49 impermeable material or by material of nonconnected porosity. While 50 our numerical models can handle this type of conceptual model, (1) 51 some mechanism should be postulated for the formation of low-pressure 1 pockets in the deformable halite, (2) additional data probably should 2 be collected to support this alternate conceptual model, and (3) these 3 pockets should be quantified with respect to properties as well as 4 location and spatial extent. As discussed above, when alternative 5 conceptual models are well supported in the documented technical 6 basis, the PA approach for including conceptual model uncertainty is 7 to perform independent Monte Carlo simulations, compare CCDFs, ceteris 8 paribus, then make a judgment on whether more than one conceptual 9 model needs to be included in later CCDF construction.

11 2. Permeability

12

13 Two distributions are provided: one for the halite, which has a range 14 of 1.0E-24 to 1.0E-17 and one for the anhydrite, which has a range of 15 1.0E-24 to 3.2E-17. For this year's calculations, PA will use instead 16 a range of 2.0E-22 to 1.4E-19 for intact halite and 8.5E-21 to 1.8E-18 17 for intact anhydrite. The PA ranges are based on the data of 18 Beauheim, Memo, June 14, 1991. In determining the PA distributions, 19 the two values (one for each material) that are believed to be in the 20 DRZ, are excluded. The support of PA distributions are $\pm 2.33\sigma$ about 21 the mean of the remaining data. The following arguments support the 22 position for not using the distributions of Gorham, July 2, 1991.

24 Reason 1: The support of the permeability distributions reported in 25 Gorham, Memo, July 2, 1991, are artificially broad for reasons 26 outlined in Howarth, Memo, June 13, 1991. In essence, the data of 27 Howarth, June 13, 1991, were calculated using properties of a "test 28 zone fluid" and not brine. In addition, the values are based on the 29 assumption of a rigid matrix as opposed to the "poroelastic" 30 assumption currently used in the standard model for determining 31 permeability from test data by Division 6344. Both of these factors 32 can significantly affect the calculated permeabilities and at the very 33 least raise questions as to their appropriateness for PA calculations. 34 In Howarth, June 13, 1991, it is estimated that the assumptions used 35 in determining these permeabilities may be in error by 1/2 to 2 orders 36 of magnitude.

37

38 Reason 2: The distributions as provided are not consistent with the 39 current conceptual model. Conceptually, the anhydrite layers are 40 thought to be the major flow paths between the "far-field" and the 41 repository while the halite is believed to be the more impermeable 42 material. Sampling on Gorham, July 2, 1991 distributions resulted in 43 the halite being more permeable than the anhydrite in nearly 25% of 44 the vectors. Again, if different conceptual models are postulated, 45 independent and internally consistent analyses should be performed by 46 PA and appropriate uncertainty included later. PA can do this if the 47 more permeable halite and tighter anhydrite is a viable alternative 48 conceptual model. 49

50 Reason 3: While the existence of a DRZ is apparently the subject of 51 some debate, there is still some evidence that may support the 52 existence of a DRZ. PA models are capable of differentiating a DRZ 1 from intact material. Beauheim, Memo, June 14, 1991 clearly states 2 that the high permeability measurements for halite and anhydrite are 3 representative of a DRZ. The existence or not of the DRZ could also 4 be analyzed as conceptual model uncertainty. PA believes that this 5 approach is preferred over identifying near-excavation permeability 6 measurements with estimates of far-field permeabilities.

```
7
```

8 3. Specific Storage

10 Specific storage of the halite and anhydrite is not sampled during 11 this year's PA calculations. The value of specific storage selected 12 for the calculations is the upper end of the range in specific storage 13 values suggested in Beauheim, Memo, June 14, 1991, for the halite and 14 anhydrite materials. The upper end value of the Gorham, July 2, 1991 15 range was not selected because the formation compressibility used by 16 PA models and calculated from the specific storage would become 17 negative for some combinations of porosity and fluid compressibility. 18 A negative formation compressibility is contrary to our conceptual 19 model of the matrix response to pore pressure changes in the halite 20 and anhydrite. Current PA understanding is that matrix porosity 21 increases with increasing pore pressure. Negative rock 22 compressibility reverses this behavior.

A-138

2		Mendenhall and Butcher, June 1, 1991
4		
5	Date:	6/1/91
6	To:	R. P. Rechard (6342)
7	From:	F. T. Mendenhall (6345) and B. M. Butcher
8	Subject:	Disposal room porosity and permeability values for use in
9		the 1991 room performance assessment calculations
10		
11		

June 1, 1991 date: 1 2 R.P. Rechard 3 to: 4 B. M. Butch 5 7. J. Mendenhall 6 7 F.T. Mendenhall, 6345 and B.M. Butcher from: 8 9 subject: Disposal room porosity and permeability values for use in 10 the 1991 room performance assessment calculations 11 12 The following information has been prepared as input for material 13 property value distribution for the 1991 performance assessment. 14 The approach used for determining the properties for this years 15 calculation differs significantly from last years information 16 because of the of gas in both the disposal room model and the use 17 of two phase fluid flow in modeling the room in the performance 18 assessment calculations. All values in this memorandum refer to the 19 values for a single disposal room. 20 21 In the case where it is assumed no gas is generated (total gas 22 potential of less than 1.4×10^6 moles is assumed to be the same as 23 no gas generation), the recommended distributions of permeability 24 and porosity are the same as recommended last year.¹ For the cases 25 where the expected gas generated is more than 1.4x10⁶ moles, the 26 recommended porosity (50% probability) can be defined from: 27 28 29 (Eq 1) $\Phi_{(Prob=50\%)} = \frac{1}{1 + \frac{P \cdot V_s}{N_{T \to T} \cdot R \cdot T}}$ 30 31 32 33 34 Where 35 ϕ =porosity 36 P=14.8x106 Pa - 1, thostatic 37 $V_s = 1330 M^3$ 38 $R=8.23 \quad \frac{M^3-Pa}{g-mole-K}$ T=300K39 40 41 N_{Total}=Total Moles Gas 42 43 44 45 N_{Total} is the total potential number of moles of gas contained in a 46 disposal room. This is determined by the amount and type of waste 47 in a room as sampled in your performance assessment model. Note 48 that the porosity is a long term equilibrium value based on the 49 ideal gas law and assumes that the final pressure in a room will be 50 the lithostatic pressure of the overburden. The ideal gas law is 51 expected to be accurate at lithostatic pressure (14.8 MPa). If your 52

¹ code allows a significant amount of gas to leak out of the disposal ² room, we recommend that you compute the amount of moles of gas in ³ the room at a point in time three times after all gas generation ⁴ has stopped, e.g. if the total gas generation stops at 700 years, ⁵ determine the number of moles in the room at 2100 years and used ⁶ that value, N_{3*tend} , instead of the total potential amount of gas in ⁷ the room. This should allow some influence of gas migration and ⁸ leakage to be accounted for in your simulations. Again if N_{10tal} or ⁹ if N_{3*tend} are less than 1.4×10^6 moles the porosity and permeability ¹⁰ ranges revert to those given last year.

11

20

21

Having defined the porosity for the 50% probability level, the 10% probability level remains at 0.15 as it was last year. The lowest the porosity ever expected would be the porosity of the host halite. We see no reason to change the median value of 0.01 or range of the porosity,(.001 - .03), of the host halite from those defined last year in Table II-2 of the <u>Data Used in Preliminary</u> <u>Performance Assessment of the Waste Isolation Pilot Plant (1990)</u>, SAND89-2408 by Rob P. Rechard, et.al..

Porosity at the 90% probability level would be the value determined in Equation 1 by exchanging N_{Total} with $2xN_{Total}$ (or $2xN_{3*tend}$ if that was the value used). The value of twice the base line value was selected because for corrosion the most aggressive reaction in the list of potential reactions in the DSEIS report will generate two moles of hydrogen for each mole of iron and iron corrosion has the maximum gas production potential in the waste inventory.

The large range on gas generation potentials and, hence, the porosity is expected to narrow as better information regarding gas generation becomes available from laboratory and bin scale tests.

Similarly, the permeability recommendations remain unchanged from last year in the case where no gas generation, (less than 1.4x10⁶ moles of gas), is expected. Also, as you are sampling on phi if the average room porosity is less than 0.15, then again you should use the permeability values as determined last year.

However, when significant gas occurs and in the sampling process 30 the room porosity exceed 0.15, the recommended permeability should 40 be determined by averaging the expected components of materials in 41 the room. Since the composite flow is likely to be dominated by the 42 flow of the most permeable member, a harmonic averaging process 43 seems most appropriate. For example, let K_{b} , K_{c} , K_{m} , and K_{s} represent the permeabilities of the backfill, combustible waste, metallic 44 45 waste, and sludges respectively. Furthermore, define the following 46 values of R as 47

$$V_{\nu}K_{0}=R1$$

$$V_{\nu}K_{n}=R2$$

$$V_{\nu}K_{0}=R2$$

$$V_{\nu}K_{0}=R3$$

$$V_{\nu}K_{0}=R3$$

$$V_{\nu}K_{0}=R4$$
with V_u, V_c, V_m, and V_s representing the per cent volume of the backfill, combustible waste, metallic waste, and sludges respectively. Then the expected room average permeability would be defined as
$$R_{ave} = \frac{1}{\frac{1}{RI} + \frac{1}{R2} + \frac{1}{R3} + \frac{1}{R4}}$$

$$K_{ave} = \frac{R_{ave}}{Total \ Initial \ Volume}$$
The values of the individual components of permeability should be determined from the average room porosity in the following fashion.
$$K_{1} = (K_{0})^{-2} \sqrt{\frac{\Phi}{\Phi_{0}}} \ Meters^{2}$$
Where the values of K₀ and phi₀ are given in Table 1 for the various room components. Also note, that as you are sampling on the room permeability.
$$\frac{Component}{K_{0}} \ m^{2} \qquad \Phi_{0}$$
Backfill 10⁻²¹ 0.05
Combustibles 1.7x10⁻¹⁴ 0.136
Metallic 5x10⁻¹³ 0.4
Sludges 1.2x10⁻¹⁶ .113
Table 1

1	Caveat
2	
3	This averaging scheme for the permeability is based on the
4	assumption of a significant amount of metallic waste, nominally 30-
5	40%, uniformly distributed throughout the disposal room. That being
6	the case we would expect the permeability of the metallic waste to
	dominate the flow though the room. If these conditions are not
	true, that is if the metallic waste is less than 10% of room volume
	or if the waste is localized in one section of the room, the
	average technique suggested here is not appropriate and another
11	scheme will have to be developed.
12	
13	
14	
15	
16	
17	
18	
19	1.B.M. Butcher and A.R. Lappin, July 24, 1990, "Disposal room
20	porosity and permeability values for disposal room performance
21	assessment," Memorandum of Record to M.G. Marietta.

3		Siegel, July 14, 1989
4		
5	Date:	7/14/89
6	To:	P. Davies (6331) and A. R. Lappin (6331)
7	From:	M. D. Siegel
8	Subject:	Supplementary Information Concerning Radionuclide
9		Retardation
10		

Date: July 14, 1989

1 2

3 ∡

5 6

7

10 11

12

13

14

15 16 17

18 19

20

21

22 23

25

26

27 28

29

30

31 32

33

34 35

36

37

38

- To: P. Davies, 6331 A. R. Lappin, 6331
- From: M. D. Siegel
- Subject: Supplementary Information Concerning Radionuclide Retardation

The purpose of this memo is to provide supplementary information supporting the choice of distribution coefficients ($K_{\rm H}$'s) for

lead and diffusion coefficients for actinides for transport calculations in the FSEIS.

DISTRIBUTION COEFFICIENTS FOR LEAD

A preliminary literature review in support of the Draft Supplemental Environmental Impact Statement (DSEIS) failed to locate lead sorption data for conditions relevant to the WIFF site. The distribution coefficients (K_d's) for lead used in the

transport calculations described in Lappin et al (1989) were based on the assumption that the chemical behavior of lead was similar to that of radium. Available data suggest that radium will sorb onto clays which are similar to those identified within the matrix and lining fractures in the Culebra Dolomite. The same data indicate that the degree of sorption is dependent upon the solution composition. For example, high concentrations of competing cations such as calcium will inhibit the uptake of radium onto model clays such as kaolinite.

Based on the above information, values of 100, 10 and 5 ml/gm were chosen to represent the sorption of radium and lead onto clays in the Culebra. These K_d values correspond to sorption in

dilute to moderately saline Culebra groundwaters (Case I), more
 saline groundwaters (Case IIA) and solutions with high contents
 of salts and organic ligands (Cases IIB, IIC, IID) respectively.
 Retardation factors for the bulk matrix were calculated using the
 above K_d values and a utilization factor of 0.01 to account for

45 the occurrence of the clay as a trace constituent in the dolomite 46 matrix.

1 Recently, a more extensive literature review has revealed studies of lead sorption that provide some support for the above K_{μ} 23 4 values. Hem (1976) developed an ion exchange model for the uptake 5 of lead by a simple aluminosilicate (halloysite) in river and 6 lake waters. The model has been partially validated by 7 comparison to experimental data in dilute (ionic strength < 0.02 8 M) solutions. The model predicts that in systems of moderate ۵ concentrations of the substrate (cation exchange capacity = 10^{-3} 10 11 to 10⁻⁵equivalents/liter solution), 60 -100% of aqueous lead will 12 be removed from solution by ion exchange at pH 7. At pH 9, 80% 13 of the aqueous lead will be removed when the CEC is 10^{-3} 14 equivalents/liter but that at low concentrations of the substrate 15 (CEC = 10^{-5} equivalents/liter) little lead is adsorbed. 16 17 18 Hem's model cannot be used to quantitatively assess the effect of 19 changes in solution composition upon the K_d. The model predicts 20 21 that in systems with appreciable sodium and/or chloride concentrations (> 0.1 M), very little lead adsorbs and the $K_{\rm cl}$ 22 23 would be close to zero. However, the model only considers 24 25 sorption of Fb⁺²and does not include the PbCD₂ complex which may 26 be adsorbed much more strongly. (Bilinsky and Stumm, 1973). In 27 addition, it is important to note that the predictions about lead 28 sorption at the higher ionic strengths are made for conditions 29 30 that fall outside the ranges of experimental conditions used to formulate the ion exchange model. In other words, they were in no 31 32 way validated against experimental data. It is also important to 33 note that even at low ionic strengths, under conditions wherein Fb-Na exchange was predicted to dominate the lead uptake, the ion 34 35 exchange model underpredicted the extent of sorption by factors 36 of 30 to 200%. 37 A number of other studies indicate that lead is strongly sorbed 38 39 by simple oxides such as amorphous iron oxyhydroxide $(am-Fe(OH)_{2})$, goethite, alumina (¹-Al_2O_3) and silica (⁴-SiO_2) 40 41 (Davis and Leckie, 1978; Leckie et al., 1980; Hayes and Leckie; 42 1986). Hayes and Leckie (1986) formulated a surface complexation 43 model (SCM) to describe the scrption of lead by goethite. The 44 model was validated over a wide range of ionic strengths (0.01 to 45

1.0 M NaND, and lead concentrations (2 to 30 mM). The

experimental data show that lead is quantitatively removed from solution by sorption onto goethite in the pH range 6 - 7. These data cannot be applied directly to the WIFP, however, because no data were obtained at pH greater that 7.0, or in the presence of chloride or carbonate.

The data of Hayes and Leckie (1986) show that the extent of lead sorption is not affected appreciably by changes in ionic strength over the range 0.01 to 1.0 M NaND₃. The authors show that this

type of behavior is consistent with the formation of an inner 13 14 sphere surface complex by lead during sorption. This kind of complex does not compete with the outer sphere complexes formed 15 16 by sodium. The surface complexation model of Hayes and Leckie protably more accurately predicts lead sorption at the WIPP than 17 does the ion exchange model of Hem (1976). This is because the 18 former was formulated from data taken over a wider range of 19 20 solution conditions. In fact, the model of Hayes and Leckie 21 suggests that the uptake of lead by surface hydrolysis sites is not adequately represented by an ion exchange model because the 22 two "exchanging" cations (Fb-Na) do not occupy or compete for the 23 24 same type of sorption site.

If the properties of the surface hydrolysis sites on goethite are similar to those of clays, then the sorption of lead onto goethite provides a useful analog for sorption onto clays. If we assume that the Culebra has a grain density of 2.5 gm/cc, a porosity of 10%, and a clay content of 1% by weight, then a K_a of 100 ml/gm for pure clay (DSEIS Case I) corresponds to

sorption of 75% of available lead onto the bulk matrix.¹ This

1

3

4

5

7

10

11

12

25 26

27

28

29

30

31

32

33 34 35

36 37 38

1. The relationship between K_d and percent adsorbed is: % adsorbed = 100% x $K_d/(Y+K_d)$

(Footnote continues on next page)

may be a reasonable estimate for lead sorption in the Culebra 1 groundwaters in Hydrochemical Facies Zones B and C (Siegel et 2 al., 1989). The data presented above suggest that the extent of 3 lead sorption will be lower in saline waters in the presence of 4 complexing ligands. For such waters (Case II), the Kd's of 5 to 5 6 10 ml/gm for pure clay (corresponding to 13% to 23 % sorption 7 onto the bulk matrix) may be reasonable, however this estimate is B highly uncertain. 9 10 11 The above discussion demonstrates the large uncertainties associated with the choice of any single \tilde{K}_{d} value to represent 12 13 sorption of lead at the WIPP. The data do not suggest that the 14 K_a will be zero in the Culebra. There is theoretical and 15 experimental evidence to suggest that some sorption of lead will 16 17 occur in dilute, near-neutral groundwaters and that less lead 18 will be sorbed in saline, organic-rich waters. However, the 19 available data should not be considered adequate to predict the K_d values for use in the final performance assessment. 20 21 22 23 _____ 24 25 26 27 (Footnote continued from previous page) 28 29 30 where Y = solution to substrate ratio of the system in ml/gm. 31 32 Y = 33 ml/om for batch experiments of Hayes and Leckie (1986). 33 34 For a porous matrix: 35 $Y = \frac{\varphi}{(1-\varphi)\rho_{e}}\varphi$ 36 37 38 39 40 Y = 0.17 ml/gm clay for Culebra assuming matrix porosity (ϕ) of 41 42 10%, density (ρ_{\perp}) of 2.5 gm/cc, and 1% by weight clay in the bulk

matrix (Υ) is accessible to the ground water.

43

3		Siegel, June 25, 1991
4		
5	Date: 6/2	5/91
6	To: K.	Trauth (6342)
7	From: M.	D. Siegel
8	Subject: K _d	Values for Ra and Pb
9		
10		

Date: June 25, 1991

1

2 3

5

> 22 23

> > 24

25 26 27

26

29

30

31

32

33

34

35

36

37

38 39

40 41

42

43

To: K. Trauth, 6342

From: M. D. Siegel, 6315

Subject: K_d values for Ra and Pb

Suggested Distribution for Case II (Saline Waters)

Percentile	<u>K</u> for Ra and Pb (matrix)	K _d for Ra and Pb (fracture)
100	0.3	30
7 5	0.23	23
50	0.15	15
25	0.07	7
0	0	0

Justification for Chosen Values:

I have assumed that Pb and Ra sorption will be controlled by the amount of clay in the matrix (1%) and fracture-filling clay (100%) (note the fractures are assumed to be 50% filled by clays in the calculation of the retardation factor.). The matrix K_d 's are obtained from the clay K_d 's by multiplying by a utilization factor of 0.01 as discussed in SAND89-0462. I suggested using the same values for Ra and Pb based a suggestions of Tien et al (1983) as discussed in that report. The maximum values are based on Tien et al (1983) as cited in Table 3-15 of SAND89-0462. Radium sorption has been studied by Riese (1983) and indicated that sorption will be very low in saline waters. (see SAND89-0462 for discussion and references). Attached is a memo that I wrote for P. Davies for the FSEIS discussing sorption data for lead. (I can provide the cited references if you need them.) The memo indicates that although one can wave one's arms and talk about chemical behaviour in general terms, attempts to provide meaningful probability distributions for K_d 's of lead and radium are hampered by the paucity of experimental data in relevant chemical systems.

cc. (w/o end.)

- 6315 F. B. Nimick
- 6344 E. D. Gorham

8	APPENDIX B:
5	WELL LOCATION DATA
6	AND
7	ELEVATIONS OF STRATIGRAPHIC LAYERS NEAR WIPP
8	

B-1

B-2

	Well ID	x-UTM	y-UTM	x-STPLN	y-STPLN	Township	Range	Section	Source
	AEC7	621117	3589387	691810	523142	21	32	31	Mercer, 1983, Table 1
	AEC8	617522	3586435	679945	513555	22	31	11	Mercer, 1983, Table 1
	B25	611695	3580609	660759	494504	22	31	20	Mercer, 1983, Table 1
	CABIN1	613191	3578049	665559	486111	23	31	5	Gonzales, 1989, Tables 3-6 and 3-7
	DH207	613634	3581973	667074	498589	0	0	0	Krieg, 1984, Table I
	DH211	613637	3581784	667082	497966	0	0	0	Krieg, 1984, Table I
,	DH215	613634	3581588	667072	497326	0	0	0	Krieg, 1984, Table I
	DH219	613636	3581448	667081	496864	0	0	0	Krieg, 1984, Table I
	DH223	613634	3581247	667073	496207	0	0	0	Krieg, 1984, Table I
	DH227	613632	3581071	667066	495630	0	0	0	Krieg, 1984, Table I
	DH77	613476	3582573	666554	500556	0	0	0	Krieg, 1984, Table I
	DO201	613581	3582062	666900	498880	0	0	0	Krieg, 1984, Table I
	DO203	613630	3582376	667059	499910	0	0	0	Krieg, 1984, Table I
	DO205	613587	3582616	667066	500696	0	0	0	Krieg, 1984, Table I
	DO45	613632	3582263	667066	499540	0	0	0	Krieg, 1984, Table I
	DO52	613586	3582231	666915	499432	0	0	0	Krieg, 1984, Table I
	DO56	613587	3582375	666919	499907	0	0	0	Krieg, 1984, Table I
	DO63	613587	3582524	666919	500396	0	0	0	Krieg, 1984, Table I
	DO67	613516	3582572	666687	500551	0	0	0	Krieg, 1984, Table I
	DO88	613435	3582572	666421	500551	0	0	0	Krieg, 1984, Table i
	DO91	613395	3582575	666288	500561	0	0	0	Krieg, 1984, Table I
	DOE1	615203	3580333	672206	493563	22	31	28	Gonzales, 1989, Tables 3-6 and 3-7
	DOE2	613683	3585294	667317	509876	22	31	8	Gonzales, 1989, Tables 3-6 and 3-7
	ENGLE	614953	3567454	671122	451297	24	31	4	Gonzales, 1989, Tables 3-6 and 3-7
	ERDA10	606684	3570523	644057	461534	23	30	34	Mercer, 1983, Table 1
	ERDA6	618226	3589011	682292	521975	21	31	35	Mercer, 1983, Table 1
	ERDA9	613697	3581958	667297	498929	22	31	20	Mercer, 1983, Table 1
	FFG 002	627231	3608400	712258	585415	20	33	3	Richey, 1989, Table 2
	FFG_004	622022	3605526	695095	576082	20	33	7	Richey, 1989, Table 2
	FFG_005	627356	3605486	712599	575853	20	33	10	Richey, 1989, Table 2
	FFG_006	627658	3605587	713589	576183	20	33	11	Richey, 1989, Table 2
	FFG_007	627758	3604682	713919	573213	20	33	14	Richey, 1989, Table 2
	FFG_009	627959	3604782	714579	573543	20	33	14	Richey, 1989, Table 2
	FFG_011	627658	3605184	713589	574863	20	33	14	Richey, 1989, Table 2
	FFG_012	627255	3605184	712269	574863	20	33	15	Richey, 1989, Table 2
	FFG_013	625249	3605163	705684	574827	20	33	16	Richey, 1989, Table 2
	FFG_014	621225	3604704	692478	573420	20	33	18	Richey, 1989, Table 2
	FFG_016	627303	3602758	712361	566901	20	33	22	Richey, 1989, Table 2

Table B.1.	Location of Wells used by WIPP (Universal Transverse Mercator [UTM], State Plan Coordinates [stpln], and Survey Sections
	[township, range and section])

Well ID x-UTM y-UTM x-STPLN y-STPLN Township Range Section Source 1 FFG_017 628494 3603697 716300 569948 20 33 23 Richey, 1989, Table 2 2 FFG_018 630636 3602305 723296 565346 20 33 24 Richey, 1989, Table 2 3 FFG_019 627720 3600778 713695 560402 20 33 26 Richey, 1989, Table 2 4 FFG_020 621672 3601468 693880 562799 20 33 30 Richey, 1989, Table 2 5 FFG_024 635469 3599257 739089 555233 20 33 34 Richey, 1989, Table 2 7 FFG_026 628122 3600375 715015 559082 20 33 35 Richey, 1989, Table 2 8 FFG_027 627820 360074 714025 558092 20 33 35 Richey, 1989, Table 2										
2 FFG_018 630636 3602305 723296 565346 20 33 24 Richey, 1989, Table 2 3 FFG_019 627720 3600778 713695 560402 20 33 26 Richey, 1989, Table 2 4 FFG_020 621672 3601468 693880 562799 20 33 30 Richey, 1989, Table 2 5 FFG_023 633058 3599616 731178 556481 20 33 33 Richey, 1989, Table 2 6 FFG_024 635469 3599257 739089 555233 20 33 35 Richey, 1989, Table 2 7 FFG_025 628538 3600381 716379 559068 20 33 35 Richey, 1989, Table 2 8 FFG_026 628122 3600375 715015 559082 20 33 35 Richey, 1989, Table 2 9 FFG_027 627820 360074 714025 558092 20 33 35 Richey, 1989, Table 2 10 FFG_039 616468 3606754 676902		Well ID	x-UTM	y-UTM	x-STPLN	y-STPLN	Township	Range	Section	Source
2 FFG_018 630636 3602305 723296 565346 20 33 24 Richey, 1989, Table 2 3 FFG_019 627720 3600778 713695 560402 20 33 26 Richey, 1989, Table 2 4 FFG_020 621672 3601468 693880 562799 20 33 30 Richey, 1989, Table 2 5 FFG_023 633058 3599616 731178 556481 20 33 33 Richey, 1989, Table 2 6 FFG_024 635469 3599257 739089 555233 20 33 35 Richey, 1989, Table 2 7 FFG_025 628538 3600381 716379 559068 20 33 35 Richey, 1989, Table 2 8 FFG_026 628122 3600375 715015 559082 20 33 35 Richey, 1989, Table 2 9 FFG_027 627820 360074 714025 558092 20 33 35 Richey, 1989, Table 2 10 FFG_039 616468 3606754 676902										
2 FFG_018 630636 3602305 723296 565346 20 33 24 Richey, 1989, Table 2 3 FFG_019 627720 3600778 713695 560402 20 33 26 Richey, 1989, Table 2 4 FFG_020 621672 3601468 693880 562799 20 33 30 Richey, 1989, Table 2 5 FFG_023 633058 3599616 731178 556481 20 33 33 Richey, 1989, Table 2 6 FFG_024 635469 3599257 739089 555233 20 33 35 Richey, 1989, Table 2 7 FFG_025 628538 3600381 716379 559068 20 33 35 Richey, 1989, Table 2 8 FFG_026 628122 3600375 715015 559082 20 33 35 Richey, 1989, Table 2 9 FFG_027 627820 360074 714025 558092 20 32 10 Richey, 1989, Table 2 10 FFG_039 616468 3606754 676902	1	FFG 017	628494	3603697	716300	569948	20	33	23	Richey, 1989, Table 2
3 FFG_019 627720 3600778 713695 560402 20 33 26 Richey, 1989, Table 2 4 FFG_020 621672 3601468 693880 562799 20 33 30 Richey, 1989, Table 2 5 FFG_023 633058 3599616 731178 556481 20 33 33 Richey, 1989, Table 2 6 FFG_024 635469 3599257 739089 555233 20 33 34 Richey, 1989, Table 2 7 FFG_025 628538 3600381 716379 559068 20 33 35 Richey, 1989, Table 2 8 FFG_026 628122 3600375 715015 559082 20 33 35 Richey, 1989, Table 2 9 FFG_027 627820 360074 714025 558092 20 33 35 Richey, 1989, Table 2 10 FFG_039 616468 3606754 676902 580244 20 32 10 Richey, 1989, Table 2 11 FFG_040 620041 3603892 688561	2	_	630636	3602305	723296	565346	20	33	24	Richey, 1989, Table 2
5 FFG_023 633058 3599616 731178 556481 20 33 33 Richey, 1989, Table 2 6 FFG_024 635469 3599257 739089 555233 20 33 34 Richey, 1989, Table 2 7 FFG_025 628538 3600381 716379 559068 20 33 35 Richey, 1989, Table 2 8 FFG_026 628122 3600375 715015 559082 20 33 35 Richey, 1989, Table 2 9 FFG_027 627820 3600074 714025 558092 20 33 35 Richey, 1989, Table 2 10 FFG_039 616468 3606754 676902 580244 20 32 10 Richey, 1989, Table 2 11 FFG_040 620411 3603892 688561 570786 20 32 13 Richey, 1989, Table 2 12 FFG_041 616805 3604246 677942 572014 20 32 15 Richey, 1989, Table 2 13 FFG_042 615263 3604535 672914	3		627720	3600778	713695	560402	20	33	26	Richey, 1989, Table 2
6FFG_0246354693599257739089555233203334Richey, 1989, Table 27FFG_0256285383600381716379559068203335Richey, 1989, Table 28FFG_0266281223600375715015559082203335Richey, 1989, Table 29FFG_0276278203600074714025558092203335Richey, 1989, Table 210FFG_0396164683606754676902580244203210Richey, 1989, Table 211FFG_0406200413603892688561570786203213Richey, 1989, Table 212FFG_0416168053604246677942572014203215Richey, 1989, Table 213FFG_0426152633604535672914572994203216Richey, 1989, Table 214FFG_0436148243602618671406566704203221Richey, 1989, Table 215FFG_0446184353602658683256566770203223Richey, 1989, Table 215FFG_0446184353602658683256566770203223Richey, 1989, Table 215FFG_0446184353602658683256566770203223Richey, 1989, Table 2	4	FFG_020	621672	3601468	693880	562799	20	33	30	Richey, 1989, Table 2
6FFG_0246354693599257739089555233203334Richey, 1989, Table 27FFG_0256285383600381716379559068203335Richey, 1989, Table 28FFG_0266281223600375715015559082203335Richey, 1989, Table 29FFG_0276278203600074714025558092203335Richey, 1989, Table 210FFG_0396164683606754676902580244203210Richey, 1989, Table 211FFG_0406200413603892688561570786203213Richey, 1989, Table 212FFG_0416168053604246677942572014203215Richey, 1989, Table 213FFG_0426152633604535672914572994203216Richey, 1989, Table 214FFG_0436148243602618671406566704203221Richey, 1989, Table 215FFG_0446184353602658683256566770203223Richey, 1989, Table 215FFG_0446184353602658683256566770203223Richey, 1989, Table 215FFG_0446184353602658683256566770203223Richey, 1989, Table 2	5	FFG_023	633058	3599616	731178	556481	20	33	33	Richey, 1989, Table 2
7 FFG_025 628538 3600381 716379 559068 20 33 35 Richey, 1989, Table 2 8 FFG_026 628122 3600375 715015 559082 20 33 35 Richey, 1989, Table 2 9 FFG_027 627820 3600074 714025 558092 20 33 35 Richey, 1989, Table 2 10 FFG_039 616468 3606754 676902 580244 20 32 10 Richey, 1989, Table 2 11 FFG_040 620041 3603892 688561 570786 20 32 13 Richey, 1989, Table 2 12 FFG_041 616805 3604246 677942 572014 20 32 15 Richey, 1989, Table 2 13 FFG_042 615263 3604535 672914 572944 20 32 16 Richey, 1989, Table 2 14 FFG_043 614824 3602618 671406 566704 20 32 21 Richey, 1989, Table 2 15 FFG_044 618435 3602658 683256	6	_	635469	3599257	739089	555233	20	33	34	Richey, 1989, Table 2
8 FFG_026 628122 3600375 715015 559082 20 33 35 Richey, 1989, Table 2 9 FFG_027 627820 3600074 714025 558092 20 33 35 Richey, 1989, Table 2 10 FFG_039 616468 3606754 676902 580244 20 32 10 Richey, 1989, Table 2 11 FFG_040 620041 3603892 688561 570786 20 32 13 Richey, 1989, Table 2 12 FFG_041 616805 3604246 677942 572014 20 32 15 Richey, 1989, Table 2 13 FFG_042 615263 3604535 672914 57294 20 32 16 Richey, 1989, Table 2 14 FFG_043 614824 3602618 671406 566704 20 32 21 Richey, 1989, Table 2 15 FFG_044 618435 3602658 683256 566770 20 32 21 Richey, 1989, Table 2 15 FFG_044 618435 3602658 683256	7	-	628538	3600381	716379		20	33	35	Richey, 1989, Table 2
10 FFG_039 616468 3606754 676902 580244 20 32 10 Richey, 1989, Table 2 11 FFG_040 620041 3603892 688561 570786 20 32 13 Richey, 1989, Table 2 12 FFG_041 616805 3604246 677942 572014 20 32 15 Richey, 1989, Table 2 13 FFG_042 615263 3604535 672914 572994 20 32 16 Richey, 1989, Table 2 14 FFG_043 614824 3602618 671406 566704 20 32 21 Richey, 1989, Table 2 15 FFG_044 618435 3602658 683256 566770 20 32 21 Richey, 1989, Table 2 15 FFG_044 618435 3602658 683256 566770 20 32 23 Richey, 1989, Table 2	8			3600375	715015	559082	20	33	35	Richey, 1989, Table 2
10FFG_0396164683606754676902580244203210Richey, 1989, Table 211FFG_0406200413603892688561570786203213Richey, 1989, Table 212FFG_0416168053604246677942572014203215Richey, 1989, Table 213FFG_0426152633604535672914572994203216Richey, 1989, Table 214FFG_0436148243602618671406566704203221Richey, 1989, Table 215FFG_0446184353602658683256566770203223Richey, 1989, Table 2	9	FFG_027	627820	3600074	714025	558092	20	33	35	Richey, 1989, Table 2
12 FFG_041 616805 3604246 677942 572014 20 32 15 Richey, 1989, Table 2 13 FFG_042 615263 3604535 672914 572994 20 32 16 Richey, 1989, Table 2 14 FFG_043 614824 3602618 671406 566704 20 32 21 Richey, 1989, Table 2 15 FFG_044 618435 3602658 683256 566770 20 32 23 Richey, 1989, Table 2	10	_	616468	3606754	676902	580244	20	32	10	Richey, 1989, Table 2
12 FFG_041 616805 3604246 677942 572014 20 32 15 Richey, 1989, Table 2 13 FFG_042 615263 3604535 672914 572994 20 32 16 Richey, 1989, Table 2 14 FFG_043 614824 3602618 671406 566704 20 32 21 Richey, 1989, Table 2 15 FFG_044 618435 3602658 683256 566770 20 32 23 Richey, 1989, Table 2	11	FFG 040	620041	3603892	688561	570786	20	32	13	Richey, 1989. Table 2
14 FFG_043 614824 3602618 671406 566704 20 32 21 Richey, 1989, Table 2 15 FFG_044 618435 3602658 683256 566770 20 32 23 Richey, 1989, Table 2	12	-	616805	3604246	677942	572014	20	32	15	Richey, 1989, Table 2
14 FFG_043 614824 3602618 671406 566704 20 32 21 Richey, 1989, Table 2 15 FFG_044 618435 3602658 683256 566770 20 32 23 Richey, 1989, Table 2	13	FFG_042	615263	3604535	672914	572994	20	32	16	Richey, 1989, Table 2
	14		614824	3602618	671406	566704	20	32	21	Richey, 1989, Table 2
16 FFG_105 609126 3590258 652461 526265 21 30 25 Richey, 1989, Table 2	15	FFG ⁰⁴⁴	618435	3602658	683256	566770	20	32	23	Richey, 1989, Table 2
	16	FFG_105	609126	3590258	652461	526265	21	30	25	Richey, 1989, Table 2
17 FFG 106 607630 3591218 647587 529450 21 30 26 Richey, 1989, Table 2	17		607630	3591218	647587	529450	21	30	26	Richey, 1989, Table 2
18 FFG 107 607832 3590109 648217 525810 21 30 26 Richey, 1989, Table 2	18	FFG 107	607832	3590109	648217	525810	21	30	26	Richey, 1989, Table 2
19 FFG_108 610586 3589854 657254 524908 21 31 31 Richey, 1989, Table 2	19	FFG ¹⁰⁸	610586	3589854	657254	524908	21	31	31	Richey, 1989, Table 2
20 FFG 109 612822 3589796 664589 524686 21 31 32 Richey, 1989, Table 2	20		612822	3589796	664589	524686	21	31	32	Richey, 1989, Table 2
21 FFG_110 613636 3588341 667229 519875 21 31 32 Richey, 1989, Table 2	21	FFG ¹¹⁰	613636	3588341	667229	519875	21	31	32	Richey, 1989, Table 2
22 FFG 111 616209 3589857 675705 524786 21 31 34 Richey, 1989, Table 2	22	_	616209	3589857	675705	524786	21	31	34	Richey, 1989, Table 2
23 FFG_112 615312 3588335 672729 519825 21 31 34 Richey, 1989, Table 2	23	FFG_112	615312	3588335	672729	519825	21	31	34	Richey, 1989, Table 2
24 FFG 113 615319 3589869 672784 524858 21 31 34 Richey, 1989, Table 2	24	FFG 113	615319	3589869	672784	524858	21	31	34	Richey, 1989, Table 2
25 FFG_114 609458 3586996 653485 515558 22 30 1 Richey, 1989, Table 2	25	FFG_114	609458	3586996	653485	515558	22	30	1	Richey, 1989, Table 2
26 FFG_115 608243 3586900 649498 515244 22 30 2 Richey, 1989, Table 2	26	FFG 115	608243	3586900	649498	515244	22	30	2	Richey, 1989, Table 2
27 FFG_116 606902 3588008 645132 519179 22 30 3 Richey, 1989, Table 2	27	FFG_116	606902	3588008	645132	519179	22	30	3	Richey, 1989, Table 2
28 FFG 117 607132 3587086 645854 515889 22 30 3 Richey, 1989, Table 2	28	_	607132	3587086	645854	515889	22	30	3	Richey, 1989, Table 2
29 FFG_119 604055 3585149 635724 509600 22 30 9 Richey, 1989, Table 2	29	FFG_119	604055	3585149	635724	509600	22	30	9	Richey, 1989, Table 2
30 FFG 120 604750 3586261 638038 513251 22 30 9 Richey, 1989, Table 2	30	FFG 120	604750	3586261	638038	513251	22	30	9	Richey, 1989, Table 2
31 FFG_121 604134 3585930 636016 512165 22 30 9 Richey, 1989, Table 2	31	FFG_121	604134	3585930	636016	512165	22	30	9	Richey, 1989, Table 2
32 FFG 122 604165 3585505 636083 510770 22 30 9 Richey, 1989, Table 2	32	FFG 122	604165	3585505	636083	510770	22	30	9	Richey, 1989, Table 2
33 FFG_123 606439 3586110 643580 512686 22 30 10 Richey, 1989, Table 2	33		606439	3586110	643580	512686	22	30	10	Richey, 1989, Table 2
34 FFG_124 608252 3586096 649528 512608 22 30 11 Richey, 1989, Table 2	34		608252	3586096	649528	512608	22	30	11	Richey, 1989, Table 2
35 FFG_125 607631 3585457 647458 510544 22 30 11 Richey, 1989, Table 2	35		607631	3585457	647458	510544	22	30	11	Richey, 1989, Table 2
36 FFG_126 609341 3584606 653068 507720 22 30 13 Richey, 1989, Table 2	36	FFG_126	609341	3584606	653068	507720	22	30	13	Richey, 1989, Table 2
37 FFG_127 608226 3583523 649376 504163 22 30 14 Richey, 1989, Table 2	37	FFG_127	608226	3583523	649376	504163	22	30	14	Richey, 1989, Table 2
38 FFG_128 605614 3581894 640772 498885 22 30 21 Richey, 1989, Table 2	38	FFG_128	605614	3581894	640772	498885	22	30	21	Richey, 1989, Table 2

Table B.1. Location of Wells used by WIPP (Universal Transverse Mercator [UTM], State Plan Coordinates [stpln], and Survey Sections [township, range and section])

_	Well ID	x-UTM	y-UTM	x-STPLN	y-STPLN	Township	Range	Section	Source
F	FFG_129	604814	3583050	638181	502679	22	30	21	Richey, 1989, Table 2
F	FFG 130	604412	3582244	636828	500068	22	30	21	Richey, 1989, Table 2
F	FFG_132	606479	3581068	643582	496139	22	30	27	Richey, 1989, Table 2
F	FFG_133	606462	3580266	643522	493544	22	30	27	Richey, 1989, Table 2
F	FFG_134	605663	3580407	640899	494006	22	30	27	Richey, 1989, Table 2
F	FFG_135	607211	3580978	645983	495845	22	30	27	Richey, 1989, Table 2
F	FFG_136	609279	3579410	652734	490667	22	30	36	Richey, 1989, Table 2
F	FFG 137	609955	3578869	654952	488858	22	30	36	Richey, 1989, Table 2
F	FG 138	610827	3587071	657978	515773	22	31	6	Richey, 1989, Table 2
F	FG_139	610665	3587722	657478	517912	22	31	6	Richey, 1989, Table 2
	FG 140	613648	3585123	667200	509316	22	31	8	Richey, 1989, Table 2
F	FG 141	612120	3585114	662187	509317	22	31	8	Richey, 1989. Table 2
F	FG_142	615288	3586667	672617	514350	22	31	9	Richey, 1989, Table 2
F	FG 143	616006	3579286	674808	490129	22	31	34	Richey, 1989, Table 2
F	FG 144	599879	3577828	621856	485641	23	29	1	Richey, 1989, Table 2
	FG 145	599320	3577132	620020	483389	23	29	1	Richey, 1989, Table 2
F	FG_146	600363	3578186	623476	486818	23	29	1	Richey, 1989, Table 2
F	FG_147	595499	3578188	607513	486922	23	29	4	Richey, 1989, Table 2
F	FG_148	600569	3576193	624120	480278	23	29	12	Richey, 1989, Table 2
F	FG_149	600707	3574718	624539	475434	23	29	13	Richey, 1989, Table 2
F	FG 155	596597	3570664	610951	462232	23	29	27	Richey, 1989, Table 2
F	FG 156	595692	3570883	607981	462952	23	29	28	Richey, 1989, Table 2
F	FG 157	599212	3569453	619500	458190	23	29	35	Richey, 1989, Table 2
F	FG 158	600510	3569436	623761	458104	23	29	36	Richey, 1989, Table 2
	FG_159	609539	3578101	653588	486370	23	30	1	Richey, 1989, Table 2
	FG 160	610084	3577670	655343	484923	23	30	1	Richey, 1989, Table 2
	FG 161	607676	3577068	647439	483015	23	30	2	Richey, 1989, Table 2
	FG 162	607342	3578605	646376	488059	23	30	2	Richey, 1989, Table 2
	FG_163	608127	3577850	648955	485549	23	30	2	Richey, 1989, Table 2
	FG 164	602541	3574598	630556	475010	23	30	17	Richey, 1989, Table 2
	FG 165	601827	3573070	628182	469995	23	30	19	Richey, 1989, Table 2
	FG 166	609182	3573205	652317	470305	23	30	24	Richey, 1989, Table 2
	FG 167	609012	3570846	651726	462566	23	30	26	Richey, 1989, Table 2
	FG 168	604202	3570581	635911	461795	23	30	28	Richey, 1989, Table 2
	FG 169	604034	3572065	635389	466662	23	30	29	Richey, 1989, Table 2
	FG 170	601537	3572060	627194	466716	23	30	30	Richey, 1989, Table 2
	FG 171	601959	3569718	628551	458995	23	30	31	Richey, 1989, Table 2
	FG 172	603366	3570098	633169	460209	23	30	32	Richey, 1989, Table 2

Table B.1.Location of Wells used by WIPP (Universal Transverse Mercator [UTM], State Plan Coordinates [stpln], and Survey Sections
[township, range and section])

			. —	_				_	_
	Well ID	x-UTM	y-UTM	x-STPLN	y-STPLN	Township	Range	Section	Source
1	EEC 172	600060	2560027	654805	450580	02	20	26	
1 2	FFG_173	609960 591351	3569937 356 38 22	654805 593606	459582 439877	23 24	30 29	36 19	Richey, 1989, Table 2 Richey, 1980, Table 2
2	FFG_177	593084	3561340	593606	439877 431698	24 24	29 29	19 29	Richey, 1989, Table 2 Richey, 1989, Table 2
3 4	FFG_179	607488	3567427	646628	451374	24 24	29 30	29	Richey, 1989, Table 2 Richey, 1989, Table 2
4 5	FFG_180	604028	3568585	635304		24 24	30 30	5	
5 6	FFG_181	601542			455245			5 6	Richey, 1989, Table 2 Richey, 1989, Table 2
7	FFG_182	605177	3568281 3566738	627146	454314	24	30	9	Richey, 1989, Table 2 Richey, 1980, Table 2
	FFG_183			639041	449147	24	30 20		Richey, 1989, Table 2 Richey, 1989, Table 2
8	FFG_184	607564	3565857	646845	446225	24	30	11	Richey, 1989, Table 2 Dishay, 1980, Table 2
9	FFG_185	605866	3565683	641274	445686	24	30	15	Richey, 1989, Table 2
10	FFG_186	605016	3565698	638484	445736	24	30	16	Richey, 1989, Table 2
11	FFG_188	602948	3564040	631660	440361	24	30	20	Richey, 1989, Table 2
12	FFG_189	608405	3563679	649573	439043	24	30	23	Richey, 1989, Table 2
13	FFG_190	607685	3562746	647176	436015	24	30	23	Richey, 1989, Table 2
14	FFG_191	609337	3561151	652564	430748	24	30	25	Richey, 1989, Table 2
15	FFG_192	607401	3562442	646246	435019	24	30	27	Richey, 1989, Table 2
16	FFG_194	617718	3568422	680232	454446	24	31	2	Richey, 1989, Table 2
17	FFG_195	616941	3567615	677649	451793	24	31	3	Richey, 1989, Table 2
18	FFG_196	615316	3568812	672350	455759	24	31	4	Richey, 1989, Table 2
19	FFG_197	614612	3568483	670036	454709	24	31	4	Richey, 1989, Table 2
20	FFG_198	613807	3568888	667396	456038	24	31	5	Richey, 1989, Table 2
21	FFG_199	611628	3568640	660244	455257	24	31	6	Richey, 1989, Table 2
22	FFG_200	611273	3568414	659080	454549	24	31	6	Richey, 1989, Table 2
23	FFG_201	612154	3565951	661905	446431	24	31	7	Richey, 1989, Table 2
24	FFG_202	618692	3566653	683393	448607	24	31	11	Richey, 1989, Table 2
25	FFG_203	618143	3567223	681591	450478	24	31	11	Richey, 1989, Table 2
26	FFG_204	619790	3564834	686932	442604	24	31	13	Richey, 1989, Table 2
27	FFG_205	613734	3565566	667090	445140	24	31	17	Richey, 1989, Table 2
28	FFG_206	612171	3564340	661929	441145	24	31	18	Richey, 1989, Table 2
29	FFG_207	613776	3563957	667198	439860	24	31	20	Richey, 1989, Table 2
30	FFG_208	612992	3562725	664590	435847	24	31	20	Richey, 1989, Table 2
31	FFG_209	615380	3563980	672461	439901	24	31	21	Richey, 1989, Table 2
32	FFG_210	614199	3562745	668548	435879	24	31	21	Richey, 1989, Table 2
33	FFG_212	619811	3562825	686967	436012	24	31	24	Richey, 1989, Table 2
34	FFG_213	614915	3560252	670865	427664	24	31	33	Richey, 1989, Table 2
35	FFG_214	617438	3559994	679114	426785	24	31	35	Richey, 1989, Table 2
36	FFG_215	610576	3559150	656597	424152	25	30	1	Richey, 1989, Table 2
37	FFG_216	604853	3558664	637816	422688	25	30	4	Richey, 1989, Table 2
38	FFG_217	617694	3559360	679954	424705	25	31	2	Richey, 1989, Table 2

Table B.1.Location of Well's used by WIPP (Universal Transverse Mercator [UTM], State Plan Coordinates [stpln], and Survey Sections
[township, range and section])

Well ID	x-UTM	y-UTM	x-STPLN	y-STPLN	Township	Range	Section	Source
FFG_218	618235	3558795	681730	422820	25	31	2	Richey, 1989, Table 2
FFG_219	616649	3557179	676493	417552	25	31	10	Richey, 1989, Table 2
FFG_220	619057	3557584	684393	418848	25	31	12	Richey, 1989, Table 2
FFG_221	616028	3555913	674422	413427	25	31	15	Richey, 1989, Table 2
FFG_222	614248	3552703	668515	402929	25	31	28	Richey, 1989, Table 2
FFG_224	629257	3598870	718704	554099	21	32	1	Richey, 1989, Table 2
FFG_225	629076	3597979	718112	551174	21	32	1	Richey, 1989, Table 2
FFG_226	628708	3596750	716853	547172	21	32	1	Richey, 1989, Table 2
FFG_228	626669	3597926	710210	551066	21	32	2	Richey, 1989, Table 2
FFG_229	625894	3596724	707620	547120	21	32	3	Richey, 1989, Table 2
FFG_230	625486	3597502	706279	549709	21	32	3	Richey, 1989, Table 2
FFG_231	624249	3598303	702273	552336	21	32	4	Richey, 1989, Table 2
FFG_232	623880	3597479	701011	549665	21	32	4	Richey, 1989, Table 2
FFG_233	623730	3598370	700570	552588	21	32	4	Richey, 1989, Table 2
FFG_234	622268	3597867	695720	550968	21	32	5	Richey, 1989, Table 2
FFG_235	623075	3597479	698371	549665	21	32	5	Richey, 1989, Table 2
FFG_236	620626	3597834	690380	550899	21	32	6	Richey, 1989, Table 2
FFG_237	624279	3595893	702319	544429	21	32	9	Richey, 1989, Table 2
FFG_238	625894	3595919	707620	544480	21	32	10	Richey, 1989, Table 2
FFG_239	627919	3595147	714233	541912	21	32	11	Richey, 1989, Table 2
FFG_240	627501	3595945	712893	544532	21	32	11	Richey, 1989, Table 2
FFG_241	628322	3595549	715553	543232	21	32	12	Richey, 1989, Table 2
FFG_242	623510	3593053	699730	535143	21	32	21	Richey, 1989, Table 2
FFG_243	627958	3591122	714296	528704	21	32	26	Richey, 1989, Table 2
FFG_244	627169	3589486	711671	523370	21	32	35	Richey, 1989, Table 2
FFG_245	634293	3596014	735183	544627	21	33	9	Richey, 1989, Table 2
FFG_246	636300	3596435	741767	545977	21	33	11	Richey, 1989, Table 2
FFG_247	638785	3593673	749855	536845	21	33	13	Richey, 1989, Table 2
FFG_248	638754	3594075	749755	538165	21	33	13	Richey, 1989, Table 2
FFG_249	635538	3594033	739201	538094	21	33	15	Richey, 1989, Table 2
FFG_250	630707	3593573	723350	536681	21	33	18	Richey, 1989, Table 2
FFG_251	639185	3592056	751137	531538	21	33	24	Richey, 1989, Table 2
FFG_252	631978	3589148	727420	522161	21	33	32	Richey, 1989, Table 2
FFG_253	634373	3589591	735313	523550	21	33	33	Richey, 1989, Table 2
FFG_254	634776	3589591	736633	523550	21	33	34	Richey, 1989, Table 2
FFG_255	636385	3590012	741913	524900	21	33	35	Richey, 1989, Table 2
FFG_264	624541	3575777	702753	478415	23	32	9	Richey, 1989, Table 2
FFG_265	626158	3575003	708059	475842	23	32	15	Richey, 1989, Table 2

Table B.1.Location of Wells used by WIPP (Universal Transverse Mercator [UTM], State Plan Coordinates [stpln], and Survey Sections
[township, range and section])

	Weil ID	x-UTM	y-UTM	x-STPLN	y-STPLN	Township	Range	Section	Source
1	FFG 266	629827	3572644	720033	468035	23	32	24	Richey, 1989, Table 2
2	FFG 267	632644	3570662	729244	461468	23	33	32	Richey, 1989, Table 2
3	FFG_268	636682	3569503	742460	457597	23	33	35	Richey, 1989, Table 2
4	FFG 272	621266	3580141	692103	492804	22	32	31	Richey, 1989, Table 2
5	FFG [_] 273	621714	3576972	693509	482402	23	32	7	Richey, 1989, Table 2
6	FFG_274	627262	3583857	711844	504897	22	32	14	Richey, 1989, Table 2
7	FFG_275	626055	3584259	707884	506217	22	32	15	Richey, 1989, Table 2
8	FFG_276	622836	3584196	697320	506076	22	32	17	Richey, 1989, Table 2
9	FFG_277	621627	3583775	693354	504725	22	32	18	Richey, 1989, Table 2
10	FFG 278	621646	3582157	693382	499416	22	32	19	Richey, 1989, Table 2
11	FFG_279	622836	3582989	697320	502116	22	32	20	Richey, 1989, Table 2
12	FFG 280	625245	3583022	705224	502190	22	32	22	Richey, 1989, Table 2
13	FFG_281	628878	3581872	717114	498350	22	32	25	Richey, 1989, Table 2
14	FFG_283	638822	3588438	749880	519668	22	33	1	Richey, 1989, Table 2
15	FFG_284	633260	3587655	731596	517227	22	33	4	Richey, 1989, Table 2
16	FFG_285	632916	3587152	730466	515577	22	33	5	Richey, 1989, Table 2
17	FFG_286	630045	3585511	721010	510259	22	33	7	Richey, 1989, Table 2
18	FFG_287	630815	3585934	723537	511615	22	33	7	Richey, 1989, Table 2
19	FFG_288	633218	3586749	731456	514257	22	33	9	Richey, 1989, Table 2
20	FFG_289	635668	3584383	739429	506427	22	33	15	Richey, 1989, Table 2
21	FFG [_] 290	631649	3583118	726240	502376	22	33	20	Richey, 1989, Table 2
22	FFG 291	631716	3579091	726360	489157	22	33	32	Richey, 1989. Table 2
23	FFG_292	634513	3580338	735574	493186	22	33	33	Richey, 1989, Table 2
24	FFG_293	635741	3579152	739570	489260	22	33	34	Richey, 1989, Table 2
25	FFG_313	621557	3587797	693224	517925	22	32	6	Richey, 1989, Table 2
26	FFG 314	629670	3583902	719747	504978	22	32	13	Richey, 1989, Table 2
27	FFG_315	626522	3578214	709318	486382	23	32	3	Richey, 1989, Table 2
28	FFG_316	627739	3576635	713279	481164	23	32	11	Richey, 1989. Table 2
29	FFG_317	621734	3574920	693542	475670	23	32	18	Richey, 1989, Table 2
30	FFG_318	622977	3572533	697554	467800	23	32	20	Richey, 1989, Table 2
31	FFG_319	624161	3573735	701471	471749	23	32	21	Richey, 1989, Table 2
32	FFG_320	629107	3572102	717668	466290	23	32	25	Richey, 1989, Table 2
33	FFG_321	628524	3571093	715723	462981	23	32	25	Richey, 1989, Table 2
34	FFG_322	628222	3570892	714733	462321	23	32	26	Richey, 1989, Table 2
35	FFG_323	627420	3570965	712100	462590	23	32	26	Richey, 1989, Table 2
36	FFG_324	624184	3572130	701514	466480	23	32	28	Richey, 1989, Table 2
37	FFG_325	620546	3569268	689509	457154	23	32	31	Richey, 1989, Table 2
38	FFG_326	625008	3570140	704185	459917	23	32	33	Richey, 1989. Table 2

Table B.1.Location of Wells used by WIPP (Universal Transverse Mercator [UTM], State Plan Coordinates [stpln], and Survey Sections
[township, range and section])

Well ID	x-UTM	y-UTM	x-STPLN	y-STPLN	Township	Range	Section	Source
FFG_327	626737	3569761	709825	458640	23	32	34	Richey, 1989, Table 2
FFG_328	627719	3570289	713083	460341	23	32	35	Richey, 1989, Table 2
FFG_329	628625	3570188	716053	460011	23	32	36	Richey, 1989, Table 2
FFG_330	629464	3569834	718778	458813	23	32	36	Richey, 1989, Table 2
FFG_331	634557	3577522	735655	483942	23	33	4	Richey, 1989, Table 2
FFG_332	631443	3577384	725434	483557	23	33	6	Richey, 1989, Table 2
FFG_333	630183	3575856	721264	478574	23	33	7	Richey, 1989, Table 2
FFG_334	631791	3574262	726509	473313	23	33	17	Richey, 1989, Table 2
FFG_335	630204	3574250	721301	473303	23	33	18	Richey, 1989, Table 2
FFG_336	630611	3573046	722603	469355	23	33	19	Richey, 1989, Table 2
FFG_337	633022	3572674	730519	468066	23	33	20	Richey, 1989, Table 2
FFG_338	631435	3570650	725277	461460	23	33	31	Richey, 1989, Table 2
FFG_339	637863	3570326	746370	460265	23	33	35	Richey, 1989, Table 2
FFG_340	639497	3569942	751700	458973	23	33	36	Richey, 1989, Table 2
FFG_361	591407	3608036	594694	584951	20	29	1	Richey, 1989, Table 2
FFG_362	588581	3607624	585423	583663	20	29	3	Richey, 1989, Table 2
FFG_363	586158	3608022	577470	585038	20	29	4	Richey, 1989, Table 2
FFG_364	583878	3605062	569923	575355	20	29	7	Richey, 1989, Table 2
FFG_366	588498	3606300	585115	579318	20	29	10	Richey, 1989, Table 2
FFG_367	589516	3605699	588421	577345	20	29	11	Richey, 1989, Table 2
FFG_370	591027	3604798	593382	574358	20	29	13	Richey, 1989, Table 2
FFG_371	591334	3604826	594392	574416	20	29	13	Richey, 1989, Table 2
FFG_372	589730	3604102	589095	572070	20	29	14	Richey, 1989, Table 2
FFG_373	586192	3604773	577514	574376	20	29	16	Richey, 1989, Table 2
FFG_374	585392	3603561	574858	570394	20	29	17	Richey, 1989, Table 2
FFG_376	590555	3601690	591768	564155	20	29	25	Richey, 1989, Table 2
FFG_381	599172	3599246	619978	555961	20	29	36	Richey, 1989, Table 2
FFG_383	601077	3606916	626395	581073	20	30	1	Richey, 1989, Table 2
FFG_384	594213	3607648	603902	583643	20	30	5	Richey, 1989, Table 2
FFG_385	597883	3602444	615814	566466	20	30	22	Richey, 1989, Table 2
FFG_387	595912	3600331	609313	559598	20	30	28	Richey, 1989, Table 2
FFG_388	595864	3601219	609189	562513	20	30	28	Richey, 1989, Table 2
FFG_389	593453	3599602	601245	557239	20	30	31	Richey, 1989, Table 2
FFG_390	595208	3600029	607003	558608	20	30	32	Richey, 1989, Table 2
FFG_391	595208	3599627	607003	557288	20	30	32	Richey, 1989, Table 2
FFG_392	596612	3599732	611609	557599	20	30	33	Richey, 1989, Table 2
FFG_393	606297	3606985	643526	581199	20	31	4	Richey, 1989, Table 2
FFG_394	603077	3606946	632959	581140	20	31	6	Richey, 1989, Table 2

Table B.1.	Location of Wells used by WIPP (Universal Transverse Mercator [UTM], State Plan Coordinates [stpln], and Survey Sections
	[township, range and section])

Well ID	x-UTM							
		y-UTM	x-STPLN	y-STPLN	Township	Range	Section	Source
FFG_395	603098	3605631	632997	576823	20	31	7	Richey, 1989, Table 2
FFG_396	603243	3600398	633370	559652	20	31	30	Richey, 1989, Table 2
FFG_398	588017	3597286	583323	549759	21	28	2	Richey, 1989, Table 2
FFG_399	587111	3597387	580353	550089	21	28	3	Richey, 1989, Table 2
FFG_402	590847	3595289	592582	543138	21	28	12	Richey, 1989, Table 2
FFG_403	586424	3593240	578030	536512	21	28	15	Richey, 1989, Table 2
FFG_404	583988	3592021	570006	532548	21	28	20	Richey, 1989, Table 2
FFG_407	583988	3590814	570006	528588	21	28	29	Richey, 1989, Table 2
FFG_408	582473	3590320	565002	526999	21	28	30	Richey, 1989, Table 2
FFG_411	584828	3588367	572695	520558	21	28	33	Richey, 1989, Table 2
FFG_413	588470	3589234	584681	523337	21	28	35	Richey, 1989, Table 2
FFG_418	596362	3598010	610756	551972	21	29	3	Richey, 1989, Table 2
FFG_419	594776	3597648	605505	550814	21	29	4	Richey, 1989, Table 2
FFG_420	594662	3598348	605178	553113	21	29	4	Richey, 1989, Table 2
FFG_421	593556	3598412	601548	553321	21	29	5	Richey, 1989, Table 2
FFG_422	593958	3598000	602868	551971	21	29	5	Richey, 1989, Table 2
FFG_426	592398	3591591	597601	530971	21	29	19	Richey, 1989, Table 2
FFG_432	607401	3588903	646769	521852	21	30	35	Richey, 1989, Table 2
FFG_433	588569	3588121	584969	519682	22	28	2	Richey, 1989, Table 2
FFG_438	618629	3586910	683580	515081	22	31	1	Richey, 1989, Table 2
FFG_445	590526	3580760	591228	495462	22	28	25	Richey, 1989, Table 2
FFG_453	618415	3578487	682715	487442	23	31	2	Richey, 1989, Table 2
FFG_455	618558	3575680	683119	478229	23	31	11	Richey, 1989, Table 2
FFG_456	617677	3574462	680195	474264	23	31	14	Richey, 1989, Table 2
FFG_457	614456	3574425	669624	474210	23	31	16	Richey, 1989, Table 2
FFG_458	615274	3572430	672278	467629	23	31	21	Richey, 1989, Table 2
FFG_459	619295	3571652	685468	465012	23	31	25	Richey, 1989, Table 2
FFG_462	615699	3571221	673637	463662	23	31	27	Richey, 1989, Table 2
FFG_463	612475	3570378	663055	460962	23	31	32	Richey, 1989, Table 2
FFG_464	614894	3570416	670997	461022	23	31	33	Richey, 1989, Table 2
FFG_465	614090	3569999	668355	459685	23	31	33	Richey, 1989, Table 2
FFG_474	628677	3568183	716158	453428	24	32	1	Richey, 1989, Table 2
FFG_475	628244	3568580	714774	454733	24	32	2	Richey, 1989, Table 2
FFG_476	621409	3568885	692341	455866	24	32	6	Richey, 1989, Table 2
FFG_477	626275	3566554	708244	448117	24	32	10	Richey, 1989, Table 2
FFG_478	627890	3566569	713543	448132	24	32	11	Richey, 1989, Table 2
FFG_479	627468	3566954	712193	449429	24	32	11	Richey, 1989, Table 2
FFG_480	628677	3566976	716158	449468	24	32	12	Richey, 1989, Table 2
	FFG_396 FFG_399 FFG_402 FFG_403 FFG_404 FFG_407 FFG_408 FFG_411 FFG_413 FFG_414 FFG_415 FFG_420 FFG_421 FFG_422 FFG_423 FFG_426 FFG_433 FFG_433 FFG_435 FFG_455 FFG_456 FFG_457 FFG_458 FFG_458 FFG_458 FFG_463 FFG_463 FFG_465 FFG_465 FFG_476 FFG_477 FFG_478 FFG_478 FFG_479	FFG_396 603243 FFG_398 588017 FFG_399 587111 FFG_402 590847 FFG_403 586424 FFG_404 583988 FFG_405 582473 FFG_411 584828 FFG_413 588470 FFG_418 596362 FFG_419 594776 FFG_420 594662 FFG_421 593556 FFG_422 593958 FFG_423 607401 FFG_433 588569 FFG_433 588569 FFG_433 588569 FFG_433 588569 FFG_433 588569 FFG_455 618558 FFG_455 618558 FFG_456 617677 FFG_457 614456 FFG_458 615274 FFG_459 619295 FFG_463 612475 FFG_464 614894 FFG_475 628244 FFG_476 621409 FFG_477 626275 FFG_478 627890 </td <td>FFG_3966032433600398FFG_3985880173597286FFG_3995871113597387FFG_4025908473595289FFG_4035864243593240FFG_4045839883592021FFG_4075839883590320FFG_4115848283588367FFG_413584703589234FFG_4135884703589234FFG_4185963623598010FFG_4195947763597648FFG_4205946623598412FFG_4215935563598412FFG_4225939583598000FFG_4236074013588903FFG_4335885693588121FFG_4335885693588121FFG_4336186293580760FFG_4556185583575680FFG_455618558357680FFG_4566176773574462FFG_4576144563574425FFG_4586152743572430FFG_4596192953571652FFG_4636124753570378FFG_4646148943570416FFG_4746286773568183FFG_4756282443568580FFG_4766214093568885FFG_4776262753566554FFG_4786278903566569FFG_4796274683566564</td> <td>FFG_396 603243 3600398 633370 FFG_398 588017 3597286 583323 FFG_399 587111 3597387 580353 FFG_402 590847 3595289 592582 FFG_403 586424 3593240 578030 FFG_404 583988 3592021 570006 FFG_407 583988 3590320 565002 FFG_411 584828 3588367 572695 FFG_413 588470 3592034 584681 FFG_413 584776 3597648 605505 FFG_419 594776 3597648 605505 FFG_420 594622 3598348 605178 FFG_421 59358 3598000 602868 FFG_422 59398 3591591 597601 FFG_433 588569 3588121 584969 FFG_433 588569 3588121 584969 FFG_445 590526 3580760 591228 FFG_455 618578 3575680 683119 FFG_455 618578 3574462<td>FFG_396 603243 3600398 633370 559652 FFG_398 588017 3597286 583323 549759 FFG_402 590847 3595289 592582 543138 FFG_403 586424 3593240 578030 536512 FFG_403 586424 3593240 578030 532548 FFG_404 583988 3590320 565002 526999 FFG_411 584828 3588367 572695 520558 FFG_413 588470 3597648 605505 550814 FFG_419 594776 3597648 605178 53113 FFG_420 594662 3598000 602868 551971 FFG_422 59358 3598000 602868 551971 FFG_433 588569 3588121 584969 519822 FFG_433 618629 3586910 683580 51081 FFG_453 618415 3578487 682715 487442 FFG_453 618415 357</td><td>FFG_396 603243 3600398 633370 559652 20 FFG_398 588017 3597286 58323 549759 21 FFG_402 590847 3597387 580353 55089 21 FFG_403 586424 3593240 578030 536512 21 FFG_404 583988 359021 570006 528588 21 FFG_407 583988 3590310 565002 526999 21 FFG_413 584273 3590320 565002 526999 21 FFG_414 596362 3589010 610756 551972 21 FFG_413 588470 359234 584681 523337 21 FFG_413 588470 3598244 580505 550814 21 FFG_413 588470 3597648 605178 553113 21 FFG_420 594662 3598412 601548 553211 21 FFG_422 593958 3598000 602868 551971 21 FFG_433 618629 3580760 591282</td><td>FFG_396 603243 3600398 633370 559652 20 31 FFG_398 58017 3597286 583323 549759 21 28 FFG_399 587111 3597387 580353 550089 21 28 FFG_403 586424 3593240 578030 536512 21 28 FFG_404 583898 359021 570006 532548 21 28 FFG_404 583988 3590320 565002 526999 21 28 FFG_411 58428 358934 584681 52337 21 28 FFG_413 58462 35893010 610756 551972 21 29 FFG_413 58462 35983010 610756 551972 21 29 FFG_419 594776 3597648 605505 550814 21 29 FFG_420 594662 3598010 602868 551971 21 29 FFG_424 59358 3598000 602868 51971 21 29 FFG_433</td><td>FFG_396 603243 3600398 633370 559652 20 31 30 FFG_398 580171 3597286 583323 549759 21 28 2 FFG_402 590847 3595289 592582 543138 21 28 12 FFG_403 586424 3593240 578030 536512 21 28 20 FFG_404 583988 359021 570006 532548 21 28 30 FFG_404 584843 3590320 565002 526999 21 28 30 FFG_411 584828 3589010 610756 551972 21 29 3 FFG_419 594776 35997648 605505 550814 21 29 4 FFG_421 593586 3598412 601548 553321 21 29 5 FFG_422 593988 3994000 602868 551971 21 29 5 FFG_433 588569 358121 544962 22 28 2 FFG_433<!--</td--></td></td>	FFG_3966032433600398FFG_3985880173597286FFG_3995871113597387FFG_4025908473595289FFG_4035864243593240FFG_4045839883592021FFG_4075839883590320FFG_4115848283588367FFG_413584703589234FFG_4135884703589234FFG_4185963623598010FFG_4195947763597648FFG_4205946623598412FFG_4215935563598412FFG_4225939583598000FFG_4236074013588903FFG_4335885693588121FFG_4335885693588121FFG_4336186293580760FFG_4556185583575680FFG_455618558357680FFG_4566176773574462FFG_4576144563574425FFG_4586152743572430FFG_4596192953571652FFG_4636124753570378FFG_4646148943570416FFG_4746286773568183FFG_4756282443568580FFG_4766214093568885FFG_4776262753566554FFG_4786278903566569FFG_4796274683566564	FFG_396 603243 3600398 633370 FFG_398 588017 3597286 583323 FFG_399 587111 3597387 580353 FFG_402 590847 3595289 592582 FFG_403 586424 3593240 578030 FFG_404 583988 3592021 570006 FFG_407 583988 3590320 565002 FFG_411 584828 3588367 572695 FFG_413 588470 3592034 584681 FFG_413 584776 3597648 605505 FFG_419 594776 3597648 605505 FFG_420 594622 3598348 605178 FFG_421 59358 3598000 602868 FFG_422 59398 3591591 597601 FFG_433 588569 3588121 584969 FFG_433 588569 3588121 584969 FFG_445 590526 3580760 591228 FFG_455 618578 3575680 683119 FFG_455 618578 3574462 <td>FFG_396 603243 3600398 633370 559652 FFG_398 588017 3597286 583323 549759 FFG_402 590847 3595289 592582 543138 FFG_403 586424 3593240 578030 536512 FFG_403 586424 3593240 578030 532548 FFG_404 583988 3590320 565002 526999 FFG_411 584828 3588367 572695 520558 FFG_413 588470 3597648 605505 550814 FFG_419 594776 3597648 605178 53113 FFG_420 594662 3598000 602868 551971 FFG_422 59358 3598000 602868 551971 FFG_433 588569 3588121 584969 519822 FFG_433 618629 3586910 683580 51081 FFG_453 618415 3578487 682715 487442 FFG_453 618415 357</td> <td>FFG_396 603243 3600398 633370 559652 20 FFG_398 588017 3597286 58323 549759 21 FFG_402 590847 3597387 580353 55089 21 FFG_403 586424 3593240 578030 536512 21 FFG_404 583988 359021 570006 528588 21 FFG_407 583988 3590310 565002 526999 21 FFG_413 584273 3590320 565002 526999 21 FFG_414 596362 3589010 610756 551972 21 FFG_413 588470 359234 584681 523337 21 FFG_413 588470 3598244 580505 550814 21 FFG_413 588470 3597648 605178 553113 21 FFG_420 594662 3598412 601548 553211 21 FFG_422 593958 3598000 602868 551971 21 FFG_433 618629 3580760 591282</td> <td>FFG_396 603243 3600398 633370 559652 20 31 FFG_398 58017 3597286 583323 549759 21 28 FFG_399 587111 3597387 580353 550089 21 28 FFG_403 586424 3593240 578030 536512 21 28 FFG_404 583898 359021 570006 532548 21 28 FFG_404 583988 3590320 565002 526999 21 28 FFG_411 58428 358934 584681 52337 21 28 FFG_413 58462 35893010 610756 551972 21 29 FFG_413 58462 35983010 610756 551972 21 29 FFG_419 594776 3597648 605505 550814 21 29 FFG_420 594662 3598010 602868 551971 21 29 FFG_424 59358 3598000 602868 51971 21 29 FFG_433</td> <td>FFG_396 603243 3600398 633370 559652 20 31 30 FFG_398 580171 3597286 583323 549759 21 28 2 FFG_402 590847 3595289 592582 543138 21 28 12 FFG_403 586424 3593240 578030 536512 21 28 20 FFG_404 583988 359021 570006 532548 21 28 30 FFG_404 584843 3590320 565002 526999 21 28 30 FFG_411 584828 3589010 610756 551972 21 29 3 FFG_419 594776 35997648 605505 550814 21 29 4 FFG_421 593586 3598412 601548 553321 21 29 5 FFG_422 593988 3994000 602868 551971 21 29 5 FFG_433 588569 358121 544962 22 28 2 FFG_433<!--</td--></td>	FFG_396 603243 3600398 633370 559652 FFG_398 588017 3597286 583323 549759 FFG_402 590847 3595289 592582 543138 FFG_403 586424 3593240 578030 536512 FFG_403 586424 3593240 578030 532548 FFG_404 583988 3590320 565002 526999 FFG_411 584828 3588367 572695 520558 FFG_413 588470 3597648 605505 550814 FFG_419 594776 3597648 605178 53113 FFG_420 594662 3598000 602868 551971 FFG_422 59358 3598000 602868 551971 FFG_433 588569 3588121 584969 519822 FFG_433 618629 3586910 683580 51081 FFG_453 618415 3578487 682715 487442 FFG_453 618415 357	FFG_396 603243 3600398 633370 559652 20 FFG_398 588017 3597286 58323 549759 21 FFG_402 590847 3597387 580353 55089 21 FFG_403 586424 3593240 578030 536512 21 FFG_404 583988 359021 570006 528588 21 FFG_407 583988 3590310 565002 526999 21 FFG_413 584273 3590320 565002 526999 21 FFG_414 596362 3589010 610756 551972 21 FFG_413 588470 359234 584681 523337 21 FFG_413 588470 3598244 580505 550814 21 FFG_413 588470 3597648 605178 553113 21 FFG_420 594662 3598412 601548 553211 21 FFG_422 593958 3598000 602868 551971 21 FFG_433 618629 3580760 591282	FFG_396 603243 3600398 633370 559652 20 31 FFG_398 58017 3597286 583323 549759 21 28 FFG_399 587111 3597387 580353 550089 21 28 FFG_403 586424 3593240 578030 536512 21 28 FFG_404 583898 359021 570006 532548 21 28 FFG_404 583988 3590320 565002 526999 21 28 FFG_411 58428 358934 584681 52337 21 28 FFG_413 58462 35893010 610756 551972 21 29 FFG_413 58462 35983010 610756 551972 21 29 FFG_419 594776 3597648 605505 550814 21 29 FFG_420 594662 3598010 602868 551971 21 29 FFG_424 59358 3598000 602868 51971 21 29 FFG_433	FFG_396 603243 3600398 633370 559652 20 31 30 FFG_398 580171 3597286 583323 549759 21 28 2 FFG_402 590847 3595289 592582 543138 21 28 12 FFG_403 586424 3593240 578030 536512 21 28 20 FFG_404 583988 359021 570006 532548 21 28 30 FFG_404 584843 3590320 565002 526999 21 28 30 FFG_411 584828 3589010 610756 551972 21 29 3 FFG_419 594776 35997648 605505 550814 21 29 4 FFG_421 593586 3598412 601548 553321 21 29 5 FFG_422 593988 3994000 602868 551971 21 29 5 FFG_433 588569 358121 544962 22 28 2 FFG_433 </td

Table B.1.	Location of Wells used by WIPP (Universal Transverse Mercator [UTM], State Plan Coordinates [stpln], and Survey Sections
	[township, range and section])

V	Well ID	x-UTM	y-UTM	x-STPLN	y-STPLN	Township	Range	Section	Source
FF	-G 481	629921	3564597	720180	441628	24	32	13	Richey, 1989, Table 2
	-G_482	627482	3565749	712204	445477	24	32	14	Richey, 1989, Table 2
FF	-G_483	625893	3564517	706958	441463	24	32	15	Richey, 1989, Table 2
	-G 484	626601	3563741	709281	438885	24	32	22	Richey, 1989, Table 2
FF	-G_485	626323	3563337	708336	437561	24	32	22	Richey, 1989, Table 2
FF	-G_486	627104	3563741	710931	438885	24	32	23	Richey, 1989, Table 2
FF	-G_487	627003	3563842	710601	439215	24	32	23	Richey, 1989, Table 2
FF	-G_488	628618	3564276	715902	440608	24	32	24	Richey, 1989, Table 2
FF	G_489	629141	3562161	717583	433668	24	32	25	Richey, 1989, Table 2
FF	-G_490	622290	3562046	695099	433421	24	32	29	Richey, 1989, Table 2
FF	-G_491	621485	3562046	692459	433421	24	32	30	Richey, 1989, Table 2
FF	G_492	625107	3559688	704284	425618	24	32	33	Richey, 1989, Table 2
FF	G_493	625912	3560090	706924	426938	24	32	34	Richey, 1989, Table 2
FF	G_494	625912	3559688	706924	425618	24	32	34	Richey, 1989, Table 2
FF	G_495	627126	3559716	710904	425675	24	32	35	Richey, 1989, Table 2
FF	G_496	639095	3568735	750380	455013	24	33	1	Richey, 1989, Table 2
FF	G_497	631494	3566228	725373	446949	24	33	7	Richey, 1989, Table 2
FF	G_498	631883	3567428	726679	450888	24	33	8	Richey, 1989, Table 2
FF	G_499	639536	3565513	751762	444438	24	33	13	Richey, 1989, Table 2
FF	G_500	632702	3565844	729335	445656	24	33	17	Richey, 1989, Table 2
FF	G_501	632345	3563004	728097	436369	24	33	20	Richey, 1989, Table 2
FF	G_502	635140	3563849	737302	439075	24	33	22	Richey, 1989, Table 2
FF	G_503	635586	3561835	738701	432466	24	33	27	Richey, 1989, Table 2
FF	G_504	632771	3561413	729465	431115	24	33	29	Richey, 1989, Table 2
FF	G_505	630239	3562683	721189	435349	24	33	30	Richey, 1989, Table 2
FF	G_506	631576	3560189	725511	427131	24	33	31	Richey, 1989, Table 2
FF	G_507	639607	3561088	751898	429920	24	33	36	Richey, 1989, Table 2
FF	G_548	601155	3608819	626682	587316	19	30	36	Richey, 1989, Table 2
FF	G_552	596378	3554488	609903	409146	25	29	15	Richey, 1989, Table 2
FF	G_562	614317	3546624	668609	382978	26	31	9	Richey, 1989, Table 2
FF	G_563	618774	3547092	683237	384417	26	31	11	Richey, 1989, Table 2
FF	G_568	619132	3541724	684313	366799	26	31	25	Richey, 1989, Table 2
FF	G_569	619132	3542127	684313	368119	26	31	25	Richey, 1989, Table 2
FF	G_584	606879	3557091	644432	417458	25	30	10	Richey, 1989, Table 2
FF	G_585	609769	3557118	653916	417516	25	30	12	Richey, 1989, Table 2
FF	G_600	608992	3550622	651237	396198	25	30	35	Richey, 1989, Table 2
FF	G_601	607790	3549783	647256	393477	25	30	35	Richey, 1989, Table 2
FF	G 602	618235	3558795	681730	422820	25	31	2	Richey, 1989, Table 2

Table B.1.Location of Wells used by WIPP (Universal Transverse Mercator [UTM], State Plan Coordinates [stpln], and Survey Sections
[township, range and section])

	Well ID	x-UTM		x-STPLN		Township	Paper	Section	Sauroa
		X-U+IVI	y-UTM	x-SIFLN	y-STPLN	Township	Range	Section	Source
1	FFG 606	618324	3551156	681858	397752	25	31	35	Richey, 1989, Table 2
2	FFG 618	599392	3546376	619633	382460	26	29	11	Richey, 1989, Table 2
3	FFG 638	607809	3548155	647284	388134	26	30	2	Richey, 1989, Table 2
4	FFG 639	606187	3548136	641961	388102	26	30	3	Richey, 1989, Table 2
5	FFG 640	604548	3549331	636618	392062	26	30	4	Richey, 1989, Table 2
6	FFG_643	610657	3546572	656602	382873	26	30	12	Richey, 1989, Table 2
7	FFG_644	605816	3544896	640681	377470	26	30	16	Richey, 1989, Table 2
8	FFG_648	609863	3544129	653961	374890	26	30	24	Richey, 1989, Table 2
9	FFG_685	592502	3586828	597845	515341	22	29	6	Richey, 1989, Table 2
10	FFG_689	626339	3558413	708291	421399	25	32	3	Richey, 1989, Table 2
11	FFG_690	625251	3556776	704687	416062	25	32	9	Richey, 1989, Table 2
12	FFG_691	626238	3557256	707961	417604	25	32	10	Richey, 1989, Table 2
13	FFG_692	627982	3556520	713651	415154	25	32	11	Richey, 1989, Table 2
14	FFG_693	627068	3555594	710652	412151	25	32	14	Richey, 1989, Table 2
15	FFG_694	625965	3554867	706999	409798	25	32	15	Richey, 1989, Table 2
16	FFG 695	625955	3556071	706997	413752	25	32	15	Richey, 1989, Table 2
17	FFG_696	625955	3556134	706997	413957	25	32	15	Richey, 1989, Table 2
18	FFG_697	624748	3555669	703037	412432	25	32	16	Richey, 1989, Table 2
19	FFG_698	620989	3555992	690703	413589	25	32	18	Richey, 1989, Table 2
20	FFG_699	623679	3553534	699465	405455	25	32	20	Richey, 1989, Table 2
21	FFG 700	623679	3553131	699465	404135	25	32	20	Richey, 1989, Table 2
22	FFG_701	625090	3553358	704095	404846	25	32	21	Richey, 1989, Table 2
23	FFG_702	625492	3553761	705415	406166	25	32	22	Richey, 1989, Table 2
24	FFG ⁷⁰³	628006	3554508	713698	408555	25	32	23	Richey, 1989, Table 2
25	FFG ⁷⁰⁴	625492	3552956	705415	403526	25	32	27	Richey, 1989, Table 2
26	FFG_705	624099	3552123	700810	400825	25	32	28	Richey, 1989, Table 2
27	FFG ⁷⁰⁶	624300	3552123	701470	400825	25	32	28	Richey, 1989, Table 2
28	FFG_707	623679	3552427	699465	401825	25	32	29	Richey, 1989, Table 2
29	FFG 708	623679	3552930	699465	403475	25	32	29	Richey, 1989, Table 2
30	FFG 709	620746	3550770	689804	396452	25	32	31	Richey, 1989, Table 2
31	FFG_710	622771	3550799	696450	396515	25	32	32	Richey, 1989, Table 2
32	FFG_711	624012	3550012	700490	393900	25	32	33	Richey, 1989, Table 2
33	FFG 712	625263	3550440	704596	395271	25	32	33	Richey, 1989, Table 2
34	FFG 713	624830	3550038	703176	393951	25	32	33	Richey, 1989, Table 2
35	FFG 714	625626	3551242	705819	397905	25	32	34	Richey, 1989, Table 2
36	FFG 715	626840	3551268	709807	397957	25	32	34	Richey, 1989, Table 2
37	FFG_716	638420	3559464	747968	424622	25	33	1	Richey, 1989, Table 2
38	FFG_717	633193	3559403	730818	424522	25	33	5	Richey, 1989, Table 2
-								-	

Table B.1.Location of Wells used by WIPP (Universal Transverse Mercator [UTM], State Plan Coordinates [stpln], and Survey Sections
[township, range and section])

Well ID	x-U⊺M	y-UTM	x-STPLN	y-STPLN	Township	Range	Section	Source
FFG_718	633234	3556994	730887	416614	25	33	8	Richey, 1989, Table 2
FFG_719	636829	3557836	742712	419312	25	33	11	Richey, 1989, Table 2
FFG_720	639698	3555152	752066	410438	25	33	13	Richey, 1989, Table 2
FFG_721	636045	3555837	740111	412751	25	33	15	Richey, 1989, Table 2
FFG_723	630458	3553740	721708	406002	25	33	19	Richey, 1989, Table 2
FFG_724	632860	3554578	729624	408686	25	33	20	Richey, 1989, Table 2
FFG_725	634859	3554589	736187	408691	25	33	21	Richey, 1989, Table 2
FFG_726	636908	3553407	742876	404776	25	33	23	Richey, 1989, Table 2
FFG_727	638515	3553426	748148	404806	25	33	24	Richey, 1989, Table 2
FFG_728	639741	3551836	752140	399555	25	33	25	Richey, 1989, Table 2
FFG_729	636519	3551797	741568	399493	25	33	27	Richey, 1989, Table 2
FFG_730	634908	3551777	736280	399460	25	33	28	Richey, 1989, Table 2
FFG_731	634882	3552983	736227	403421	25	33	28	Richey, 1989, Table 2
FFG_732	632068	3552542	726993	402039	25	33	29	Richey, 1989, Table 2
FFG_733	630508	3550122	721809	394129	25	33	31	Richey, 1989, Table 2
FFG_734	633325	3550558	731054	395493	25	33	32	Richey, 1989, Table 2
FFG 735	638531	3551412	748168	398200	25	33	36	Richey, 1989, Table 2
H1	613420	3581687	666391	498039	22	31	29	Mercer, 1983, Table 1
H10A	622949	3572457	697463	467561	23	32	20	Gonzales, 1989, Tables 3-6 and 3-
H10B	622975	3572473	697549	467613	23	32	20	Gonzales, 1989, Tables 3-6 and 3-
H10C	622976	3572449	697552	467525	23	32	20	Mercer, 1983, Table 1
H11B1	615346	3579130	672647	489617	22	31	33	Gonzales, 1989, Tables 3-6 and 3-
H11B2	615348	3579107	672653	489542	22	31	33	Gonzales, 1989, Tables 3-6 and 3-
H11B3	615367	3579127	672716	489608	22	31	33	Gonzales, 1989, Tables 3-6 and 3-
H11B4	615301	3579131	672501	489620	22	31	33	Gonzales, 1989. Tables 3-6 and 3-
H12	617023	3575452	678079	477535	23	31	15	Gonzales, 1989, Tables 3-6 and 3-
H14	612341	3580354	662815	493697	22	31	29	Gonzales, 1989, Tables 3-6 and 3-
H15	615315	3581859	672606	498572	22	31	28	Gonzales, 1989, Tables 3-6 and 3-
H16	613369	3582212	666231	499726	22	31	20	Gonzales, 1989, Tables 3-6 and 3-
H17	615718	3577513	673837	484304	23	31	3	Gonzales, 1989, Tables 3-6 and 3-
H18	612264	3583166	662621	502926	22	31	20	Gonzales, 1989, Tables 3-6 and 3-
H2A	612663	3581641	663897	497912	22	31	29	Gonzales, 1989, Tables 3-6 and 3-
H2B1	612651	3581651	663860	497943	22	31	29	Gonzales, 1989, Tables 3-6 and 3-
H2B2	612661	3581649	663890	497938	22	31	29	Gonzales, 1989, Tables 3-6 and 3-
H2C	612663	3581662	663904	497992	22	31	29	Mercer, 1983, Table 1
H3	613735	3580895	667389	495440	22	31	29	Mercer, 1983, Table 1
H3B1	613729	3580895	667377	497440	22	31	29	Gonzales, 1989, Tables 3-6 and 3-
H3B2	613701	3580906	667283	495476	22	31	29	Gonzales, 1989, Tables 3-6 and 3-

Table B.1.	Location of Wells used by WIPP (Universal Transverse Mercator [UTM], State Plan Coordinates [stpln], and Survey Sections
	[township, range and section])

	Well ID	x-UTM	y-UTM	x-STPLN	y-STPLN	Township	Range	Section	Source
1	Н3В3	613705	3580876	667298	495376	22	31	29	Gonzales, 1989, Tables 3-6 and 3-7
	H3D	613721	3580890	667350	495421	22	31	29	Gonzales, 1989, Tables 3-6 and 3-7
	H4A	612407	3578469	662993	486962	23	31	5	Gonzales, 1989, Tables 3-6 and 3-7
	H4B	612380	3578483	662906	487554	23	31	5	Gonzales, 1989, Tables 3-6 and 3-7
	H4C	612404	3578497	662988	487603	23	31	5	Mercer, 1983, Table 1
	H5A	616888	3584776	677828	508111	22	31	15	Gonzales, 1989, Tables 3-6 and 3-7
	H5B	616872	3584801	677777	508194	22	31	15	Gonzales, 1989, Tables 3-6 and 3-7
	H5C	616900	3584802	677873	508198	22	31	15	Mercer, 1983, Table 1
	H6A	610580	3584982	657132	508881	22	31	18	Gonzales, 1989, Tables 3-6 and 3-7
	H6B	610594	3585008	657180	508969	22	31	18	Gonzales, 1989, Tables 3-6 and 3-7
	H6C	610609	3585027	657231	509066	22	31	18	Mercer, 1983, Table 1
	H7A	608102	3574670	648790	475132	23	30	14	Gonzales, 1989, Tables 3-6 and 3-7
	H7B1	608124	3574648	648862	475061	23	30	14	Gonzales, 1989, Tables 3-6 and 3-7
	H7B2	608111	3574612	648837	474965	23	30	14	Gonzales, 1989, Tables 3-6 and 3-7
	H7C	608086	3574632	648751	475020	23	30	14	Mercer, 1983, Table 1
	H8A	608658	3563566	650392	438678	23	30	23	Gonzales, 1989, Tables 3-6 and 3-7
	H8B	608683	3563556	650473	438646	24	30	23	Gonzales, 1989, Tables 3-6 and 3-7
	H8C	608656	3563541	650397	438590	24	30	23	Mercer, 1983, Table 1
-	H9A	613958	3568260	667879	453977	24	30 31	4	Gonzales, 1989, Tables 3-6 and 3-7
	H9B	613989	3568261	667979	453978	24	31	4	Gonzales, 1989, Tables 3-6 and 3-7
	H9C	613965	3568233	667914	453889	24	31	4	Mercer, 1983, Table 1
	MB139 1	613585	3582210	666913	499365	0	0	- 0	Krieg, 1984, Table I
	MB139_1 MB139_2	613633	3582061	667069	498876	0	0	0	Krieg, 1984, Table I
	MB139_2 MB139_3	613635	3582155	667076	499185	0	0	0	Krieg, 1984, Table I
	MB139_3 MB139_4	613582	3582155	666902	499185	0	0	0	Krieg, 1984, Table I
	P1	612339	3580339	662807	493649		31	0 29	Mercer, 1983, Table 1
	P10	612339				22 22		29 26	Mercer, 1983, Table 1 Mercer, 1983, Table 1
	P11		3581193	678380	496355		31		, ,
	P11 P12	617016	3583462	678222	503799	22	31	23	Mercer, 1983, Table 1
-		610454	3583452	656688	503899	22	30	24	Mercer, 1983, Table 1 Mercer, 1983, Table 1
	P13	610539	3585079	657003	509237	22	31	18	Mercer, 1983, Table 1
	P14	609083	3581974	652158	499079	22	30	24	Mercer, 1983, Table 1
	P15	610624	3578793	657148	488609	22	31	31	Mercer, 1983, Table 1
	P16	612704	3577312	663938	483715	23	31	5	Mercer, 1983, Table 1
	P17	613929	3577459	667959	484166	23	31	4	Mercer, 1983, Table 1
	P18	618367	3580352	682589	493561	22	31	26	Mercer, 1983, Table 1
	P19	617687	3582410	680392	500348	22	31	23	Mercer, 1983, Table 1
	2	615315	3581850	672609	498541	22	31	28	Mercer, 1983, Table 1
38 F	P20	618541	3583770	683226	504775	22	31	14	Mercer, 1983, Table 1

Table B.1.	Location of Wells used by WIPP (Universal Transverse Mercator [UTM], State Plan Coordinates [stpln], and Survey Sections
	[township, range and section])

Well ID	x-UTM	y-UTM	x-STPLN	y-STPLN	Township	Range	Section	Source
P21	616901	3584847	677877	508345	22	31	15	Mercer, 1983, Table 1
P3	612799	3581888	664349	498733	22	31	20	Mercer, 1983, Table 1
P4	614936	3580324	671330	493533	22	31	28	Mercer, 1983, Table 1
P5	613686	3583535	667292	504105	22	31	17	Mercer, 1983, Table 1
P6	610591	3581133	657104	496288	22	31	30	Mercer, 1983, Table 1
P7	612305	3578476	662663	487535	23	31	5	Mercer, 1983, Table 1
P8	613827	3578467	667656	487472	23	31	4	Mercer, 1983, Table 1
P9	615365	3579125	672704	489600	22	31	33	Mercer, 1983, Table 1
SaltShft	613587	3582186	666919	499286	0	0	0	Krieg, 1984, Table I
USGS1	606462	3569459	643297	458066	23	30	34	Gonzales, 1989, Tables 3-6 and 3-7
USGS4	605841	3569887	641277	459483	23	30	34	Gonzales, 1989, Tables 3-6 and 3-7
USGS8	605879	3569888	641402	459483	23	30	34	Gonzales, 1989, Tables 3-6 and 3-7
WIPP11	613819	3586474	667796	513749	22	31	9	Mercer, 1983, Table 1
WIPP12	613709	3583524	667368	504067	22	31	17	Mercer, 1983, Table 1
WIPP13	612652	3584241	663901	506454	22	31	17	Mercer, 1983, Table 1
WIPP15	590057	3574585	589590	475231	23	35	18	Mercer, 1983, Table 1
WIPP16	602380	3597026	630458	548607	21	30	5	Mercer, 1983, Table 1
WIPP18	613731	3583179	667441	502935	22	31	20	Mercer, 1983, Table 1
WIPP19	613747	3582787	667461	501649	22	31	20	Mercer, 1983, Table 1
WIPP21	613747	3582349	667462	500213	22	31	20	Mercer, 1983, Table 1
WIPP22	613747	3582652	667462	501206	22	31	20	Mercer, 1983, Table 1
WIPP25	606391	3584037	643354	505885	22	30	15	Mercer, 1983, Table 1
WIPP26	604006	3581161	635496	496516	22	30	29	Mercer, 1983, Table 1
WIPP27	604425	3593073	637102	535603	21	30	21	Mercer, 1983, Table 1
WIPP28	611265	3594687	659578	540736	21	31	18	Mercer, 1983, Table 1
WIPP29	596981	3578700	612380	488570	22	29	34	Mercer, 1983, Table 1
WIPP30	613718	3589700	667532	524335	21	31	33	Mercer, 1983, Table 1
WIPP32	595909	3579081	608858	489850	22	29	33	Mercer, 1983, Table 1
WIPP33	609629	3584019	653981	505789	22	30	13	Mercer, 1983, Table 1
WIPP34	614333	3585141	669449	509375	22	31	9	Mercer, 1983, Table 1
WastShft	613595	3582061	666944	498876	0	0	0	Krieg, 1984, Table I

Table B.1.	Location of Wells used by WIPP (Universal Transverse Mercator [UTM], State Plan Coordinates [stpln], and Survey Sections	
	[township, range and section])	

L:	ayer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Ant	hydrt1	DOE2	-199.00	Mercer et al., 1987, Table 3-2	40	Anhydrta	DH223	387.18	Krieg, 1984, Table I
Ant	hydrt1	DOE2	-119.10	Mercer et al., 1987, Table 3-2	41	Anhydrta	DH227	384.02	Krieg, 1984, Table I
Ant	hydrt1	REF	-199.00	Rechard et al., 1991, Figure 2.2-1	42	Anhydrta	DH227	384.26	Krieg, 1984, Table I
Ant	hydrt1	REF	-119.10	Rechard et al., 1991, Figure 2.2-1	43	Anhydrta	DH77	402.79	Krieg, 1984, Table I
Ant	hydrt1	WIPP11	-43.90	SNL and USGS, 1982a, Table 2	44	Anhydrta	DH77	402.88	Krieg, 1984, Table I
Ant	hydrt1	WIPP11	-37.80	SNL and USGS, 1982a, Table 2	45	Anhydrta	DO201	389.23	Krieg, 1984, Table I
Ant	hydrt1	WIPP12	-139.00	SNL and D'Appolonia Consulting, 1983, Table 2	46	Anhydrta	DO201	389.44	Krieg, 1984, Table !
Ant	hydrt1	WIPP12	-131.10	SNL and D'Appolonia Consulting, 1983, Table 2	47	Anhydrta	DO203	400.02	Krieg, 1984, Table I
Ant	hydrt2	DOE1	-71.60	U.S. DOE, Sep 1982, Table 2	48	Anhydrta	DO203	400.26	Krieg, 1984, Table I
Ant	hydrt2	DOE1	-38.60	U.S. DOE, Sep 1982, Table 2	49	Anhydrta	DO205	405.17	Krieg, 1984, Table I
Ant	hydrt2	DOE2	-116.40	Mercer et al., 1987, Table 3-2	50	Anhydrta	DO205	405.38	Krieg, 1984, Table I
Ant	hydrt2	REF	-116.40	Rechard et al., 1991, Figure 2.2-1	51	Anhydrta	DO45	396.69	Krieg, 1984, Table I
Ant	hydrt2	WIPP11	-22.20	SNL and USGS, 1982a, Table 2	52	Anhydrta	DO45	396.87	Krieg, 1984, Table I
Ant	hydrt2	WIPP11	14.40	SNL and USGS, 1982a, Table 2	53	Anhydrta	DO52	393.92	Krieg, 1984, Table I
Anh	hydrt2	WIPP12	24.50	SNL and D'Appolonia Consulting, 1983, Table 2	54	Anhydrta	DO52	394.07	Krieg, 1984, Table I
Anh	hydrt2	WIPP12	57.80	SNL and D'Appolonia Consulting, 1983, Table 2	55	Anhydrta	DO56	399.74	Krieg, 1984, Table I
Anh	hydrt3	DOE1	30.00	U.S. DOE, Sep 1982, Table 2	56	Anhydrta	DO56	399.92	Krieg, 1984, Table I
Anh	hydrt3	DOE1	163.60	U.S. DOE, Sep 1982, Table 2	57	Anhydrta	DO63	403.61	Krieg, 1984, Table I
Ant	hydrt3	DOE2	102.30	Mercer et al., 1987, Table 3-2	58	Anhydrta	DO63	403.98	Krieg, 1984, Table I
Anh	hydrt3	ERDA9	162.00	SNL and USGS, 1982b, Table 2	59	Anhydrta	DO67	403.58	Krieg, 1984, Table I
Ant	hydrt3	ERDA9	178.10	SNL and USGS, 1982b, Table 2	60	Anhydrta	DO67	403.85	Krieg, 1984, Table I
Anh	hydrt3	REF	162.00	Rechard et al., 1991, Figure 2.2-1	61	Anhydrta	DO88	402.36	Krieg, 1984, Table I
Anh	hydrt3	REF	178.10	Rechard et al., 1991, Figure 2.2-1	62	Anhydrta	DO88	402.51	Krieg, 1984, Table I
Anh	hydrt3	WIPP11	309.40	SNL and USGS, 1982a, Table 2	63	Anhydrta	DO91	402.07	Krieg, 1984, Table I
Anh	hydrt3	WIPP11	334.10	SNL and USGS, 1982a, Table 2	64	Anhydrta	DO91	402.28	Krieg, 1984, Table I
Anh	hydrt3	WIPP12	127.30	SNL and D'Appolonia Consulting, 1983, Table 2	65	Anhydrta	ExhtShft	389.78	Bechtel, Inc., 1986, Appendix F
Anh	hydrt3	WIPP12	227.40	SNL and D'Appolonia Consulting, 1983, Table 2	66	Anhydrta	ExhtShft	390.03	Bechtel, Inc., 1986, Appendix F
Anh	hydrta	AirShft	386.41	Holt and Powers, 1990, Figure 22	67	Anhydrta	MB139_2	388.84	Krieg, 1984, Table I
Anh	hydrta	AirShft	386.70	Holt and Powers, 1990, Figure 22	68	Anhydrta	MB139_2	389.05	Krieg, 1984, Table I
Anh	hydrta	DH207	386.86	Krieg, 1984, Table I	69	Anhydrta	SaltShft	392.51	Bechtel, Inc., 1986, Appendix D
Anh	hydrta	DH207	388.78	Krieg, 1984, Table I	70	Anhydrta	SaltShft	392.74	Bechtel, Inc., 1986, Appendix D
Ant	hydrta	DH211	389.81	Krieg, 1984, Table I	71	Anhydrta	SaltShft	392.53	Krieg, 1984, Table I
Anh	hydrta	DH211	391.67	Krieg, 1984, Table I	72	Anhydrta	SaltShft	392.76	Krieg, 1984, Table I
Anh	hydrta	DH215	390.11	Krieg, 1984, Table I	73	Anhydrta	WastShft	388.76	Bechtel, Inc., 1986, Appendix E
Anh	hydrta	DH215	391.97	Krieg, 1984, Table I	74	Anhydrta	WastShft	388.97	Bechtel, Inc., 1986, Appendix E
Anh	hydrta	DH219	390.39	Krieg, 1984, Table I	75	Anhydrta	WastShft	389.01	Krieg, 1984, Table I
Anh	hydrta	DH219	390.57	Krieg, 1984, Table I	76	Anhydrta	WastShft	389.25	Krieg, 1984, Table I
Anh	hydrta	DH223	386.88	Krieg, 1984, Table I	77	Anhydrtb	DH207	386.65	Krieg, 1984, Table I

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Anhydrtb	DH207	386.70	Krieg, 1984, Table I	40	Anhydrtb	SaltShft	390.66	Bechtel, Inc., 1986, Appendix D
Anhydrtb	DH211	389.63	Krieg, 1984, Table I	41	Anhydrtb	SaltShft	390.37	Krieg, 1984, Table I
Anhydrtb	DH211	389.66	Krieg, 1984, Table I	42	Anhydrtb	SaltShft	390.45	Krieg, 1984, Table I
Anhydrtb	DH215	389.96	Krieg, 1984, Table I	43	Anhydrtb	WastShft	386.57	Bechtel, Inc., 1986, Appendix E
Anhydrtb	DH215	390.02	Krieg, 1984, Table I	44	Anhydrtb	WastShft	386.70	Bechtel, Inc., 1986, Appendix E
Anhydrtb	DH219	388.41	Krieg, 1984, Table I	45	Anhydrtb	WastShft	386.91	Krieg, 1984, Table I
Anhydrtb	DH219	388.42	Krieg, 1984, Table I	46	Anhydrtb	WastShft	386.97	Krieg, 1984, Table I
Anhydrtb	DH223	385.05	Krieg, 1984, Table I	47	Anhydrtc	DH207	369.49	Krieg, 1984, Table I
Anhydrtb	DH223	385.05	Krieg, 1984, Table I	48	Anhydrtc	DH207	369.55	Krieg, 1984, Table I
Anhydrtb	DH227	382.25	Krieg, 1984, Table I	49	Anhydrtc	DH211	372.71	Krieg, 1984, Table I
Anhydrtb	DH227	382.25	Krieg, 1984, Table I	50	Anhydrtc	DH211	372.80	Krieg, 1984, Table I
Anhydrtb	DH77	400.75	Krieg, 1984, Table I	51	Anhydrtc	DH215	373.14	Krieg, 1984, Table I
Anhydrtb	DH77	400.83	Krieg, 1984, Table I	52	Anhydrtc	DH215	373.20	Krieg, 1984, Table I
Anhydrtb	DO201	387.07	Krieg, 1984, Table I	53	Anhydrtc	DH219	372.13	Krieg, 1984, Table I
Anhydrtb	DO201	387.13	Krieg, 1984, Table I	54	Anhydrtc	DH219	372.19	Krieg, 1984, Table I
Anhydrtb	DO203	398.13	Krieg, 1984, Table I	55	Anhydrtc	DH223	369.08	Krieg, 1984, Table I
Anhydrtb	DO203	398.19	Krieg, 1984, Table I	56	Anhydrtc	DH223	369.17	Krieg, 1984, Table I
Anhydrtb	DO205	403.13	Krieg, 1984, Table I	57	Anhydrtc	DH227	366.16	Krieg, 1984, Table I
Anhydrtb	DO205	403.19	Krieg, 1984, Table I	58	Anhydrtc	DH227	366.22	Krieg, 1984, Table I
Anhydrtb	DO45	393.92	Krieg, 1984, Table I	59	Anhydrtc	DH77	384.75	Krieg, 1984, Table I
Anhydrtb	DO45	393.95	Krieg, 1984, Table I	60	Anhydrtc	DH77	384.81	Krieg, 1984, Table I
Anhydrtb	DO52	391.88	Krieg, 1984, Table I	61	Anhydrtc	DO201	369.91	Krieg, 1984, Table I
Anhydrtb	DO52	391.94	Krieg, 1984, Table I	62	Anhydrtc	DO201	370.03	Krieg, 1984, Table I
Anhydrtb	DO56	397.64	Krieg, 1984, Table I	63	Anhydrtc	DO203	381.95	Krieg, 1984, Table I
Anhydrtb	DO56	397.70	Krieg, 1984, Table I	64	Anhydrtc	DO203	382.01	Krieg, 1984, Table I
Anhydrtb	DO63	401.45	Krieg, 1984, Table I	65	Anhydrtc	DO205	387.37	Krieg, 1984, Table I
Anhydrtb	DO63	401.51	Krieg, 1984, Table !	66	Anhydrtc	DO205	387.43	Krieg, 1984, Table I
Anhydrtb	DO67	401.45	Krieg, 1984, Table I	67	Anhydrtc	DO45	377.22	Krieg, 1984, Table I
Anhydrtb	DO67	401.53	Krieg, 1984, Table I	68	Anhydrtc	DO45	377.28	Krieg, 1984, Table I
Anhydrtb	DO88	400.23	Krieg, 1984, Table I	69	Anhydrtc	DO52	375.18	Krieg, 1984, Table I
Anhydrtb	DO88	400.30	Krieg, 1984, Table I	70	Anhydrtc	DO52	375.24	Krieg, 1984, Table I
Anhydrtb	DO91	399.91	Krieg, 1984, Table I	71	Anhydrtc	DO56	381.00	Krieg, 1984, Table I
Anhydrtb	DO91	399.96	Krieg, 1984, Table I	72	Anhydrtc	DO56	381.09	Krieg, 1984, Table I
Anhydrtb	ExhtShft	387.66	Bechtel, Inc., 1986, Appendix F	73	Anhydrtc	DO63	385.66	Krieg, 1984, Table I
Anhydrtb	ExhtShft	387.75	Bechtel, Inc., 1986, Appendix F	74	Anhydrtc	DO63	385.84	Krieg, 1984, Table I
Anhydrtb	MB139 2	386.58	Krieg, 1984, Table I	75	Anhydrtc	DO67	385.54	Krieg, 1984, Table I
Anhydrtb	MB139_2	386.61	Krieg, 1984, Table I	76	Anhydrtc	DO67	385.63	Krieg, 1984, Table I
Anhydrtb	SaltShft	390.58	Bechtel, Inc., 1986, Appendix D	77	Anhydrtc	DO88	384.01	Krieg, 1984, Table I

	Layer	Well ID	Elevation	Source		Layer	Well ID	Elevatio	on Source
	Anhydrtc	DO88	384.06	Krieg, 1984, Table I	39	Culebra	FFG_026	592.50	Richey, 1989, Table 2, p.22
	Anhydrtc	DO91	384.03	Krieg, 1984, Table I	40	Culebra	FFG_027	585.50	Richey, 1989, Table 2, p.22
	Anhydrtc	DO91	384.12	Krieg, 1984, Table I	41	Culebra	FFG_028	578.60	Richey, 1989, Table 2, p.22
	Anhydrtc	SaltShft	373.09	Krieg, 1984, Table I	42	Culebra	FFG_029	563.50	Richey, 1989, Table 2, p.22
	Anhydrtc	SaltShft	373.20	Krieg, 1984, Table I	43	Culebra	FFG_030	563.00	Richey, 1989, Table 2, p.22
	B CANyon	DOE2	-276.30	Mercer et al., 1987, Table 3-2	44	Culebra	FFG_031	554.40	Richey, 1989, Table 2, p.22
	B_CANyon	DOE2	-199.00	Mercer et al., 1987, Table 3-2	45	Culebra	FFG_032	549.40	Richey, 1989, Table 2, p.22
	B_CANyon	REF	-276.30	Rechard et al.,1991, Figure 2.2-1	46	Culebra	FFG_033	549.20	Richey, 1989, Table 2, p.22
	B_CANyon	REF	-199.00	Rechard et al.,1991, Figure 2.2-1	47	Culebra	FFG_034	548.60	Richey, 1989, Table 2, p.23
)	Culebra	AEC7	848.50	Mercer, 1983, Table 1	48	Culebra	FFG_035	533.90	Richey, 1989, Table 2, p.23
	Culebra	AEC8	822.70	Mercer, 1983, Table 1	49	Culebra	FFG_036	541.40	Richey, 1989, Table 2, p.23
	Culebra	AirShft	824.48	Holt and Powers, 1990, Figure 22	50	Culebra	FFG_037	534.00	Richey, 1989, Table 2, p.23
1	Culebra	B25	824.50	Mercer, 1983, Table 1	51	Culebra	FFG_038	523.60	Richey, 1989, Table 2, p.23
	Culebra	DOE1	806.10	U.S. DOE, Sep 1982, Table 2	52	Culebra	FFG_039	731.90	Richey, 1989, Table 2, p.23
;	Culebra	DOE2	790.80	Mercer et al., 1987, Table 3-2	53	Culebra	FFG_040	655.40	Richey, 1989, Table 2, p.23
;	Culebra	ERDA10	882.40	Mercer, 1983, Table 1	54	Culebra	FFG_041	733.70	Richey, 1989, Table 2, p.23
•	Culebra	ERDA6	862.60	Mercer, 1983, Table 1	55	Culebra	FFG_042	740.60	Richey, 1989, Table 2, p.23
	Culebra	ERDA9	827.50	Mercer, 1983, Table 1	56	Culebra	FFG_043	735.70	Richey, 1989, Table 2, p.23
	Culebra	ERDA9	823.40	SNL and USGS, 1982b, Table 2	57	Culebra	FFG_044	689.10	Richey, 1989, Table 2, p.23
	Culebra	ExhtShft	821.57	Bechtel, Inc., 1986, Appendix F	58	Culebra	FFG_047	561.10	Richey, 1989, Table 2, p.23
	Culebra	FFG_002	624.80	Richey, 1989, Table 2, p.21	59	Culebra	FFG_048	580.30	Richey, 1989, Table 2, p.23
	Culebra	FFG_004	666.60	Richey, 1989, Table 2, p.21	60	Culebra	FFG_049	567.50	Richey, 1989, Table 2, p.23
	Culebra	FFG_005	628.50	Richey, 1989, Table 2, p.21	61	Culebra	FFG_050	582.50	Richey, 1989, Table 2, p.24
	Culebra	FFG_006	616.60	Richey, 1989, Table 2, p.21	62	Culebra	FFG_051	573.90	Richey, 1989, Table 2, p.24
	Culebra	FFG_007	602.00	Richey, 1989, Table 2, p.21	63	Culebra	FFG_052	595.20	Richey, 1989, Table 2, p.24
	Culebra	FFG_009	604.10	Richey, 1989, Table 2, p.21	64	Culebra	FFG_053	563.00	Richey, 1989, Table 2, p.24
	Culebra	FFG_011	609.90	Richey, 1989, Table 2, p.21	65	Culebra	FFG_054	562.70	Richey, 1989, Table 2, p.24
	Culebra	FFG_012	613.90	Richey, 1989, Table 2, p.21	66	Culebra	FFG_055	565.70	Richey, 1989, Table 2, p.24
	Culebra	FFG_013	646.20	Richey, 1989, Table 2, p.21	67	Culebra	FFG_056	564.50	Richey, 1989, Table 2, p.24
	Culebra	FFG_014	667.80	Richey, 1989, Table 2, p.21	68	Culebra	FFG_057	564.80	Richey, 1989, Table 2, p.24
	Culebra	FFG_016	587.90	Richey, 1989, Table 2, p.21	69	Culebra	FFG_058	569.30	Richey, 1989, Table 2, p.24
	Culebra	FFG_017	594.90	Richey, 1989, Table 2, p.22	70	Culebra	FFG_059	569.70	Richey, 1989, Table 2, p.24
	Culebra	FFG_018	598.60	Richey, 1989, Table 2, p.22	71	Culebra	FFG_060	569.30	Richey, 1989, Table 2, p.24
	Culebra	FFG_019	588.60	Richey, 1989, Table 2, p.22	72	Culebra	FFG_061	570.60	Richey, 1989, Table 2, p.24
	Culebra	FFG_020	662.00	Richey, 1989, Table 2, p.22	73	Culebra	FFG_062	513.90	Richey, 1989, Table 2, p.24
	Culebra	FFG_023	596.20	Richey, 1989, Table 2, p.22	74	Culebra	FFG_063	470.70	Richey, 1989, Table 2, p.24
	Culebra Culebra	FFG_024 FFG_025	579.10 598.50	Richey, 1989, Table 2, p.22 Richey, 1989, Table 2, p.22	75 76	Culebra Culebra	FFG_064 FFG_065	497.50 471.80	Richey, 1989, Table 2, p.24 Richey, 1989, Table 2, p.24

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevatio	on Source
Culebra	FFG_066	434.30	Richey, 1989, Table 2, p.24	39	Culebra	FFG_106	902.60	Richey, 1989, Table 2, p.27
Culebra	FFG_067	470.00	Richey, 1989, Table 2, p.25	40	Culebra	FFG_107	887.90	Richey, 1989, Table 2, p.27
Culebra	FFG_068	430.10	Richey, 1989, Table 2, p.25	41	Culebra	FFG_108	878.70	Richey, 1989, Table 2, p.27
Culebra	FFG_069	447.50	Richey, 1989, Table 2, p.25	42	Culebra	FFG_109	862.30	Richey, 1989, Table 2, p.27
Culebra	FFG_070	484.60	Richey, 1989, Table 2, p.25	43	Culebra	FFG_110	832.10	Richey, 1989, Table 2, p.27
Culebra	FFG_071	755.00	Richey, 1989, Table 2, p.25	44	Culebra	FFG_111	836.60	Richey, 1989, Table 2, p.27
Culebra	FFG_072	681.20	Richey, 1989, Table 2, p.25	45	Culebra	FFG_112	824.50	Richey, 1989, Table 2, p.28
Culebra	FFG_073	659.30	Richey, 1989, Table 2, p.25	46	Culebra	FFG_113	838.50	Richey, 1989, Table 2, p.28
Culebra	FFG_074	666.40	Richey, 1989, Table 2, p.25	47	Culebra	FFG_114	870.50	Richey, 1989, Table 2, p.28
Culebra	FFG_075	717.90	Richey, 1989, Table 2, p.25	48	Culebra	FFG_115	857.40	Richey, 1989, Table 2, p.28
Culebra	FFG_076	777.60	Richey, 1989, Table 2, p.25	49	Culebra	FFG_116	871.40	Richey, 1989, Table 2, p.28
Culebra	FFG_078	814.70	Richey, 1989, Table 2, p.25	50	Culebra	FFG_117	868.70	Richey, 1989, Table 2, p.28
Culebra	FFG_079	787.00	Richey, 1989, Table 2, p.25	51	Culebra	FFG_119	870.90	Richey, 1989, Table 2, p.28
Culebra	FFG_080	765.60	Richey, 1989, Table 2, p.25	52	Culebra	FFG_120	874.20	Richey, 1989, Table 2, p.28
Culebra	FFG_081	683.10	Richey, 1989, Table 2, p.26	53	Culebra	FFG_121	882.40	Richey, 1989, Table 2, p.28
Culebra	FFG_082	711.10	Richey, 1989, Table 2, p.26	54	Culebra	FFG_122	876.30	Richey, 1989, Table 2, p.28
Culebra	FFG_083	638.10	Richey, 1989, Table 2, p.26	55	Culebra	FFG_123	867.10	Richey, 1989, Table 2, p.28
Culebra	FFG_084	661.40	Richey, 1989, Table 2, p.26	56	Culebra	FFG_124	837.90	Richey, 1989, Table 2, p.28
Culebra	FFG_085	655.40	Richey, 1989, Table 2, p.26	57	Culebra	FFG_125	851.20	Richey, 1989, Table 2, p.28
Culebra	FFG_086	665.00	Richey, 1989, Table 2, p.26	58	Culebra	FFG_126	852.70	Richey, 1989, Table 2, p.28
Culebra	FFG_087	636.70	Richey, 1989, Table 2, p.26	59	Culebra	FFG_127	860.70	Richey, 1989, Table 2, p.28
Culebra	FFG_088	626.10	Richey, 1989, Table 2, p.26	60	Culebra	FFG_128	887.00	Richey, 1989, Table 2, p.28
Culebra	FFG_089	613.90	Richey, 1989, Table 2, p.26	61	Culebra	FFG_129	858.30	Richey, 1989, Table 2, p.28
Culebra	FFG_091	652.30	Richey, 1989, Table 2, p.26	62	Culebra	FFG_130	897.60	Richey, 1989, Table 2, p.28
Culebra	FFG_092	670.90	Richey, 1989, Table 2, p.26	63	Culebra	FFG_132	898.60	Richey, 1989, Table 2, p.29
Culebra	FFG_093	673.60	Richey, 1989, Table 2, p.26	64	Culebra	FFG_133	901.60	Richey, 1989, Table 2, p.29
Culebra	FFG_094	674.20	Richey, 1989, Table 2, p.26	65	Culebra	FFG_134	904.40	Richey, 1989, Table 2, p.29
Culebra	FFG_095	651.60	Richey, 1989, Table 2, p.26	66	Culebra	FFG_135	880.90	Richey, 1989, Table 2, p.29
Culebra	FFG_096	635.50	Richey, 1989, Table 2, p.26	67	Culebra	FFG_136	882.50	Richey, 1989, Table 2, p.29
Culebra	FFG_097	614.80	Richey, 1989, Table 2, p.27	68	Culebra	FFG_137	892.80	Richey, 1989, Table 2, p.29
Culebra	FFG_098	587.90	Richey, 1989, Table 2, p.27	69	Culebra	FFG_138	844.10	Richey, 1989, Table 2, p.29
Culebra	FFG_099	582.50	Richey, 1989, Table 2, p.27	70	Culebra	FFG_139	855.60	Richey, 1989, Table 2, p.29
Culebra	FFG_100	564.80	Richey, 1989, Table 2, p.27	71	Culebra	FFG_140	792.70	Richey, 1989, Table 2, p.29
Culebra	FFG_101	533.70	Richey, 1989, Table 2, p.27	72	Culebra	FFG_141	820.10	Richey, 1989, Table 2, p.29
Culebra	FFG_102	549.00	Richey, 1989, Table 2, p.27	73	Culebra	FFG_142	795.90	Richey, 1989, Table 2, p.29
Culebra	FFG_103	609.30	Richey, 1989, Table 2, p.27	74	Culebra	FFG_143	804.00	Richey, 1989, Table 2, p.29
Culebra	FFG_104	508.10	Richey, 1989, Table 2, p.27	75	Culebra	FFG_144	894.30	Richey, 1989, Table 2, p.29
Culebra	FFG 105	867.50	Richey, 1989, Table 2, p.27	76	Culebra	FFG 145	893.10	Richey, 1989, Table 2, p.29

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevat		Source
Culebra	FFG 146	906.80	Richey, 1989, Table 2, p.29	39	Culebra	FFG_194	788.50	Richey, 1989,	Table 2, p.33
Culebra	FFG_147	882.70	Richey, 1989, Table 2, p.29	40	Culebra	FFG_195	803.50	Richey, 1989,	Table 2, p.33
Culebra	FFG ¹⁴⁸	900.10	Richey, 1989, Table 2, p.29	41	Culebra	FFG_196	837.00	Richey, 1989,	Table 2, p.33
Culebra	FFG_149	910.70	Richey, 1989, Table 2, p.30	42	Culebra	FFG_197	841.00	Richey, 1989,	Table 2, p.33
Culebra	FFG_155	901.30	Richey, 1989, Table 2, p.30	43	Culebra	FFG ⁻ 198	840.90	Richey, 1989,	Table 2, p.33
Culebra	FFG 156	906.50	Richey, 1989, Table 2, p.30	44	Culebra	FFG_199	827.00	Richey, 1989,	Table 2, p.33
Culebra	FFG_157	904.10	Richey, 1989, Table 2, p.30	45	Culebra	FFG_200	838.20	Richey, 1989,	Table 2, p.33
Culebra	FFG_158	928.10	Richey, 1989, Table 2, p.30	46	Culebra	FFG_201	838.20	Richey, 1989,	Table 2, p.33
Culebra	FFG_159	898.60	Richey, 1989, Table 2, p.30	47	Culebra	FFG_202	773.80	Richey, 1989,	Table 2, p.33
Culebra	FFG_160	895.20	Richey, 1989, Table 2, p.30	48	Culebra	FFG_203	776.00	Richey, 1989 ,	Table 2, p.33
Culebra	FFG_161	901.00	Richey, 1989, Table 2, p.30	49	Culebra	FFG_204	813.50	• • • •	Table 2, p.33
Culebra	FFG_162	891.90	Richey, 1989, Table 2, p.30	50	Culebra	FFG205	825.10	Richey, 1989,	Table 2, p.33
Culebra	FFG_163	897.40	Richey, 1989, Table 2, p.30	51	Culebra	FFG_206	837.00	Richey, 1989,	Table 2, p.33
Culebra	FFG_164	937.60	Richey, 1989, Table 2, p.30	52	Culebra	FFG_207	833.60	Richey, 1989,	Table 2, p.33
Culebra	FFG_165	912.80	Richey, 1989, Table 2, p.30	53	Culebra	FFG_208	843.10	Richey, 1989,	Table 2, p.34
Culebra	FFG_166	900.00	Richey, 1989, Table 2, p.31	54	Culebra	FFG_209	838.20	• · · · ·	Table 2, p.34
Culebra	FFG_167	887.00	Richey, 1989, Table 2, p.31	55	Culebra	FFG_210	827.50		Table 2, p.34
Culebra	FFG_168	906.50	Richey, 1989, Table 2, p.31	56	Culebra	FFG_212	817.50	•	Table 2, p.34
Culebra	FFG_169	919.20	Richey, 1989, Table 2, p.31	57	Culebra	FFG_213	837.90	• • •	Table 2, p.34
Culebra	FFG_170	903.70	Richey, 1989, Table 2, p.31	58	Culebra	FFG_214	818.40	•	Table 2, p.34
Culebra	FFG_171	922.10	Richey, 1989, Table 2, p.31	59	Culebra	FFG_215	793.10	•	Table 2, p.34
Culebra	FFG_172	915.30	Richey, 1989, Table 2, p.31	60	Culebra	FFG_216	688.80	• • • •	Table 2, p.34
Culebra	FFG_173	876.90	Richey, 1989, Table 2, p.31	61	Culebra	FFG_217	814.80		Table 2, p.34
Culebra	FFG_177	889.10	Richey, 1989, Table 2, p.31	62	Culebra	FFG_218	803.50		Table 2, p.34
Culebra	FFG_178	718.10	Richey, 1989, Table 2, p.31	63	Culebra	FFG_219	848.80	Richey, 1989,	•
Culebra	FFG_179	886.60	Richey, 1989, Table 2, p.31	64	Culebra	FFG_220	798.60	•	Table 2, p.34
Culebra	FFG_180	883.00	Richey, 1989, Table 2, p.31	65	Culebra	FFG_221	756.50	Richey, 1989,	
Culebra	FFG_181	930.50	Richey, 1989, Table 2, p.32	66	Culebra	FFG_222	713.30	Richey, 1989,	•
Culebra	FFG_182	812.60	Richey, 1989, Table 2, p.32	67	Culebra	FFG_224	597.80	•	Table 2, p.35
Culebra	FFG_183	904.40	Richey, 1989, Table 2, p.32	68	Culebra	FFG_225	603.50	•	Table 2, p.35
Culebra	FFG_184	891.20	Richey, 1989, Table 2, p.32	69	Culebra	FFG_226	601.80	•	Table 2, p.35
Culebra	FFG_185	899.50	Richey, 1989, Table 2, p.32	70	Culebra	FFG_228	588.30	•	Table 2, p.35
Culebra	FFG_186	827.90	Richey, 1989, Table 2, p.32	71	Culebra	FFG_229	614.70	•	Table 2, p.35
Culebra	FFG_188	845.80	Richey, 1989, Table 2, p.32	72	Culebra	FFG_230	601.10	• · · · ·	Table 2, p.35
Culebra	FFG_189	867.80	Richey, 1989, Table 2, p.32	73	Culebra	FFG_231	619.90	•	Table 2, p.35
Culebra	FFG_190	843.60	Richey, 1989, Table 2, p.32	74	Culebra	FFG_232	631.50	•	Table 2, p.35
Culebra Culebra	FFG_191 FFG_192	845.50 774.50	Richey, 1989, Table 2, p.32 Richey, 1989, Table 2, p.32	75 76	Culebra Culebra	FFG_233 FFG_234	624.00 660.20	•	Table 2, p.35 Table 2, p.35

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

	Layer	Well ID	Elevation	Source		Layer	Well ID	Elevat	tion	Source
	Culebra	FFG_235	635.50	Richey, 1989, Table 2, p.35	39	Culebra	FFG 273	753.20	Richey, 1989,	Table 2, p.38
	Culebra	FFG_236	682.70	Richey, 1989, Table 2, p.35	40	Culebra	FFG ²⁷⁴	793.10	Richey, 1989,	Table 2, p.38
	Culebra	FFG_237	646.20	Richey, 1989, Table 2, p.35	41	Culebra	FFG 275	800.70	Richey, 1989,	Table 2, p.38
	Culebra	FFG_238	628.50	Richey, 1989, Table 2, p.36	42	Culebra	FFG 276	802.80	Richey, 1989,	
	Culebra	FFG_239	620.50	Richey, 1989, Table 2, p.36	43	Culebra	FFG_277	795.50	Richey, 1989,	Table 2, p.38
	Culebra	FFG_240	609.90	Richey, 1989, Table 2, p.36	44	Culebra	FFG_278	776.60	Richey, 1989,	Table 2, p.38
	Culebra	FFG 241	605.10	Richey, 1989, Table 2, p.36	45	Culebra	FFG_279	776.90	Richey, 1989,	Table 2, p.38
	Culebra	FFG_242	732.20	Richey, 1989, Table 2, p.36	46	Culebra	FFG_280	788.80	Richey, 1989,	Table 2, p.38
	Culebra	FFG_243	668.40	Richey, 1989, Table 2, p.36	47	Culebra	FFG_281	762.60	Richey, 1989,	
	Culebra	FFG_244	721.30	Richey, 1989, Table 2, p.36	48	Culebra	FFG_283	496.20	Richey, 1989,	
	Culebra	FFG_245	510.80	Richey, 1989, Table 2, p.36	49	Culebra	FFG_284	648.00	Richey, 1989,	
	Culebra	FFG_246	516.00	Richey, 1989, Table 2, p.36	50	Culebra	FFG_285	669.60	Richey, 1989,	Table 2, p.39
	Culebra	FFG_247	501.30	Richey, 1989, Table 2, p.36	51	Culebra	FFG [_] 286	773.80	Richey, 1989,	•
	Culebra	FFG_248	506.60	Richey, 1989, Table 2, p.36	52	Culebra	FFG_287	738.20	Richey, 1989,	Table 2, p.39
	Culebra	FFG_249	505.30	Richey, 1989, Table 2, p.36	53	Culebra	FFG_288	668.70	Richey, 1989,	Table 2, p.39
	Culebra	FFG 250	587.50	Richey, 1989, Table 2, p.36	54	Culebra	FFG_289	680.60	Richey, 1989,	Table 2, p.39
	Culebra	FFG_251	477.30	Richey, 1989, Table 2, p.36	55	Culebra	FFG 290	770.90	Richey, 1989,	Table 2, p.39
	Culebra	FFG_252	619.60	Richey, 1989, Table 2, p.36	56	Culebra	FFG_291	668.70	Richey, 1989,	Table 2, p.39
	Culebra	FFG 253	566.70	Richey, 1989, Table 2, p.36	57	Culebra	FFG_292	724.80	Richey, 1989,	Table 2, p.39
	Culebra	FFG_254	562.00	Richey, 1989, Table 2, p.36	58	Culebra	FFG 293	718.10	Richey, 1989,	Table 2, p.39
	Culebra	FFG_255	514.50	Richey, 1989, Table 2, p.37	59	Culebra	FFG_294	504.50	Richey, 1989,	Table 2, p.39
	Culebra	FFG 256	477.90	Richey, 1989, Table 2, p.37	60	Culebra	FFG_295	489.50	Richey, 1989,	
	Culebra	FFG_257	523.30	Richey, 1989, Table 2, p.37	61	Culebra	FFG 297	469.10	Richey, 1989,	
I	Culebra	FFG 258	546.20	Richey, 1989, Table 2, p.37	62	Culebra	FFG 298	528.10	Richey, 1989,	Table 2, p.40
I	Culebra	FFG_259	503.20	Richey, 1989, Table 2, p.37	63	Culebra	FFG_299	497.80	Richey, 1989,	Table 2, p.40
(Culebra	FFG 260	556.30	Richey, 1989, Table 2, p.37	64	Culebra	FFG ³⁰⁰	480.60	Richey, 1989,	Table 2, p.40
	Culebra	FFG 261	542.20	Richey, 1989, Table 2, p.37	65	Culebra	FFG_301	435.90	Richey, 1989,	Table 2, p.40
(Culebra	FFG 262	485.60	Richey, 1989, Table 2, p.37	66	Culebra	FFG 302	443.50	Richey, 1989,	Table 2, p.40
(Culebra	FFG_263	456.50	Richey, 1989, Table 2, p.37	67	Culebra	FFG_303	449.00	Richey, 1989,	Table 2, p.40
(Culebra	FFG_264	703.80	Richey, 1989, Table 2, p.37	68	Culebra	FFG ³⁰⁴	445.90	Richey, 1989,	Table 2, p.40
(Culebra	FFG_265	686.10	Richey, 1989, Table 2, p.37	69	Culebra	FFG ³⁰⁵	443.20	Richey, 1989,	Table 2, p.40
(Culebra	FFG 266	665.40	Richey, 1989, Table 2, p.37	70	Culebra	FFG_306	413.00	Richey, 1989,	Table 2, p.40
(Culebra	FFG_267	641.30	Richey, 1989, Table 2, p.37	71	Culebra	FFG 307	432.20	Richey, 1989,	Table 2, p.40
(Culebra	FFG_268	613.60	Richey, 1989, Table 2, p.37	72	Culebra	FFG 308	376.10	Richey, 1989,	Table 2, p.40
(Culebra	FFG_269	627.70	Richey, 1989, Table 2, p.38	73	Culebra	FFG ³⁰⁹	434.60	Richey, 1989,	
(Culebra	FFG_270	730.30	Richey, 1989, Table 2, p.38	74	Culebra	FFG 310	475.20	Richey, 1989,	
(Culebra	FFG_271	773.90	Richey, 1989, Table 2, p.38	75	Culebra	FFG_311	428.60	Richey, 1989,	Table 2, p.40
(Culebra	FFG_272	751.80	Richey, 1989, Table 2, p.38	76	Culebra	FFG_312	429.80	Richey, 1989,	Table 2. p.40

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	l 	Source
Culebra	FFG_313	870.30	Richey, 1989, Table 2, p.41	39	Culebra	FFG_354	762.00	Richey, 1989,	Table 2, p.43
Culebra	FFG_314	788.90	Richey, 1989, Table 2, p.41	40	Culebra	FFG_361	955.20	Richey, 1989,	Table 2, p.44
Culebra	FFG_315	701.50	Richey, 1989, Table 2, p.41	41	Culebra	FFG_362	919.30	Richey, 1989,	Table 2, p.44
Culebra	FFG_316	678.40	Richey, 1989, Table 2, p.41	42	Culebra	FFG_363	947.00	Richey, 1989,	Table 2, p.44
Culebra	FFG_317	732.40	Richey, 1989, Table 2, p.41	43	Culebra	FFG_364	918.30	Richey, 1989,	Table 2, p.44
Culebra	FFG_318	710.20	Richey, 1989, Table 2, p.41	44	Culebra	FFG_366	911.60	Richey, 1989,	Table 2, p.44
Culebra	FFG_319	704.60	Richey, 1989, Table 2, p.41	45	Culebra	FFG_367	931.70	Richey, 1989,	Table 2, p.44
Culebra	FFG_320	669.40	Richey, 1989, Table 2, p.41	46	Culebra	FFG_370	968.70	Richey, 1989,	Table 2, p.44
Culebra	FFG_321	668.40	Richey, 1989, Table 2, p.41	47	Culebra	FFG_371	965.70	Richey, 1989,	Table 2, p.44
Culebra	FFG_322	669.80	Richey, 1989, Table 2, p.41	48	Culebra	FFG_372	949.10	Richey, 1989,	Table 2, p.45
Culebra	FFG_323	675.20	Richey, 1989, Table 2, p.41	49	Culebra	FFG_373	909.00	Richey, 1989,	Table 2, p.45
Culebra	FFG_324	699.50	Richey, 1989, Table 2, p.41	50	Culebra	FFG_374	908.30	Richey, 1989,	Table 2, p.45
Culebra	FFG_325	762.30	Richey, 1989, Table 2, p.41	51	Culebra	FFG_376	947.60	Richey, 1989,	Table 2, p.45
Culebra	FFG_326	706.50	Richey, 1989, Table 2, p.41	52	Culebra	FFG_381	914.70	Richey, 1989,	Table 2, p.45
Culebra	FFG_327	689.80	Richey, 1989, Table 2, p.42	53	Culebra	FFG_383	908.30	Richey, 1989,	Table 2, p.45
Culebra	FFG_328	673.80	Richey, 1989, Table 2, p.42	54	Culebra	FFG_384	921.10	Richey, 1989,	Table 2, p.45
Culebra	FFG_329	669.00	Richey, 1989, Table 2, p.42	55	Culebra	FFG_385	915.90	Richey, 1989,	Table 2, p.45
Culebra	FFG 330	669.50	Richey, 1989, Table 2, p.42	56	Culebra	FFG_387	911.10	Richey, 1989,	Table 2, p.45
Culebra	FFG_331	652.90	Richey, 1989, Table 2, p.42	57	Culebra	FFG_388	900.70	Richey, 1989,	Table 2, p.46
Culebra	FFG 332	639.50	Richey, 1989, Table 2, p.42	58	Culebra	FFG_389	924.80	Richey, 1989,	Table 2, p.46
Culebra	FFG_333	650.60	Richey, 1989, Table 2, p.42	59	Culebra	FFG_390	919.60	Richey, 1989,	Table 2, p.46
Culebra	FFG_334	644.90	Richey, 1989, Table 2, p.42	60	Culebra	FFG_391	919.20	Richey, 1989,	Table 2, p.46
Culebra	FFG_335	663.30	Richey, 1989, Table 2, p.42	61	Culebra	FFG_392	910.50	Richey, 1989,	Table 2, p.46
Culebra	FFG_336	658.10	Richey, 1989, Table 2, p.42	62	Culebra	FFG_393	785.60	Richey, 1989,	Table 2, p.46
Culebra	FFG_337	641.90	Richey, 1989, Table 2, p.42	63	Culebra	FFG_394	882.40	Richey, 1989,	Table 2, p.46
Culebra	FFG_338	646.90	Richey, 1989, Table 2, p.42	64	Culebra	FFG_395	874.50	Richey, 1989,	Table 2, p.46
Culebra	FFG_339	611.70	Richey, 1989, Table 2, p.42	65	Culebra	FFG_396	853.80	Richey, 1989,	Table 2, p.46
Culebra	FFG_340	617. 8 0	Richey, 1989, Table 2, p.42	66	Culebra	FFG_398	771.70	Richey, 1989,	Table 2, p.46
Culebra	FFG_342	682.70	Richey, 1989, Table 2, p.43	67	Culebra	FFG_399	785.20	Richey, 1989,	Table 2, p.46
Culebra	FFG_344	659.10	Richey, 1989, Table 2, p.43	68	Culebra	FFG_401	839.70	Richey, 1989,	Table 2, p.46
Culebra	FFG_345	678.60	Richey, 1989, Table 2, p.43	69	Culebra	FFG_402	947.10	Richey, 1989,	Table 2, p.46
Culebra	FFG_347	699.50	Richey, 1989, Table 2, p.43	70	Culebra	FFG_403	914.60	Richey, 1989,	Table 2, p.47
Culebra	FFG_348	738.50	Richey, 1989, Table 2, p.43	71	Culebra	FFG_404	873.30	Richey, 1989,	Table 2, p.47
Culebra	FFG_349	714.50	Richey, 1989, Table 2, p.43	72	Culebra	FFG_407	908.00	Richey, 1989,	Table 2, p.47
Culebra	FFG_350	745.20	Richey, 1989, Table 2, p.43	73	Culebra	FFG_408	907.10	Richey, 1989,	Table 2, p.47
Culebra	FFG_351	629.40	Richey, 1989, Table 2, p.43	74	Culebra	FFG_409	943.10	Richey, 1989,	Table 2, p.47
Culebra	FFG_352	629.40	Richey, 1989, Table 2, p.43	75	Culebra	FFG_411	887.30	Richey, 1989,	Table 2, p.47
Culebra	FFG_353	651. 10	Richey, 1989, Table 2, p.43	76	Culebra	FFG_413	915.10	Richey, 1989,	Table 2, p.47

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevatio	on Source
Culebra	FFG_418	930.30	Richey, 1989, Table 2, p.48	39	Culebra	FFG_486	716.00	Richey, 1989, Table 2, p.52
Culebra	FFG_419	942.80	Richey, 1989, Table 2, p.48	40	Culebra	FFG_487	715.40	Richey, 1989, Table 2, p.52
Culebra	FFG_420	936.90	Richey, 1989, Table 2, p.48	41	Culebra	FFG_488	698.30	Richey, 1989, Table 2, p.52
Culebra	FFG_421	923.30	Richey, 1989, Table 2, p.48	42	Culebra	FFG_489	717.30	Richey, 1989, Table 2, p.52
Culebra	FFG_422	923.20	Richey, 1989, Table 2, p.48	43	Culebra	FFG_490	806.80	Richey, 1989, Table 2, p.52
Culebra	FFG_426	926.90	Richey, 1989, Table 2, p.48	44	Culebra	FFG_491	799.80	Richey, 1989, Table 2, p.52
Culebra	FFG_432	884.50	Richey, 1989, Table 2, p.48	45	Culebra	FFG_492	765.60	Richey, 1989, Table 2, p.52
Culebra	FFG_433	897.60	Richey, 1989, Table 2, p.48	46	Culebra	FFG_493	752.40	Richey, 1989, Table 2, p.53
Culebra	FFG_438	835.60	Richey, 1989, Table 2, p.49	47	Culebra	FFG_494	754.00	Richey, 1989, Table 2, p.53
Culebra	FFG_445	920.20	Richey, 1989, Table 2, p.49	48	Culebra	FFG_495	749.80	Richey, 1989, Table 2, p.53
Culebra	FFG_453	782.30	Richey, 1989, Table 2, p.50	49	Culebra	FFG_496	616.00	Richey, 1989, Table 2, p.53
Culebra	FFG_455	770.20	Richey, 1989, Table 2, p.50	50	Culebra	FFG_497	649.90	Richey, 1989, Table 2, p.53
Culebra	FFG_456	776.60	Richey, 1989, Table 2, p.50	51	Culebra	FFG_498	645.60	Richey, 1989, Table 2, p.53
Culebra	FFG_457	831.20	Richey, 1989, Table 2, p.50	52	Culebra	FFG_499	612.40	Richey, 1989, Table 2, p.53
Culebra	FFG_458	833.30	Richey, 1989, Table 2, p.50	53	Culebra	FFG_500	643.40	Richey, 1989, Table 2, p.53
Culebra	FFG_459	761.40	Richey, 1989, Table 2, p.50	54	Culebra	FFG_501	673.00	Richey, 1989, Table 2, p.53
Culebra	FFG_462	828.60	Richey, 1989, Table 2, p.50	55	Culebra	FFG_502	638.20	Richey, 1989, Table 2, p.53
Culebra	FFG_463	854.40	Richey, 1989, Table 2, p.51	56	Culebra	FFG_503	624.00	Richey, 1989, Table 2, p.53
Culebra	FFG_464	843.40	Richey, 1989, Table 2, p.51	57	Culebra	FFG_504	674.30	Richey, 1989, Table 2, p.53
Culebra	FFG_465	844.90	Richey, 1989, Table 2, p.51	58	Culebra	FFG_505	702.30	Richey, 1989, Table 2, p.53
Culebra	FFG_467	430.90	Richey, 1989, Table 2, p.51	59	Culebra	FFG_506	700.10	Richey, 1989, Table 2, p.53
Culebra	FFG_468	377.70	Richey, 1989, Table 2, p.51	60	Culebra	FFG_507	607.00	Richey, 1989, Table 2, p.53
Culebra	FFG_470	408.10	Richey, 1989, Table 2, p.51	61	Culebra	FFG_508	688.90	Richey, 1989, Table 2, p.53
Culebra	FFG_471	426.10	Richey, 1989, Table 2, p.51	62	Culebra	FFG_509	668.10	Richey, 1989, Table 2, p.54
Culebra	FFG_472	501.70	Richey, 1989, Table 2, p.51	63	Culebra	FFG_510	670.10	Richey, 1989, Table 2, p.54
Culebra	FFG_473	390.40	Richey, 1989, Table 2, p.51	64	Culebra	FFG_511	629.10	Richey, 1989, Table 2, p.54
Culebra	FFG_474	677.50	Richey, 1989, Table 2, p.51	65	Culebra	FFG_512	643.70	Richey, 1989, Table 2, p.54
Culebra	FFG_475	686.30	Richey, 1989, Table 2, p.51	66	Culebra	FFG_513	667.00	Richey, 1989, Table 2, p.54
Culebra	FFG_476	760.20	Richey, 1989, Table 2, p.51	67	Culebra	FFG_514	645.90	Richey, 1989, Table 2, p.54
Culebra	FFG_477	726.70	Richey, 1989, Table 2, p.51	68	Culebra	FFG_515	617.20	Richey, 1989, Table 2, p.54
Culebra	FFG_478	702.60	Richey, 1989, Table 2, p.52	69	Culebra	FFG_516	612.60	Richey, 1989, Table 2, p.54
Culebra	FFG_479	706.80	Richey, 1989, Table 2, p.52	70	Culebra	FFG_517	755.30	Richey, 1989, Table 2, p.54
Culebra	FFG_480	688.00	Richey, 1989, Table 2, p.52	71	Culebra	FFG_518	742.20	Richey, 1989, Table 2, p.54
Culebra	FFG_481	681.60	Richey, 1989, Table 2, p.52	72	Culebra	FFG_519	704.10	Richey, 1989, Table 2, p.54
Culebra	FFG_482	711.70	Richey, 1989, Table 2, p.52	73	Culebra	FFG_520	590.90	Richey, 1989, Table 2, p.54
Culebra	FFG_483	741.20	Richey, 1989, Table 2, p.52	74	Culebra	FFG_521	633.10	Richey, 1989, Table 2, p.54
Culebra	FFG_484	725.90	Richey, 1989, Table 2, p.52	75	Culebra	FFG_522	434.20	Richey, 1989, Table 2, p.54
Culebra	FFG_485	730.30	Richey, 1989, Table 2, p.52	76	Culebra	FFG 523	449.30	Richey, 1989, Table 2, p.54

 Table B.2.
 Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevatior	n Source
Culebra	FFG_524	616.00	Richey, 1989, Table 2, p.55	39	Culebra	FFG_648	513.30	Richey, 1989, Table 2, p.60
Culebra	FFG 525	443.90	Richey, 1989, Table 2, p.55	40	Culebra	FFG_652	822.90	Richey, 1989, Table 2, p.60
Culebra	FFG ⁵²⁶	950.70	Richey, 1989, Table 2, p.55	41	Culebra	FFG_653	822.70	Richey, 1989, Table 2, p.61
Culebra	FFG_527	894.20	Richey, 1989, Table 2, p.55	42	Culebra	FFG_654	845.80	Richey, 1989, Table 2, p.61
Culebra	FFG_528	896.10	Richey, 1989, Table 2, p.55	43	Culebra	FFG_655	847.30	Richey, 1989, Table 2, p.61
Culebra	FFG_530	965.90	Richey, 1989, Table 2, p.55	44	Culebra	FFG_656	845.20	Richey, 1989, Table 2, p.61
Culebra	FFG_531	894.90	Richey, 1989, Table 2, p.55	45	Culebra	FFG_657	862.90	Richey, 1989, Table 2, p.61
Culebra	FFG_532	879.70	Richey, 1989, Table 2, p.55	46	Culebra	FFG_658	849.40	Richey, 1989, Table 2, p.61
Culebra	FFG_534	892.80	Richey, 1989, Table 2, p.55	47	Culebra	FFG_659	856.80	Richey, 1989, Table 2, p.61
Culebra	FFG_535	882.10	Richey, 1989, Table 2, p.55	48	Culebra	FFG_660	873.40	Richey, 1989, Table 2, p.61
Culebra	FFG_536	892.50	Richey, 1989, Table 2, p.55	49	Culebra	FFG_662	843.40	Richey, 1989, Table 2, p.61
Culebra	FFG_537	879.90	Richey, 1989, Table 2, p.55	50	Culebra	FFG_664	836.40	Richey, 1989, Table 2, p.61
Culebra	FFG_543	932.20	Richey, 1989, Table 2, p.56	51	Culebra	FFG_666	890.00	Richey, 1989, Table 2, p.62
Culebra	FFG_548	883.30	Richey, 1989, Table 2, p.56	52	Culebra	FFG_667	875.70	Richey, 1989, Table 2, p.62
Culebra	FFG_552	732.70	Richey, 1989, Table 2, p.56	53	Culebra	FFG_668	926.10	Richey, 1989, Table 2, p.62
Culebra	FFG_562	621.80	Richey, 1989, Table 2, p.57	54	Culebra	FFG_669	912.90	Richey, 1989, Table 2, p.62
Culebra	FFG_563	537.40	Richey, 1989, Table 2, p.57	55	Culebra	FFG_670	897.30	Richey, 1989, Table 2, p.62
Culebra	FFG_568	631.90	Richey, 1989, Table 2, p.57	56	Culebra	FFG_671	900.00	Richey, 1989, Table 2, p.62
Culebra	FFG_569	632.80	Richey, 1989, Table 2, p.57	57	Culebra	FFG_672	897.10	Richey, 1989, Table 2, p.62
Culebra	FFG_584	742.70	Richey, 1989, Table 2, p.58	58	Culebra	FFG_673	894.20	Richey, 1989, Table 2, p.62
Culebra	FFG_585	686.70	Richey, 1989, Table 2, p.58	59	Culebra	FFG_674	893.40	Richey, 1989, Table 2, p.62
Culebra	FFG_600	700.10	Richey, 1989, Table 2, p.58	60	Culebra	FFG_675	851.50	Richey, 1989, Table 2, p.62
Culebra	FFG_601	580.00	Richey, 1989, Table 2, p.58	61	Culebra	FFG_676	862.30	Richey, 1989, Table 2, p.62
Culebra	FFG_602	803.50	Richey, 1989, Table 2, p.58	62	Culebra	FFG_677	889.70	Richey, 1989, Table 2, p.62
Culebra	FFG_606	673.70	Richey, 1989, Table 2, p.58	63	Culebra	FFG_679	891.20	Richey, 1989, Table 2, p.62
Culebra	FFG_607	681.30	Richey, 1989, Table 2, p.59	64	Culebra	FFG_685	918.10	Richey, 1989, Table 2, p.63
Culebra	FFG_608	663.20	Richey, 1989, Table 2, p.59	65	Culebra	FFG_689	764.50	Richey, 1989, Table 2, p.63
Culebra	FFG_609	656.50	Richey, 1989, Table 2, p.59	66	Culebra	FFG_690	768.70	Richey, 1989, Table 2, p.63
Culebra	FFG_610	649.20	Richey, 1989, Table 2, p.59	67	Culebra	FFG_691	760.80	Richey, 1989, Table 2, p.63
Culebra	FFG_611	644.00	Richey, 1989, Table 2, p.59	68	Culebra	FFG_692	749.90	Richey, 1989, Table 2, p.63
Culebra	FFG_612	679.10	Richey, 1989, Table 2, p.59	69	Culebra	FFG_693	760.40	Richey, 1989, Table 2, p.63
Culebra	FFG_613	677.90	Richey, 1989, Table 2, p.59	70	Culebra	FFG_694	750.40	Richey, 1989, Table 2, p.63
Culebra	FFG_618	686.70	Richey, 1989, Table 2, p.59	71	Culebra	FFG_695	756.50	Richey, 1989, Table 2, p.63
Culebra	FFG_638	536.80	Richey, 1989, Table 2, p.60	72	Culebra	FFG_696	758.30	Richey, 1989, Table 2, p.63
Culebra	FFG_639	508.10	Richey, 1989, Table 2, p.60	73	Culebra	FFG_697	760.20	Richey, 1989, Table 2, p.64
Culebra	FFG_640	597.80	Richey, 1989, Table 2, p.60	74	Culebra	FFG_698	802.00	Richey, 1989, Table 2, p.64
Culebra	FFG_643	642.30	Richey, 1989, Table 2, p.60	75	Culebra	FFG_699	755.60	Richey, 1989, Table 2, p.64
Culebra	FFG 644	677.20	Richey, 1989, Table 2, p.60	76	Culebra	FFG 700	749.30	Richey, 1989, Table 2, p.64

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevati	on Source
Culebra	FFG_701	749.60	Richey, 1989, Table 2, p.64	39	Culebra	FFG_740	662.60	Richey, 1989, Table 2, p.66
Culebra	FFG_702	755.60	Richey, 1989, Table 2, p.64	40	Culebra	FFG_741	658.70	Richey, 1989, Table 2, p.66
Culebra	FFG_703	761.70	Richey, 1989, Table 2, p.64	41	Culebra	FFG 742	700.70	Richey, 1989, Table 2, p.67
Culebra	FFG_704	745.60	Richey, 1989, Table 2, p.64	42	Culebra	FFG_743	686.10	Richey, 1989, Table 2, p.67
Culebra	FFG_705	679.70	Richey, 1989, Table 2, p.64	43	Culebra	FFG_744	677.20	Richey, 1989, Table 2, p.67
Culebra	FFG_706	702.30	Richey, 1989, Table 2, p.64	44	Culebra	FFG_745	657.70	Richey, 1989, Table 2, p.67
Culebra	FFG_707	686.80	Richey, 1989, Table 2, p.64	45	Culebra	FFG 746	645.50	Richey, 1989, Table 2, p.67
Culebra	FFG_708	736.70	Richey, 1989, Table 2, p.64	46	Culebra	Н1	829.70	Mercer, 1983, Table 1
Culebra	FFG_709	632.80	Richey, 1989, Table 2, p.64	47	Culebra	H10C	709.30	Mercer, 1983, Table 1
Culebra	FFG_710	631.60	Richey, 1989, Table 2, p.64	48	Culebra	H2C	839.70	Mercer, 1983, Table 1
Culebra	FFG_711	634.60	Richey, 1989, Table 2, p.65	49	Culebra	Нз	828.50	Mercer, 1983, Table 1
Culebra	FFG_712	678.30	Richey, 1989, Table 2, p.65	50	Culebra	H4C	866.80	Mercer, 1983, Table 1
Culebra	FFG_713	620.70	Richey, 1989, Table 2, p.65	51	Culebra	H5C	794.90	Mercer, 1983, Table 1
Culebra	FFG_714	731.50	Richey, 1989, Table 2, p.65	52	Culebra	H6C	836.40	Mercer, 1983, Table 1
Culebra	FFG_715	741.80	Richey, 1989, Table 2, p.65	53	Culebra	H7C	891.90	Mercer, 1983, Table 1
Culebra	FFG_716	604.90	Richey, 1989, Table 2, p.65	54	Culebra	H8C	867.20	Mercer, 1983, Table 1
Culebra	FFG_717	672.20	Richey, 1989, Table 2, p.65	55	Culebra	H9C	840.90	Mercer, 1983, Table 1
Culebra	FFG_718	664.70	Richey, 1989, Table 2, p.65	56	Culebra	P1	855.60	Mercer, 1983, Table 1
Culebra	FFG_719	626.00	Richey, 1989, Table 2, p.65	57	Culebra	P10	785.70	Mercer, 1983, Table 1
Culebra	FFG_720	625.80	Richey, 1989, Table 2, p.65	58	Culebra	P11	790.00	Mercer, 1983, Table 1
Culebra	FFG_721	646.20	Richey, 1989, Table 2, p.65	59	Culebra	P12	835.50	Mercer, 1983, Table 1
Culebra	FFG_723	762.80	Richey, 1989, Table 2, p.65	60	Culebra	P13	835.50	Mercer, 1983, Table 1
Culebra	FFG_724	686.50	Richey, 1989, Table 2, p.65	61	Culebra	P14	849.40	Mercer, 1983, Table 1
Culebra	FFG_725	652.90	Richey, 1989, Table 2, p.65	62	Culebra	P15	883.00	Mercer, 1983, Table 1
Culebra	FFG_726	648.60	Richey, 1989, Table 2, p.65	63	Culebra	P16	858.90	Mercer, 1983, Table 1
Culebra	FFG_727	639.20	Richey, 1989, Table 2, p.66	64	Culebra	P17	846.70	Mercer, 1983, Table 1
Culebra	FFG_728	646.70	Richey, 1989, Table 2, p.66	65	Culebra	P18	782.70	Mercer, 1983, Table 1
Culebra	FFG_729	648.90	Richey, 1989, Table 2, p.66	66	Culebra	P19	785.80	Mercer, 1983, Table 1
Culebra	FFG_730	673.60	Richey, 1989, Table 2, p.66	67	Culebra	P2	799.20	Mercer, 1983, Table 1
Culebra	FFG_731	670.40	Richey, 1989, Table 2, p.66	68	Culebra	P20	792.50	Mercer, 1983, Table 1
Culebra	FFG_732	686.40	Richey, 1989, Table 2, p.66	69	Culebra	P21	795.50	Mercer, 1983, Table 1
Culebra	FFG_733	749.80	Richey, 1989, Table 2, p.66	70	Culebra	P3	835.40	Mercer, 1983, Table 1
Culebra	FFG_734	707.40	Richey, 1989, Table 2, p.66	71	Culebra	P4	813.50	Mercer, 1983, Table 1
Culebra	FFG_735	638.90	Richey, 1989, Table 2, p.66	72	Culebra	P5	812.90	Mercer, 1983, Table 1
Culebra	FFG_736	676.40	Richey, 1989, Table 2, p.66	73	Culebra	P6	858.60	Mercer, 1983, Table 1
Culebra	FFG_737	620.30	Richey, 1989, Table 2, p.66	74	Culebra	P7	864.40	Mercer, 1983, Table 1
Culebra	FFG_738	662.00	Richey, 1989, Table 2, p.66	75	Culebra	P8	846.10	Mercer, 1983, Table 1
Culebra	FFG 739	694.80	Richey, 1989, Table 2, p.66	76	Culebra	P9	816.30	Mercer, 1983, Table 1

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Culebra	REF	823.40	Rechard et al.,1991, Figure 2.2-1	39	Halite 1	WIPP11	-37.80	SNL and USGS, 1982a, Table 2
Culebra	SaltShft	822.81	Bechtel, Inc., 1986, Appendix D	40	Halite 1	WIPP11	-22.20	SNL and USGS, 1982a, Table 2
Culebra	WIPP11	786.90	Mercer, 1983, Table 1	41	Halite1	WIPP12	-131.10	SNL and D'Appolonia Consulting, 1983, Table
Culebra	WIPP11	787.00	SNL and USGS, 1982a, Table 2	42	Halite1	WIPP12	24.50	SNL and D'Appolonia Consulting, 1983, Table
Culebra	WIPP12	811.30	SNL and D'Appolonia Consulting, 1983, Table 2	43	Halite2	DOE1	-38.60	U.S. DOE, Sep 1982, Table 2
Culebra	WIPP12	811.40	Mercer, 1983, Table 1	44	Halite2	DOE1	30.00	U.S. DOE, Sep 1982, Table 2
Culebra	WIPP13	824.10	Mercer, 1983, Table 1	45	Halite2	WIPP11	14.40	SNL and USGS, 1982a, Table 2
Culebra	WIPP16	679.70	Mercer, 1983, Table 1	46	Halite2	WIPP11	309.40	SNL and USGS, 1982a, Table 2
Culebra	WIPP18	813.80	Mercer, 1983, Table 1	47	Halite2	WIPP12	57.80	SNL and D'Appolonia Consulting, 1983, Table
Culebra	WIPP19	816.00	Mercer, 1983, Table 1	48	Halite2	WIPP12	127.30	SNL and D'Appolonia Consulting, 1983, Table
Culebra	WIPP21	819.30	Mercer, 1983, Table 1	49	L_Member	DOE1	163.60	U.S. DOE, Sep 1982, Table 2
Culebra	WIPP22	818.00	Mercer, 1983, Table 1	50	L_Member	DOE2	102.30	Mercer et al., 1987, Table 3-2
Culebra	WIPP25	843.10	Mercer, 1983, Table 1	51	L_Member	ERDA9	178.10	SNL and USGS, 1982b, Table 2
Culebra	WIPP26	904.00	Mercer, 1983, Table 1	52	L_Member	REF	178.10	Rechard et al., 1991, Figure 2.2-1
Culebra	WIPP27	879.30	Mercer, 1983, Table 1	53	L_Member	WIPP11	334.10	SNL and USGS, 1982a, Table 2
Culebra	WIPP28	892.20	Mercer, 1983, Table 1	54	L_Member	WIPP12	227.40	SNL and D'Appolonia Consulting, 1983, Tabl
Culebra	WIPP29	903.70	Mercer, 1983, Table 1	55	M49er	AEC7	911.90	Mercer, 1983, Table 1
Culebra	WIPP30	852.60	Mercer, 1983, Table 1	56	M49er	AEC8	875.40	Mercer, 1983, Table 1
Culebra	WIPP32	902.80	Mercer, 1983, Table 1	57	M49er	AirShft	877.42	Holt and Powers, 1990, Figure 22
Culebra	WIPP33	845.30	Mercer, 1983, Table 1	58	M49er	B25	876.60	Mercer, 1983, Table 1
Culebra	WIPP34	792.20	Mercer, 1983, Table 1	59	M49er	DOE1	855.20	U.S. DOE, Sep 1982, Table 2
Culebra	WastShft	823.64	Bechtel, Inc., 1986, Appendix E	60	M49er	DOE2	847.10	Mercer et al., 1987, Table 3-2
DeweyLk	AirShft	1022.02	Holt and Powers, 1990, Figure 22	61	M49er	ERDA6	915.60	Mercer, 1983, Table 1
DeweyLk	DOE1	1018.10	U.S. DOE, Sep 1982, Table 2	62	M49er	ERDA9	878.10	Mercer, 1983, Table 1
DeweyLk	DOE2	1001.30	Mercer et al., 1987, Table 3-2	63	M49er	ERDA9	874.00	SNL and USGS, 1982b, Table 2
DeweyLk	ERDA9	1023.30	SNL and USGS, 1982b, Table 2	64	M49er	ExhtShft	872.52	Bechtel, Inc., 1986, Appendix F
DeweyLk	ExhtShft	1022.73	Bechtel, Inc., 1986, Appendix F	65	M49er	FFG_002	686.10	Richey, 1989, Table 2, p.21
DeweyLk	REF	1023.30	Rechard et al.,1991, Figure 2.2-1	66	M49er	FFG_004	739.10	Richey, 1989, Table 2, p.21
DeweyLk	SaltShft	1025.35	Bechtel, Inc., 1986, Appendix D	67	M49er	FFG_005	693.80	Richey, 1989, Table 2, p.21
DeweyLk	WIPP11	995.20	SNL and USGS, 1982a, Table 2	68	M49er	FFG_006	688.90	Richey, 1989, Table 2, p.21
DeweyLk	WIPP12	1010.90	SNL and D'Appolonia Consulting, 1983, Table 2	69	M49er	FFG_007	678.20	Richey, 1989, Table 2, p.21
DeweyLk	WastShft	1009.97	Bechtel, Inc., 1986, Appendix E	70	M49er	FFG_009	678.10	Richey, 1989, Table 2, p.21
Halite1	DOE1	-170.40	U.S. DOE, Sep 1982, Table 2	71	M49er	FFG_011	684.60	Richey, 1989, Table 2, p.21
Halite1	DOE1	-71.60	U.S. DOE, Sep 1982, Table 2	72	M49er	FFG_012	687.00	Richey, 1989, Table 2, p.21
Halite1	DOE2	-119.10	Mercer et al., 1987, Table 3-2	73	M49er	FFG_013	696.80	Richey, 1989, Table 2, p.21
Halite1	DOE2	-116.40	Mercer et al., 1987, Table 3-2	74	M49er	FFG_014	741.90	Richey, 1989, Table 2, p.21
Halite1	REF	-119.10	Rechard et al.,1991, Figure 2.2-1	75	M49er	FFG_016	666.90	Richey, 1989, Table 2, p.21
Halite 1	REF	-116.40	Rechard et al.,1991, Figure 2.2-1	76	M49er	FFG_017	669.60	Richey, 1989, Table 2, p.22

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer ———	Well ID	Elevation	Source		Layer	Well ID	Elevat	ion	Source
M49er	FFG 018	672.40	Richey, 1989, Table 2, p.22	39	M49er	FFG_060	645.50	Richey, 1989,	Table 2, p.24
M49er	FFG_019	666.30	Richey, 1989, Table 2, p.22	40	M49er	FFG_061	645.90	Richey, 1989,	Table 2, p.24
M49er	FFG_020	740.70	Richey, 1989, Table 2, p.22	41	M49er	FFG_062	574.30	Richey, 1989,	Table 2, p.24
M49er	FFG_023	678.50	Richey, 1989, Table 2, p.22	42	M49er	FFG_063	534.70	Richey, 1989,	Table 2, p.24
M49er	FFG_024	662.00	Richey, 1989, Table 2, p.22	43	M49er	FFG_064	559.70	Richey, 1989,	Table 2, p.24
M49er	FFG_025	674.10	Richey, 1989, Table 2, p.22	44	M49er	FFG_065	542.90	Richey, 1989,	Table 2, p.24
M49er	FFG_026	670.80	Richey, 1989, Table 2, p.22	45	M49er	FFG_066	496.80	Richey, 1989,	Table 2, p.24
M49er	FFG_027	664.20	Richey, 1989, Table 2, p.22	46	M49er	FFG_067	537.10	Richey, 1989,	Table 2, p.25
M49er	FFG_028	629.80	Richey, 1989, Table 2, p.22	47	M49er	FFG_068	496.50	Richey, 1989,	Table 2, p.25
M49er	FFG_029	616.00	Richey, 1989, Table 2, p.22	48	M49er	FFG_069	524.30	Richey, 1989,	Table 2, p.25
M49er	FFG_030	616.60	Richey, 1989, Table 2, p.22	49	M49er	FFG_070	553.80	Richey, 1989,	Table 2, p.25
M49er	FFG_031	609.60	Richey, 1989, Table 2, p.22	50	M49er	FFG_071	811.10	Richey, 1989,	Table 2, p.25
M49er	FFG_032	611.90	Richey, 1989, Table 2, p.22	51	M49er	FFG_072	739.70	Richey, 1989,	
M49er	FFG_033	607.20	Richey, 1989, Table 2, p.22	52	M49er	FFG 073	717.80	Richey, 1989,	Table 2, p.25
M49er	FFG_034	601.30	Richey, 1989, Table 2, p.23	53	M49er	FFG_074	723.70	Richey, 1989,	Table 2, p.25
M49er	FFG_035	590.30	Richey, 1989, Table 2, p.23	54	M49er	FFG_075	773.30	Richey, 1989,	Table 2, p.25
M49er	FFG_036	602.60	Richey, 1989, Table 2, p.23	55	M49er	FFG_076	836.40	Richey, 1989,	Table 2, p.25
M49er	FFG_037	592.90	Richey, 1989, Table 2, p.23	56	M49er	FFG_078	874.40	Richey, 1989,	Table 2, p.25
M49er	FFG_038	579.40	Richey, 1989, Table 2, p.23	57	M49er	FFG_079	848.00	Richey, 1989,	Table 2, p.25
M49er	FFG_039	798.60	Richey, 1989, Table 2, p.23	58	M49er	FFG_080	827.50	Richey, 1989,	Table 2, p.25
M49er	FFG_040	740.70	Richey, 1989, Table 2, p.23	59	M49er	FFG_081	746.80	Richey, 1989,	Table 2, p.26
M49er	FFG_041	801.00	Richey, 1989, Table 2, p.23	60	M49er	FFG_082	779.10	Richey, 1989,	Table 2, p.26
M49er	FFG_042	805.50	Richey, 1989, Table 2, p.23	61	M49er	FFG_083	693.00	Richey, 1989,	Table 2, p.26
M49er	FFG_043	810.00	Richey, 1989, Table 2, p.23	62	M49er	FFG_084	721.10	Richey, 1989,	Table 2, p.26
M49er	FFG_044	762.30	Richey, 1989, Table 2, p.23	63	M49er	FFG_085	714.20	Richey, 1989,	Table 2, p.26
M49er	FFG_047	633.40	Richey, 1989, Table 2, p.23	64	M49er	FFG 086	722.60	Richey, 1989,	Table 2, p.26
M49er	FFG_048	653.20	Richey, 1989, Table 2, p.23	65	M49er	FFG_087	698.00	Richey, 1989,	Table 2, p.26
M49er	FFG_049	641.90	Richey, 1989, Table 2, p.23	66	M49er	FFG_088	694.40	Richey, 1989,	Table 2, p.26
M49er	FFG_050	648.00	Richey, 1989, Table 2, p.24	67	M49er	FFG_089	675.80	Richey, 1989,	Table 2, p.26
M49er	FFG_051	648.90	Richey, 1989, Table 2, p.24	68	M49er	FFG_091	720.00	Richey, 1989,	Table 2, p.26
M49er	FFG_052	651.60	Richey, 1989, Table 2, p.24	69	M49er	FFG_092	734.90	Richey, 1989,	Table 2, p.26
M49er	FFG_053	642.80	Richey, 1989, Table 2, p.24	70	M49er	FFG 093	737.30	Richey, 1989,	Table 2, p.26
M49er	FFG_054	641.90	Richey, 1989, Table 2, p.24	71	M49er	FFG_094	740.60	Richey, 1989,	
M49er	FFG_055	641.60	Richey, 1989, Table 2, p.24	72	M49er	FFG_095	706.50	Richey, 1989,	Table 2, p.26
M49er	FFG_056	644.30	Richey, 1989, Table 2, p.24	73	M49er	FFG_096	689.50	Richey, 1989,	
M49er	FFG_057	645.60	Richey, 1989, Table 2, p.24	74	M49er	FFG_097	671.20	Richey, 1989,	Table 2, p.27
M49er	FFG_058	641.00	Richey, 1989, Table 2, p.24	75	M49er	FFG_098	645.50	Richey, 1989,	Table 2, p.27
M49er	FFG_059	643.40	Richey, 1989, Table 2, p.24	76	M49er	FFG 099	641.60	Richey, 1989,	Table 2. p.27

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevati	on Source
M49er	FFG 100	624.90	Richey, 1989, Table 2, p.27	39	M49er	FFG_141	873.10	Richey, 1989, Table 2, p.29
M49er	FFG_101	593.10	Richey, 1989, Table 2, p.27	40	M49er	FFG 142	849.30	Richey, 1989, Table 2, p <i>.</i> 29
M49er	FFG ¹⁰²	613.90	Richey, 1989, Table 2, p.27	41	M49er	FFG_143	855.80	Richey, 1989, Table 2, p.29
M49er	FFG_103	674.60	Richey, 1989, Table 2, p.27	42	M49er	FFG_159	956.20	Richey, 1989, Table 2, p.30
M49er	FFG_104	572.50	Richey, 1989, Table 2, p.27	43	M49er	FFG_160	950.10	Richey, 1989, Table 2, p.30
M49er	FFG_105	926.90	Richey, 1989, Table 2, p.27	44	M49er	FFG_161	957.40	Richey, 1989, Table 2, p.30
M49er	FFG_106	954.70	Richey, 1989, Table 2, p.27	45	M49er	FFG_162	955.90	Richey, 1989, Table 2, p.30
M49er	FFG_107	945.20	Richey, 1989, Table 2, p.27	46	M49er	FFG_163	955.30	Richey, 1989, Table 2, p.30
M49er	FFG_108	933.60	Richey, 1989, Table 2, p.27	47	M49er	FFG_166	954.30	Richey, 1989, Table 2, p.31
M49er	FFG_109	917.20	Richey, 1989, Table 2, p.27	48	M49er	FFG_167	936.70	Richey, 1989, Table 2, p.31
M49er	FFG_110	887.00	Richey, 1989, Table 2, p.27	49	M49er	FFG_168	967.50	Richey, 1989, Table 2, p.31
M49er	FFG_111	896.70	Richey, 1989, Table 2, p.27	50	M49er	FFG_169	980.20	Richey, 1989, Table 2, p.31
M49er	FFG_112	879.30	Richey, 1989, Table 2, p.28	51	M49er	FFG_170	933.60	Richey, 1989, Table 2, p.31
M49er	FFG_113	893.40	Richey, 1989, Table 2, p.28	52	M49er	FFG_173	934.80	Richey, 1989, Table 2, p.31
M49er	FFG_114	924.20	Richey, 1989, Table 2, p.28	53	M49er	FFG_180	943.90	Richey, 1989, Table 2, p.31
M49er	FFG_115	913.80	Richey, 1989, Table 2, p.28	54	M49er	FFG_182	856.50	Richey, 1989, Table 2, p.32
M49er	FFG_116	929.30	Richey, 1989, Table 2, p.28	55	M49er	FFG_189	922.70	Richey, 1989, Table 2, p.32
M49er	FFG_117	935.70	Richey, 1989, Table 2, p.28	56	M49er	FFG_190	901.60	Richey, 1989, Table 2, p.32
M49er	FFG_120	944.30	Richey, 1989, Table 2, p.28	57	M49er	FFG_191	901.30	Richey, 1989, Table 2, p.32
M49er	FFG_121	946.40	Richey, 1989, Table 2, p.28	58	M49er	FFG_192	834.50	Richey, 1989, Table 2, p.32
M49er	FFG_122	944.90	Richey, 1989, Table 2, p.28	59	M49er	FFG_194	839.70	Richey, 1989, Table 2, p.33
M49er	FFG_123	928.10	Richey, 1989, Table 2, p.28	60	M49er	FFG_195	855.30	Richey, 1989, Table 2, p.33
M49er	FFG_124	900.40	Richey, 1989, Table 2, p.28	61	M49er	FFG_196	897.60	Richey, 1989, Table 2, p.33
M49er	FFG_125	912.20	Richey, 1989, Table 2, p.28	62	M49er	FFG_197	899.50	Richey, 1989, Table 2, p.33
M49er	FFG_126	904.50	Richey, 1989, Table 2, p.28	63	M49er	FFG_198	898.20	Richey, 1989, Table 2, p.33
M49er	FFG_127	909.50	Richey, 1989, Table 2, p.28	64	M49er	FFG_199	888.80	Richey, 1989, Table 2, p.33
M49er	FFG_128	948.00	Richey, 1989, Table 2, p.28	65	M49er	FFG_200	902.50	Richey, 1989, Table 2, p.33
M49er	FFG_129	923.80	Richey, 1989, Table 2, p.28	66	M49er	FFG_201	894.60	Richey, 1989, Table 2, p.33
M49er	FFG_130	954.00	Richey, 1989, Table 2, p.28	67	M49er	FFG_202	834.20	Richey, 1989, Table 2, p.33
M49er	FFG_132	956.50	Richey, 1989, Table 2, p.29	68	M49er	FFG_203	841.30	Richey, 1989, Table 2, p.33
M49er	FFG_133	959.50	Richey, 1989, Table 2, p.29	69	M49er	FFG_204	864.80	Richey, 1989, Table 2, p.33
M49er	FFG_134	963.80	Richey, 1989, Table 2, p.29	70	M49er	FFG_205	880.60	Richey, 1989, Table 2, p.33
M49er	FFG_135	937.30	Richey, 1989, Table 2, p.29	71	M49er	FFG_206	895.80	Richey, 1989, Table 2, p.33
M49er	FFG_136	934.30	Richey, 1989, Table 2, p.29	72	M49er	FFG_207	892.20	Richey, 1989, Table 2, p.33
M49er	FFG_137	946.80	Richey, 1989, Table 2, p.29	73	M49er	FFG_208	902.80	Richey, 1989, Table 2, p.34
M49er	FFG_138	897.40	Richey, 1989, Table 2, p.29	74	M49er	FFG_210	885.80	Richey, 1989, Table 2, p.34
M49er	FFG_139	907.70	Richey, 1989, Table 2, p.29	75	M49er	FFG_212	870.50	Richey, 1989, Table 2, p.34
M49er	FFG_140	849.10	Richey, 1989, Table 2, p.29	76	M49er	FFG 213	903.50	Richey, 1989, Table 2, p.34

 Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	n Source
M49er	FFG 214	877.80	Richey, 1989, Table 2, p.34	39	M49er	FFG_254	651.00	Richey, 1989, Table 2, p.36
M49er	FFG_215	852.50	Richey, 1989, Table 2, p.34	40	M49er	FFG_255	609.90	Richey, 1989, Table 2, p.37
M49er	FFG_216	737.00	Richey, 1989, Table 2, p.34	41	M49er	FFG_256	557.80	Richey, 1989, Table 2, p.37
M49er	FFG_217	873.60	Richey, 1989, Table 2, p.34	42	M49er	FFG_257	600.40	Richey, 1989, Table 2, p.37
M49er	FFG_218	863.50	Richey, 1989, Table 2, p.34	43	M49er	FFG_258	615.00	Richey, 1989, Table 2, p.37
M49er	FFG_219	910.40	Richey, 1989, Table 2, p.34	44	M49er	FFG_259	584.90	Richey, 1989, Table 2, p.37
M49er	FFG_220	859.90	Richey, 1989, Table 2, p.34	45	M49er	FFG_260	621.80	Richey, 1989, Table 2, p.37
M49er	FFG_221	814.40	Richey, 1989, Table 2, p.34	46	M49er	FFG_261	610.20	Richey, 1989, Table 2, p.37
M49er	FFG_222	770.60	Richey, 1989, Table 2, p.34	47	M49er	FFG_263	553.40	Richey, 1989, Table 2, p.37
M49er	FFG_224	677.00	Richey, 1989, Table 2, p.35	48	M49er	FFG_264	777.60	Richey, 1989, Table 2, p.37
M49er	FFG_225	683.70	Richey, 1989, Table 2, p.35	49	M49er	FFG_265	775.40	Richey, 1989, Table 2, p.37
M49er	FFG_226	683.20	Richey, 1989, Table 2, p.35	50	M49er	FFG_266	758.90	Richey, 1989, Table 2, p.37
M49er	FFG_228	673.70	Richey, 1989, Table 2, p.35	51	M49er	FFG_267	736.40	Richey, 1989, Table 2, p.37
M49er	FFG_229	701.60	Richey, 1989, Table 2, p.35	52	M49er	FFG_268	716.00	Richey, 1989, Table 2, p.37
M49er	FFG_230	688.60	Richey, 1989, Table 2, p.35	53	M49er	FFG_269	729.20	Richey, 1989, Table 2, p.38
M49er	FFG_231	704.00	Richey, 1989, Table 2, p.35	54	M49er	FFG_270	791.80	Richey, 1989, Table 2, p.38
M49er	FFG_232	717.80	Richey, 1989, Table 2, p.35	55	M49er	FFG_271	833.90	Richey, 1989, Table 2, p.38
M49er	FFG_233	709.30	Richey, 1989, Table 2, p.35	56	M49er	FFG_272	846.60	Richey, 1989, Table 2, p.38
M49er	FFG_234	745.80	Richey, 1989, Table 2, p.35	57	M49er	FFG_273	816.90	Richey, 1989, Table 2, p.38
M49er	FFG_235	722.40	Richey, 1989, Table 2, p.35	58	M49er	FFG_274	851.00	Richey, 1989, Table 2, p.38
M49er	FFG_236	768.40	Richey, 1989, Table 2, p.35	59	M49er	FFG_275	858.60	Richey, 1989, Table 2, p.38
M49er	FFG_237	735.30	Richey, 1989, Table 2, p.35	60	M49er	FFG_276	861.60	Richey, 1989, Table 2, p.38
M49er	FFG_238	716.60	Richey, 1989, Table 2, p.36	61	M49er	FFG_277	853.50	Richey, 1989, Table 2, p.38
M49er	FFG_239	703.10	Richey, 1989, Table 2, p.36	62	M49er	FFG_278	868.40	Richey, 1989, Table 2, p.38
M49er	FFG_240	695.20	Richey, 1989, Table 2, p.36	63	M49er	FFG_279	860.10	Richey, 1989, Table 2, p.38
M49er	FFG_241	688.90	Richey, 1989, Table 2, p.36	64	M49er	FFG_280	858.60	Richey, 1989, Table 2, p.38
M49er	FFG_242	799.80	Richey, 1989, Table 2, p.36	65	M49er	FFG_281	835.80	Richey, 1989, Table 2, p.38
M49er	FFG_243	763.80	Richey, 1989, Table 2, p.36	66	M49er	FFG_283	584.60	Richey, 1989, Table 2, p.39
M49er	FFG_244	798.40	Richey, 1989, Table 2, p.36	67	M49er	FFG_284	730.30	Richey, 1989, Table 2, p.39
M49er	FFG_245	597.10	Richey, 1989, Table 2, p.36	68	M49er	FFG_285	760.20	Richey, 1989, Table 2, p.39
M49er	FFG_246	601.70	Richey, 1989, Table 2, p.36	69	M49er	FFG_286	837.50	Richey, 1989, Table 2, p.39
M49er	FFG_247	589.10	Richey, 1989, Table 2, p.36	70	M49er	FFG_287	812.00	Richey, 1989, Table 2, p.39
M49er	FFG_248	594.70	Richey, 1989, Table 2, p.36	71	M49er	FFG_288	765.70	Richey, 1989, Table 2, p.39
M49er	FFG_249	593.70	Richey, 1989, Table 2, p.36	72	M49er	FFG_289	736.30	Richey, 1989, Table 2, p.39
M49er	FFG_250	674.10	Richey, 1989, Table 2, p.36	73	M49er	FFG_290	825.70	Richey, 1989, Table 2, p.39
M49er	FFG_251	568.70	Richey, 1989, Table 2, p.36	74	M49er	FFG_291	766.20	Richey, 1989, Table 2, p.39
M49er	FFG_252	708.60	Richey, 1989, Table 2, p.36	75	M49er	FFG_292	774.20	Richey, 1989, Table 2, p.39
M49er	FFG_253	660.50	Richey, 1989, Table 2, p.36	76	M49er	FFG 293	766.00	Richey, 1989, Table 2, p.39

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevat	lion Source
M49er	FFG_294	595.30	Richey, 1989, Table 2, p.39	39	M49er	FFG_333	746.30	Richey, 1989, Table 2, p.4.
M49er	FFG_295	582.80	Richey, 1989, Table 2, p.39	40	M49er	FFG ³³⁴	743.10	Richey, 1989, Table 2, p.4
M49er	FFG_297	567.50	Richey, 1989, Table 2, p.39	41	M49er	FFG_335	757.10	Richey, 1989, Table 2, p.4
M49er	FFG_298	569.20	Richey, 1989, Table 2, p.40	42	M49er	FFG_336	754.40	Richey, 1989, Table 2, p.4
M49er	FFG_299	594.40	Richey, 1989, Table 2, p.40	43	M49er	FFG 337	738.50	Richey, 1989, Table 2, p.4
M49er	FFG_300	543.70	Richey, 1989, Table 2, p.40	44	M49er	FFG_338	744.80	Richey, 1989, Table 2, p.4,
M49er	FFG_301	514.80	Richey, 1989, Table 2, p.40	45	M49er	FFG_339	711.10	Richey, 1989, Table 2, p.4
M49er	FFG_302	542.50	Richey, 1989, Table 2, p.40	46	M49er	FFG_340	721.40	Richey, 1989, Table 2, p.4
M49er	FFG_303	535.90	Richey, 1989, Table 2, p.40	47	M49er	FFG_342	747.60	Richey, 1989, Table 2, p.4
M49er	FFG_304	540.40	Richey, 1989, Table 2, p.40	48	M49er	FFG_344	713.40	Richey, 1989, Table 2, p.43
M49er	FFG_305	534.60	Richey, 1989, Table 2, p.40	49	M49er	FFG_345	775.50	Richey, 1989, Table 2, p.43
M49er	FFG_306	492.20	Richey, 1989, Table 2, p.40	50	M49er	FFG_347	766.00	Richey, 1989, Table 2, p.43
M49er	FFG_307	517.90	Richey, 1989, Table 2, p.40	51	M49er	FFG_348	790.90	Richey, 1989, Table 2, p.43
M49er	FFG_308	491.30	Richey, 1989, Table 2, p.40	52	M49er	FFG_349	764.20	Richey, 1989, Table 2, p.43
M49er	FFG_309	535.20	Richey, 1989, Table 2, p.40	53	M49er	FFG_350	808.90	Richey, 1989, Table 2, p.43
M49er	FFG_310	564.20	Richey, 1989, Table 2, p.40	54	M49er	FFG_351	732.20	Richey, 1989, Table 2, p.43
M49er	FFG_311	498.70	Richey, 1989, Table 2, p.40	55	M49er	FFG_352	731.50	Richey, 1989, Table 2, p.43
M49er	FFG_312	537.40	Richey, 1989, Table 2, p.40	56	M49er	FFG_353	751.70	Richey, 1989, Table 2, p.43
M49er	FFG_313	934.30	Richey, 1989, Table 2, p.41	57	M49er	FFG_354	817.80	Richey, 1989, Table 2, p.43
M49er	FFG_314	862.30	Richey, 1989, Table 2, p.41	58	M49er	FFG_361	1011.00	Richey, 1989, Table 2, p.44
M49er	FFG_315	782.90	Richey, 1989, Table 2, p.41	59	M49er	FFG_366	960.40	Richey, 1989, Table 2, p.44
M49er	FFG_316	771.40	Richey, 1989, Table 2, p.41	60 (M49er	FFG_367	975.90	Richey, 1989, Table 2, p.44
M49er	FFG_317	792.20	Richey, 1989, Table 2, p.41	61	M49er	FFG_371	1012.90	Richey, 1989, Table 2, p.44
M49er	FFG_318	758.00	Richey, 1989, Table 2, p.41	62	M49er	FFG_374	946.40	Richey, 1989, Table 2, p.45
M49er	FFG_319	769.30	Richey, 1989, Table 2, p.41	63	M49er	FFG_383	955.30	Richey, 1989, Table 2, p.45
M49er	FFG_320	762.30	Richey, 1989, Table 2, p.41	64	M49er	FFG_384	976.00	Richey, 1989, Table 2, p.45
M49er	FFG_321	760.50	Richey, 1989, Table 2, p.41	65	M49er	FFG_387	966.60	Richey, 1989, Table 2, p.45
M49er	FFG_322	755.10	Richey, 1989, Table 2, p.41	66	M49er	FFG_388	959.20	Richey, 1989, Table 2, p.46
M49er	FFG_323	751.10	Richey, 1989, Table 2, p.41	67	M49er	FFG_390	974.40	Richey, 1989, Table 2, p.46
M49er	FFG_324	761.70	Richey, 1989, Table 2, p.41	68	M49er	FFG_391	973.50	Richey, 1989, Table 2, p.46
M49er	FFG_325	819.60	Richey, 1989, Table 2, p.41	69	M49er	FFG_392	967.80	Richey, 1989, Table 2, p.46
M49er	FFG_326	754.40	Richey, 1989, Table 2, p.41	70	M49er	FFG_393	835.60	Richey, 1989, Table 2, p.46
M49er	FFG_327	748.30	Richey, 1989, Table 2, p.42	71	M49er	FFG_394	925.90	Richey, 1989, Table 2, p.46
M49er	FFG_328	757.00	Richey, 1989, Table 2, p.42	72	M49er	FFG_395	918.40	Richey, 1989, Table 2, p.46
M49er	FFG_329	755.60	Richey, 1989, Table 2, p.42	73	M49er	FFG_396	901.60	Richey, 1989, Table 2, p.46
M49er	FFG_330	754.90	Richey, 1989, Table 2, p.42	74	M49er	FFG_398	825.70	Richey, 1989, Table 2, p.46
M49er	FFG_331	753.50	Richey, 1989, Table 2, p.42	75	M49er	FFG_402	1002.50	Richey, 1989, Table 2, p.46
M49er	FFG_332	744.00	Richey, 1989, Table 2, p.42	76	M49er	FFG 403	963.00	Richey, 1989, Table 2, p.47

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
M49er	FFG 404	925.70	Richey, 1989, Table 2, p.47	39	M49er	FFG_489	764.60	Richey, 1989, Table 2, p.52
M49er	FFG_407	958.30	Richey, 1989, Table 2, p.47	40	M49er	FFG_490	855.60	Richey, 1989, Table 2, p.52
M49er	FFG_419	997.00	Richey, 1989, Table 2, p.48	41	M49er	FFG_491	855.90	Richey, 1989, Table 2, p.52
M49er	FFG_420	992.70	Richey, 1989, Table 2, p.48	42	M49er	FFG_492	817.50	Richey, 1989, Table 2, p.52
M49er	FFG_421	983.60	Richey, 1989, Table 2, p.48	43	M49er	FFG_493	803.60	Richey, 1989, Table 2, p.53
M49er	FFG_422	976.60	Richey, 1989, Table 2, p.48	44	M49er	FFG 494	811.30	Richey, 1989, Table 2, p.53
M49er	FFG_432	931.80	Richey, 1989, Table 2, p.48	45	M49er	FFG 495	799.40	Richey, 1989, Table 2, p.53
M49er	FFG_438	892.60	Richey, 1989, Table 2, p.49	46	M49er	FFG_496	715.40	Richey, 1989, Table 2, p.53
M49er	FFG_455	837.60	Richey, 1989, Table 2, p.50	47	M49er	FFG_497	721.50	Richey, 1989, Table 2, p.53
M49er	FFG_456	829.00	Richey, 1989, Table 2, p.50	48	M49er	FFG 498	737.00	Richey, 1989, Table 2, p.53
M49er	FFG_457	885.10	Richey, 1989, Table 2, p.50	49	M49er	FFG_499	715.40	Richey, 1989, Table 2, p.53
M49er	FFG_458	888.20	Richey, 1989, Table 2, p.50	50	M49er	FFG_500	726.00	Richey, 1989, Table 2, p.53
M49er	FFG_459	816.60	Richey, 1989, Table 2, p.50	51	M49er	FFG_501	731.50	Richey, 1989, Table 2, p.53
M49er	FFG_462	884.10	Richey, 1989, Table 2, p.50	52	M49er	FFG_502	724.80	Richey, 1989, Table 2, p.53
M49er	FFG_463	913.50	Richey, 1989, Table 2, p.51	53	M49er	FFG 503	705.40	Richey, 1989, Table 2, p.53
M49er	FFG ⁴⁶⁴	900.40	Richey, 1989, Table 2, p.51	54	M49er	FFG_504	723.60	Richey, 1989, Table 2, p.53
M49er	FFG_465	902.80	Richey, 1989, Table 2, p.51	55	M49er	FFG_505	754.70	Richey, 1989, Table 2, p.53
M49er	FFG_467	506.20	Richey, 1989, Table 2, p.51	56	M49er	FFG_506	749.20	Richey, 1989, Table 2, p.53
M49er	FFG ⁴⁶⁸	493.50	Richey, 1989, Table 2, p.51	57	M49er	FFG ⁵⁰⁷	712.80	Richey, 1989, Table 2, p.53
M49er	FFG_470	509.60	Richey, 1989, Table 2, p.51	58	M49er	FFG_508	763.30	Richey, 1989, Table 2, p.53
M49er	FFG 471	525.80	Richey, 1989, Table 2, p.51	59	M49er	FFG ⁵⁰⁹	767.80	Richey, 1989, Table 2, p.54
M49er	FFG 472	564.20	Richey, 1989, Table 2, p.51	60	M49er	FFG_510	767.30	Richey, 1989, Table 2, p.54
M49er	FFG_473	491.60	Richey, 1989, Table 2, p.51	61	M49er	FFG_511	728.20	Richey, 1989, Table 2, p.54
M49er	FFG ⁴⁷⁴	750.70	Richey, 1989, Table 2, p.51	62	M49er	FFG_512	748.30	Richey, 1989, Table 2, p.54
M49er	FFG_475	749.70	Richey, 1989, Table 2, p.51	63	M49er	FFG_513	763.00	Richey, 1989, Table 2, p.54
M49er	FFG_476	821.80	Richey, 1989, Table 2, p.51	64	M49er	FFG ⁵¹⁴	754.70	Richey, 1989, Table 2, p.54
M49er	FFG 477	774,50	Richey, 1989, Table 2, p.51	65	M49er	FFG 515	722.60	Richey, 1989, Table 2, p.54
M49er	FFG [_] 478	755.60	Richey, 1989, Table 2, p.52	66	M49er	FFG ⁵¹⁶	715.90	Richey, 1989, Table 2, p.54
M49er	FFG [_] 479	752.50	Richey, 1989, Table 2, p.52	67	M49er	FFG 517	809.30	Richey, 1989, Table 2, p.54
M49er	FFG_480	754.40	Richey, 1989, Table 2, p.52	68	M49er	FFG 518	797.90	Richey, 1989, Table 2, p.54
M49er	FFG 481	731.80	Richey, 1989, Table 2, p.52	69	M49er	FFG_519	765.70	Richey, 1989, Table 2, p.54
M49er	FFG_482	761.40	Richey, 1989, Table 2, p.52	70	M49er	FFG_520	653.00	Richey, 1989, Table 2, p.54
M49er	FFG_483	785.10	Richey, 1989, Table 2, p.52	71	M49er	FFG 521	673.30	Richey, 1989, Table 2, p.54
M49er	FFG 484	772.20	Richey, 1989, Table 2, p.52	72	M49er	FFG 522	531.70	Richey, 1989, Table 2, p.54
M49er	FFG_485	779.40	Richey, 1989, Table 2, p.52	73	M49er	FFG 523	541.30	Richey, 1989, Table 2, p.54
M49er	FFG_486	766.30	Richey, 1989, Table 2, p.52	74	M49er	FFG ⁻ 524	693.10	Richey, 1989, Table 2, p.55
M49er	FFG_487	763.90	Richey, 1989, Table 2, p.52	75	M49er	FFG_525	543.30	Richey, 1989, Table 2, p.55
M49er	FFG_488	748.00	Richey, 1989, Table 2, p.52	76	M49er	FFG 527	958.90	Richey, 1989, Table 2, p.55

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevatio	on 5	ource
M49er	FFG_528	951.60	Richey, 1989, Table 2, p.55	39	M49er	FFG_672	943.70	Richey, 1989, T	able 2, p.62
M49er	FFG_535	939.70	Richey, 1989, Table 2, p.55	40	M49er	FFG_674	937.00	Richey, 1989, T	able 2, p.62
M49er	FFG_548	930.60	Richey, 1989, Table 2, p.56	41	M49er	FFG_675	896.00	Richey, 1989, T	able 2, p.62
M49er	FFG_562	670.60	Richey, 1989, Table 2, p.57	42	M49er	FFG_676	905.00	Richey, 1989, T	able 2, p.62
M49er	FFG_563	582.50	Richey, 1989, Table 2, p.57	43	M49er	FFG_677	932.40	Richey, 1989, T	able 2, p.62
M49er	FFG_569	689.20	Richey, 1989, Table 2, p.57	44	M49er	FFG_679	934.80	Richey, 1989, T	able 2, p.62
M49er	FFG_584	773.20	Richey, 1989, Table 2, p.58	45	M49er	FFG_689	817.20	Richey, 1989, T	able 2, p.63
M49er	FFG_600	729.10	Richey, 1989, Table 2, p.58	46	M49er	FFG_690	824.80	Richey, 1989, T	able 2, p.63
M49er	FFG_601	645.60	Richey, 1989, Table 2, p.58	47	M49er	FFG_691	816.30	Richey, 1989, T	able 2, p.63
M49er	FFG_606	723.00	Richey, 1989, Table 2, p.58	48	M49er	FFG_692	806.20	Richey, 1989, T	able 2, p.63
M49er	FFG_607	743.10	Richey, 1989, Table 2, p.59	49	M49er	FFG_693	817.70	Richey, 1989, T	able 2, p.63
M49er	FFG_608	754.60	Richey, 1989, Table 2, p.59	50	M49er	FFG_694	810.10	Richey, 1989, T	able 2, p.63
M49er	FFG_609	758.30	Richey, 1989, Table 2, p.59	51	M49er	FFG_695	814.10	Richey, 1989, T	able 2, p.63
M49er	FFG_610	746.70	Richey, 1989, Table 2, p.59	52	M49er	FFG_696	815.90	Richey, 1989, T	able 2, p.63
M49er	FFG_611	731.80	Richey, 1989, Table 2, p.59	53	M49er	FFG_697	818.10	Richey, 1989, T	able 2, p.64
M49er	FFG_612	733.40	Richey, 1989, Table 2, p.59	54	M49er	FFG_698	861.40	Richey, 1989, T	abie 2, p.64
M49er	FFG_613	728.50	Richey, 1989, Table 2, p.59	55	M49er	FFG_699	811.10	Richey, 1989, T	able 2, p.64
M49er	FFG_620	759.80	Richey, 1989, Table 2, p.59	56	M49er	FFG_700	801.40	Richey, 1989, T	able 2, p.64
M49er	FFG_638	591.70	Richey, 1989, Table 2, p.60	57	M49er	FFG_701	810.60	Richey, 1989, T	able 2, p.64
M49er	FFG_639	566.30	Richey, 1989, Table 2, p.60	58	M49er	FFG_702	811.70	Richey, 1989, T	able 2, p.64
M49er	FFG_640	649.10	Richey, 1989, Table 2, p.60	59	M49er	FFG_703	817.20	Richey, 1989, T	•
M49er	FFG_643	688.90	Richey, 1989, Table 2, p.60	60	M49er	FFG_704	806.20	Richey, 1989, T	•
M49er	FFG_644	723.50	Richey, 1989, Table 2, p.60	61	M49er	FFG_705	735.50	Richey, 1989, T	able 2, p.64
M49er	FFG_648	558.40	Richey, 1989, Table 2, p.60	62	M49er	FFG_706	755.00	Richey, 1989, T	able 2, p.64
M49er	FFG_652	878.70	Richey, 1989, Table 2, p.60	63	M49er	FFG_707	741.00	Richey, 1989, T	able 2, p.64
M49er	FFG_653	880.00	Richey, 1989, Table 2, p.61	64	M49er	FFG_708	791.60	Richey, 1989, T	
M49er	FFG_654	899.50	Richey, 1989, Table 2, p.61	65	M49er	FFG_709	681.50	Richey, 1989, T	•
M49er	FFG_655	897.30	Richey, 1989, Table 2, p.61	66	M49er	FFG_710	682.50	Richey, 1989, T	
M49er	FFG_656	894.30	Richey, 1989, Table 2, p.61	67	M49er	FFG_711	694.40	Richey, 1989, T	
M49er	FFG_657	906.20	Richey, 1989, Table 2, p.61	68	M49er	FFG_712	735.60	Richey, 1989, T	
M49er	FFG_658	898.20	Richey, 1989, Table 2, p.61	69	M49er	FFG_713	672.50	Richey, 1989, T	
M49er	FFG_659	901.90	Richey, 1989, Table 2, p.61	70	M49er	FFG_714	790.30	Richey, 1989, T	able 2, p.65
M49er	FFG_660	919.20	Richey, 1989, Table 2, p.61	71	M49er	FFG_715	799.70	Richey, 1989, T	•
M49er	FFG_662	894.60	Richey, 1989, Table 2, p.61	72	M49er	FFG_716	697.90	Richey, 1989, T	•
M49er	FFG_664	888.20	Richey, 1989, Table 2, p.61	73	M49er	FFG_717	722.50	Richey, 1989, T	•
M49er	FFG_666	938.10	Richey, 1989, Table 2, p.62	74	M49er	FFG_718	723.50	Richey, 1989, T	
M49er	FFG_667	923.30	Richey, 1989, Table 2, p.62	75	M49er	FFG_719	696.70	Richey, 1989, T	
M49er	FFG 670	946.10	Richey, 1989, Table 2, p.62	76	M49er	FFG 720	699.60	Richey, 1989, T	able 2, p.65

 Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

	Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
1	M49er	FFG 721	698.00	Richey, 1989, Table 2, p.65	39	M49er	P12	887.90	Mercer, 1983, Table 1
2	M49er	FFG_723	808.20	Richey, 1989, Table 2, p.65	40	M49er	P13	889.50	Mercer, 1983, Table 1
3	M49er	FFG_724	738.90	Richey, 1989, Table 2, p.65	41	M49er	P14	906.10	Mercer, 1983, Table 1
4	M49er	FFG_725	712.30	Richey, 1989, Table 2, p.65	42	M49er	P15	938.50	Mercer, 1983, Table 1
5	M49er	FFG 726	698.90	Richey, 1989, Table 2, p.65	43	M49er	P16	915.00	Mercer, 1983, Table 1
6	M49er	FFG 727	702.90	Richey, 1989, Table 2, p.66	44	M49er	P17	900.40	Mercer, 1983, Table 1
7	M49er	FFG_728	696.40	Richey, 1989, Table 2, p.66	45	M49er	P18	868.40	Mercer, 1983, Table 1
8	M49er	FFG_729	706.60	Richey, 1989, Table 2, p.66	46	M49er	P19	849.50	Mercer, 1983, Table 1
9	M49er	FFG ⁻ 730	724.80	Richey, 1989, Table 2, p.66	47	M49er	P2	850.10	Mercer, 1983, Table 1
0	M49er	FFG_731	720.70	Richey, 1989, Table 2, p.66	48	M49er	P20	845.30	Mercer, 1983, Table 1
1	M49er	FFG_732	739.50	Richey, 1989, Table 2, p.66	49	M49er	P21	845.80	Mercer, 1983, Table 1
2	M49er	FFG 733	806.50	Richey, 1989, Table 2, p.66	50	M49er	P3	888.50	Mercer, 1983, Table 1
3	M49er	FFG ⁷³⁴	758.60	Richey, 1989, Table 2, p.66	51	M49er	P4	864.10	Mercer, 1983, Table 1
4	M49er	FFG 735	704.10	Richey, 1989, Table 2, p.66	52	M49er	P5	868.10	Mercer, 1983, Table 1
5	M49er	FFG ⁻ 736	758.70	Richey, 1989, Table 2, p.66	53	M49er	P6	913.50	Mercer, 1983, Table 1
6	M49er	FFG_737	702.60	Richey, 1989, Table 2, p.66	54	M49er	P7	920.50	Mercer, 1983, Table 1
7	M49er	FFG_738	713.80	Richey, 1989, Table 2, p.66	55	M49er	P8	898.50	Mercer, 1983, Table 1
8	M49er	FFG_739	753.90	Richey, 1989, Table 2, p.66	56	M49er	P9	868.70	Mercer, 1983, Table 1
9	M49er	FFG_740	754.70	Richey, 1989, Table 2, p.66	57	M49er	REF	874.00	Rechard et al., 1991, Figure 2.2-1
0	M49er	FFG 741	721.20	Richey, 1989, Table 2, p.66	58	M49er	SaltShft	875.54	Bechtel, Inc., 1986, Appendix D
1	M49er	FFG_742	774.50	Richey, 1989, Table 2, p.67	59	M49er	WIPP11	842.10	Mercer, 1983, Table 1
2	M49er	FFG_743	757.20	Richey, 1989, Table 2, p.67	60	M49er	WIPP11	842.20	SNL and USGS, 1982a, Table 2
3	M49er	FFG_744	739.70	Richey, 1989, Table 2, p.67	61	M49er	WIPP12	866.80	SNL and D'Appolonia Consulting, 1983, Table
4	M49er	FFG_745	730.30	Richey, 1989, Table 2, p.67	62	M49er	WIPP12	866.90	Mercer, 1983, Table 1
5	M49er	FFG_746	719.80	Richey, 1989, Table 2, p.67	63	M49er	WIPP13	880.20	Mercer, 1983, Table 1
6	M49er	H1	882.70	Mercer, 1983, Table 1	64	M49er	WIPP16	681.20	Mercer, 1983, Table 1
7	M49er	H10C	756.80	Mercer, 1983, Table 1	65	M49er	WIPP18	866.60	Mercer, 1983, Table 1
8	M49er	H2C	890.30	Mercer, 1983, Table 1	66	M49er	WIPP19	866.90	Mercer, 1983, Table 1
9	M49er	НЗ	880.30	Mercer, 1983, Table 1	67	M49er	WIPP21	870.80	Mercer, 1983, Table 1
С	M49er	H4C	920.20	Mercer, 1983, Table 1	68	M49er	WIPP22	869.50	Mercer, 1983, Table 1
1	M49er	H5C	845.80	Mercer, 1983, Table 1	69	M49er	WIPP25	908.60	Mercer, 1983, Table 1
2	M49er	H6C	890.40	Mercer, 1983, Table 1	70	M49er	WIPP26	957.70	Mercer, 1983, Table 1
3	M49er	H7C	937.60	Mercer, 1983, Table 1	71	M49er	WIPP27	921.70	Mercer, 1983, Table 1
4	M49er	H8C	924.80	Mercer, 1983, Table 1	72	M49er	WIPP28	954.70	Mercer, 1983, Table 1
5	M49er	H9C	899.40	Mercer, 1983, Table 1	73	M49er	WIPP30	908.00	Mercer, 1983, Table 1
6	M49er	P1	910.50	Mercer, 1983, Table 1	74	M49er	WIPP32	921.40	Mercer, 1983, Table 1
7	M49er	P10	860.40	Mercer, 1983, Table 1	75	M49er	WIPP33	891.60	Mercer, 1983, Table 1
8	M49er	P11	840.90	Mercer, 1983, Table 1	76	M49er	WIPP34	846.10	Mercer, 1983, Table 1

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevati	on Source
M49er	WastShft	875.18	Bechtel, Inc., 1986, Appendix E	39	MB138	DH77	409.65	Krieg, 1984, Table I
MB126	AirShft	509.31	Holt and Powers, 1990, Figure 22	40	MB138	DH77	409.95	Krieg, 1984, Table I
MB126	AirShft	509.64	Holt and Powers, 1990, Figure 22	41	MB138	DO201	396.40	Krieg, 1984, Table I
MB126	DOE1	485.50	U.S. DOE, Sep 1982, Table 2	42	MB138	DO201	396.58	Krieg, 1984, Table I
MB126	DOE2	484.90	Mercer et al., 1987, Table 3-2	43	MB138	DO203	406.94	Krieg, 1984, Table I
MB126	DOE2	485.40	Mercer et al., 1987, Table 3-2	44	MB138	DO203	407.15	Krieg, 1984, Table I
MB126	ERDA9	511.60	SNL and USGS, 1982b, Table 2	45	MB138	DO205	412.06	Krieg, 1984, Table I
MB126	ExhtShft	512.54	Bechtel, Inc., 1986, Appendix F	46	MB138	DO205	412.30	Krieg, 1984, Table I
MB126	ExhtShft	512.72	Bechtel, Inc., 1986, Appendix F	47	MB138	DO45	403.83	Krieg, 1984, Table I
MB126	REF	511.60	Rechard et al., 1991, Figure 2.2-1	48	MB138	DO45	404.01	Krieg, 1984, Table I
MB126	SaltShft	514.21	Bechtel, Inc., 1986, Appendix D	49	MB138	DO52	401.39	Krieg, 1984, Table I
MB126	SaltShft	514.47	Bechtel, Inc., 1986, Appendix D	50	MB138	DO52	401.51	Krieg, 1984, Table I
MB126	WIPP11	513.00	SNL and USGS, 1982a, Table 2	51	MB138	DO56	406.69	Krieg, 1984, Table I
MB126	WIPP12	513.80	SNL and D'Appolonia Consulting, 1983, Table 2	52	MB138	DO56	406.84	Krieg, 1984, Table I
MB126	WastShft	512.40	Bechtel, Inc., 1986, Appendix E	53	MB138	DO63	410.47	Krieg, 1984, Table I
MB126	WastShft	512.75	Bechtel, Inc., 1986, Appendix E	54	MB138	DO63	410.68	Krieg, 1984, Table I
MB136	AirShft	412.87	Holt and Powers, 1990, Figure 22	55	MB138	DO67	410.38	Krieg, 1984, Table I
MB136	AirShft	417.16	Holt and Powers, 1990, Figure 22	56	MB138	DO67	410.50	Krieg, 1984, Table I
MB136	ExhtShft	415.52	Bechtel, Inc., 1986, Appendix F	57	MB138	DO88	409.07	Krieg, 1984, Table I
MB136	ExhtShft	418.86	Bechtel, Inc., 1986, Appendix F	58	MB138	DO88	409.33	Krieg, 1984, Table I
MB136	SaltShft	418.84	Bechtel, Inc., 1986, Appendix D	59	MB138	DO91	408.81	Krieg, 1984, Table I
MB136	SaltShft	421.37	Bechtel, Inc., 1986, Appendix D	60	MB138	DO91	409.02	Krieg, 1984, Table I
MB136	WastShft	415.27	Bechtel, Inc., 1986, Appendix E	61	(MB138	DOE1	368.60	U.S. DOE, Sep 1982, Table 2
MB136	WastShft	419.66	Bechtel, Inc., 1986, Appendix E	62	MB138	DOE2	370.40	Mercer et al., 1987, Table 3-2
MB138	AirShft	393.81	Holt and Powers, 1990, Figure 22	63	MB138	ERDA9	396.00	SNL and USGS, 1982b, Table 2
MB138	AirShft	393.98	Holt and Powers, 1990, Figure 22	64	MB138	ERDA9	396.40	SNL and USGS, 1982b, Table 2
MB138	DH207	395.92	Krieg, 1984, Table I	65	MB138	ExhtShft	396.86	Bechtel, Inc., 1986, Appendix F
MB138	DH207	396.16	Krieg, 1984, Table I	66	MB138	ExhtShft	397.03	Bechtel, Inc., 1986, Appendix F
MB138	DH211	398.83	Krieg, 1984, Table I	67	MB138	MB139_2	396.15	Krieg, 1984, Table I
MB138	DH211	398.98	Krieg, 1984, Table I	68	MB138	MB139_2	396.30	Krieg, 1984, Table I
MB138	DH215	399.23	Krieg, 1984, Table I	69	MB138	REF	396.00	Rechard et al.,1991, Figure 2.2-1
MB138	DH215	399.41	Krieg, 1984, Table I	70	MB138	REF	396.40	Rechard et al., 1991, Figure 2.2-1
MB138	DH219	397.58	Krieg, 1984, Table I	71	MB138	SaltShft	399.79	Bechtel, Inc., 1986, Appendix D
MB138	DH219	397.82	Krieg, 1984, Table I	72	MB138	SaltShft	399.80	Bechtel, Inc., 1986, Appendix D
MB138	DH223	394.10	Krieg, 1984, Table I	73	MB138	SaltShft	399.76	Krieg, 1984, Table I
MB138	DH223	394.31	Krieg, 1984, Table I	74	MB138	SaltShft	399.91	Krieg, 1984, Table I
MB138	DH227	391.03	Krieg, 1984, Table I	75	MB138	WIPP11	430.40	SNL and USGS, 1982a, Table 2
MB138	DH227	391.18	Krieg, 1984, Table I	76	MB138	WIPP12	411.00	SNL and D'Appolonia Consulting, 1983, Tab

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

	Layer	Well ID	Elevation	Source		Layer	Weli ID	Elevation	Source
	MB138	WastShft	395.89	Bechtel, Inc., 1986, Appendix E	39	MB139	DOE1	350.40	U.S. DOE, Sep 1982, Table 2
2	MB138	WastShft	396.07	Bechtel, Inc., 1986, Appendix E	40	MB139	DOE2	339.00	Mercer et al., 1987, Table 3-2
}	MB138	WastShft	396.31	Krieg, 1984, Table I	41	MB139	DOE2	340.00	Mercer et al., 1987, Table 3-2
Ļ	MB138	WastShft	396.49	Krieg, 1984, Table I	42	MB139	ERDA9	378.10	SNL and USGS, 1982b, Table 2
5	MB139	DH207	377.63	Krieg, 1984, Table I	43	MB139	ERDA9	379.00	SNL and USGS, 1982b, Table 2
5	MB139	DH207	378.70	Krieg, 1984, Table I	44	MB139	MB139_2	377.44	Krieg, 1984, Table I
,	MB139	DH211	380.73	Krieg, 1984, Table I	45	MB139	MB139_2	378.42	Krieg, 1984, Table I
}	MB139	DH211	381.31	Krieg, 1984, Table I	46	MB139	REF	378.10	Rechard et al., 1991, Figure 2.2-1
)	MB139	DH215	381.03	Krieg, 1984, Table I	47	MB139	REF	379.00	Rechard et al., 1991, Figure 2.2-1
I	MB139	DH215	382.04	Krieg, 1984, Table I	48	MB139	SaltShft	381.64	Bechtel, Inc., 1986, Appendix D
	MB139	DH219	379.91	Krieg, 1984, Table I	49	MB139	SaltShft	382.44	Bechtel, Inc., 1986, Appendix D
2	MB139	DH219	380.58	Krieg, 1984, Table I	50	MB139	SaltShft	381.38	Krieg, 1984, Table I
	MB139	DH223	376.70	Krieg, 1984, Table I	51	MB139	SaltShft	382.29	Krieg, 1984, Table I
	MB139	DH223	377.64	Krieg, 1984, Table I	52	MB139	WIPP11	419.10	SNL and USGS, 1982a, Table 2
i	MB139	DH227	373.78	Krieg, 1984, Table I	53	MB139	WIPP12	395.90	SNL and D'Appolonia Consulting, 1983, Table
i	MB139	DH227	374.42	Krieg, 1984, Table I	54	MB139	WastShft	377.14	Bechtel, Inc., 1986, Appendix E
	MB139	DH77	392.37	Krieg, 1984, Table I	55	MB139	WastShft	378.22	Bechtel, Inc., 1986, Appendix E
	MB139	DH77	393.35	Krieg, 1984, Table I	56	MB139	WastShft	378.04	Krieg, 1984, Table I
	MB139	DO201	378.26	Krieg, 1984, Table I	57	MB139	WastShft	379.10	Krieg, 1984, Table I
I	MB139	DO201	379.11	Krieg, 1984, Table I	58	Magenta	AEC7	890.30	Mercer, 1983, Table 1
	MB139	DO203	389.84	Krieg, 1984, Table I	59	Magenta	AEC8	858.70	Mercer, 1983, Table 1
	MB139	DO203	390.63	Krieg, 1984, Table I	60	Magenta	AirShft	858.82	Holt and Powers, 1990, Figure 22
	MB139	DO205	394.29	Krieg, 1984, Table I	61	Magenta	B25	858.40	Mercer, 1983, Table 1
	MB139	DO205	394.69	Krieg, 1984, Table I	62	Magenta	DOE1	838.60	U.S. DOE, Sep 1982, Table 2
	MB139	DO45	385.11	Krieg, 1984, Table I	63	Magenta	DOE2	829.00	Mercer et al., 1987, Table 3-2
	MB139	DO45	386.36	Krieg, 1984, Table i	64	Magenta	ERDA10	915.90	Mercer, 1983, Table 1
	MB139	DO52	383.44	Krieg, 1984, Table I	65	Magenta	ERDA6	897.60	Mercer, 1983, Table 1
	MB139	DO52	384.57	Krieg, 1984, Table I	66	Magenta	ERDA9	860.40	Mercer, 1983, Table 1
	MB139	DO56	388.89	Krieg, 1984, Table I	67	Magenta	ERDA9	856.70	SNL and USGS, 1982b, Table 2
	MB139	DO56	389.53	Krieg, 1984, Table I	68	Magenta	ExhtShft	855.39	Bechtel, Inc., 1986, Appendix F
	MB139	DO63	392.79	Krieg, 1984, Table I	69	Magenta	FFG_002	667.50	Richey, 1989, Table 2, p.21
	MB139	DO63	393.46	Krieg, 1984, Table I	70	Magenta	FFG_004	717.80	Richey, 1989, Table 2, p.21
	MB139	DO67	393.19	Krieg, 1984, Table I	71	Magenta	FFG_005	674.90	Richey, 1989, Table 2, p.21
	MB139	DO67	394.13	Krieg, 1984, Table I	72	Magenta	FFG_006	670.00	Richey, 1989, Table 2, p.21
	MB139	DO88	392.06	Krieg, 1984, Table I	73	Magenta	FFG_007	655.90	Richey, 1989, Table 2, p.21
	MB139	DO88	392.99	Krieg, 1984, Table I	74	Magenta	FFG_009	657.40	Richey, 1989, Table 2, p.21
	MB139	DO91	391.62	Krieg, 1984, Table I	75	Magenta	FFG_011	664.20	Richey, 1989, Table 2, p.21
	MB139	DO91	392.66	Krieg, 1984, Table J	76	Magenta	FFG 012	667.80	Richey, 1989, Table 2, p.21

La	ayer	Well ID	Elevation	Source		Layer	Well ID	Elevat	ion Source
Mag	genta	FFG_013	674.80	Richey, 1989, Table 2, p.21	39	Magenta	FFG_056	621.80	Richey, 1989, Table 2, p.24
Mag	genta	FFG_014	721.10	Richey, 1989, Table 2, p.21	40	Magenta	FFG_057	625.20	Richey, 1989, Table 2, p.24
Mag	genta	FFG_016	644.90	Richey, 1989, Table 2, p.21	41	Magenta	FFG 058	623.60	Richey, 1989, Table 2, p.24
Mag	genta	FFG_017	648.30	Richey, 1989, Table 2, p.22	42	Magenta	FFG_059	623.60	Richey, 1989, Table 2, p.24
Mag	genta	FFG_018	652.30	Richey, 1989, Table 2, p.22	43	Magenta	FFG_060	627.30	Richey, 1989, Table 2, p.24
Mag	genta	FFG_019	644.70	Richey, 1989, Table 2, p.22	44	Magenta	FFG_061	626.00	Richey, 1989, Table 2, p.24
Mag	genta	FFG_020	718.40	Richey, 1989, Table 2, p.22	45	Magenta	FFG_062	553.20	Richey, 1989, Table 2, p.24
Mag	genta	FFG_023	654.10	Richey, 1989, Table 2, p.22	46	Magenta	FFG 063	513.70	Richey, 1989, Table 2, p.24
Mag	genta	FFG_024	638.80	Richey, 1989, Table 2, p.22	47	Magenta	FFG_064	538.60	Richey, 1989, Table 2, p.24
Mag	genta	FFG_025	652.20	Richey, 1989, Table 2, p.22	48	Magenta	FFG_065	520.60	Richey, 1989, Table 2, p.24
Mag	jenta	FFG_026	649.50	Richey, 1989, Table 2, p.22	49	Magenta	FFG_066	473.90	Richey, 1989, Table 2, p.24
Mag	jenta	FFG_027	643.10	Richey, 1989, Table 2, p.22	50	Magenta	FFG_067	516.40	Richey, 1989, Table 2, p.25
Mag	jenta	FFG_028	612.70	Richey, 1989, Table 2, p.22	51	Magenta	FFG_068	481.90	Richey, 1989, Table 2, p.25
Mag	jenta	FFG_029	599.20	Richey, 1989, Table 2, p.22	52	Magenta	FFG_069	502.40	Richey, 1989, Table 2, p.25
Mag	jenta	FFG_030	598.30	Richey, 1989, Table 2, p.22	53	Magenta	FFG_070	532.20	Richey, 1989, Table 2, p.25
Mag	enta	FFG_031	590.10	Richey, 1989, Table 2, p.22	54	Magenta	FFG_071	790.70	Richey, 1989, Table 2, p.25
Mag	jenta	FFG_032	592.10	Richey, 1989, Table 2, p.22	55	Magenta	FFG_072	721.10	Richey, 1989, Table 2, p.25
Mag	jenta	FFG_033	588.30	Richey, 1989, Table 2, p.22	56	Magenta	FFG_073	699.50	Richey, 1989, Table 2, p.25
Mag	jenta	FFG_034	582.40	Richey, 1989, Table 2, p.23	57	Magenta	FFG_074	703.30	Richey, 1989, Table 2, p.25
Mag	enta	FFG_035	572.60	Richey, 1989, Table 2, p.23	58	Magenta	FFG_075	756.00	Richey, 1989, Table 2, p.25
Mag	jenta	FFG_036	582.20	Richey, 1989, Table 2, p.23	59	Magenta	FFG_076	818.10	Richey, 1989, Table 2, p.25
Mag	enta	FFG_037	571.80	Richey, 1989, Table 2, p.23	60	Magenta	FFG_078	855.20	Richey, 1989, Table 2, p.25
Mag	enta	FFG_038	559.60	Richey, 1989, Table 2, p.23	61	Magenta	FFG_079	829.70	Richey, 1989, Table 2, p.25
Mag	enta	FFG_039	778.80	Richey, 1989, Table 2, p.23	62	Magenta	FFG_080	808.30	Richey, 1989, Table 2, p.25
Mag	enta	FFG_040	720.90	Richey, 1989, Table 2, p.23	63	Magenta	FFG_081	727.90	Richey, 1989, Table 2, p.26
Mag	enta	FFG_041	780.60	Richey, 1989, Table 2, p.23	64	Magenta	FFG_082	759.30	Richey, 1989, Table 2, p.26
Mag	enta	FFG_042	785.40	Richey, 1989, Table 2, p.23	65	Magenta	FFG_083	674.70	Richey, 1989, Table 2, p.26
Mag	enta	FFG_043	788.10	Richey, 1989, Table 2, p.23	66	Magenta	FFG_084	702.20	Richey, 1989, Table 2, p.26
Mag	enta	FFG_044	741.00	Richey, 1989, Table 2, p.23	67	Magenta	FFG_085	695.60	Richey, 1989, Table 2, p.26
Mage	enta	FFG_047	613.90	Richey, 1989, Table 2, p.23	68	Magenta	FFG_086	705.60	Richey, 1989, Table 2, p.26
Mage	enta	FFG_048	630.90	Richey, 1989, Table 2, p.23	69	Magenta	FFG_087	680.00	Richey, 1989, Table 2, p.26
Mage	enta	FFG_049	620.90	Richey, 1989, Table 2, p.23	70	Magenta	FFG_088	674.60	Richey, 1989, Table 2, p.26
Mage	enta	FFG_050	627.60	Richey, 1989, Table 2, p.24	71	Magenta	FFG_089	656.00	Richey, 1989, Table 2, p.26
Mage	enta	FFG_051	627.30	Richey, 1989, Table 2, p.24	72	Magenta	FFG_091	700.40	Richey, 1989, Table 2, p.26
Mage	enta	FFG_052	630.30	Richey, 1989, Table 2, p.24	73	Magenta	FFG_092	716.60	Richey, 1989, Table 2, p.26
Mage	enta	FFG_053	623.30	Richey, 1989, Table 2, p.24	74	Magenta	FFG_093	718.10	Richey, 1989, Table 2, p.26
Mage	enta	FFG_054	620.60	Richey, 1989, Table 2, p.24	75	Magenta	FFG_094	720.20	Richey, 1989, Table 2, p.26
Mage	enta	FFG 055	621.10	Richey, 1989, Table 2, p.24	76	Magenta	FFG 095	688.80	Richey, 1989, Table 2, p.26

 Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

	Layer	Well ID	Elevation	Source		Layer	Well ID	Elevat	ion :	Source
1	Magenta	FFG_096	671.20	Richey, 1989, Table 2, p.26	39	Magenta	FFG 137	927.90	Richey, 1989, 1	Fable 2, p.29
2	Magenta	FFG_097	651.70	Richey, 1989, Table 2, p.27	40	Magenta	FFG_138	880.60	Richey, 1989, 1	Table 2, p.29
3	Magenta	FFG_098	625.40	Richey, 1989, Table 2, p.27	41	Magenta	FFG_139	889.70	Richey, 1989, 1	Table 2, p.29
4	Magenta	FFG_099	620.90	Richey, 1989, Table 2, p.27	42	Magenta	FFG_140	829.20	Richey, 1989, 1	Table 2, p.29
5	Magenta	FFG_100	603.90	Richey, 1989, Table 2, p.27	43	Magenta	FFG_141	854.20	Richey, 1989, 1	Table 2, p.29
6	Magenta	FFG_101	574.90	Richey, 1989, Table 2, p.27	44	Magenta	FFG_142	829.40	Richey, 1989, 1	Table 2, p.29
7	Magenta	FFG_102	593.50	Richey, 1989, Table 2, p.27	45	Magenta	FFG_143	839.30	Richey, 1989, 1	Table 2, p.29
8	Magenta	FFG_103	655.40	Richey, 1989, Table 2, p.27	46	Magenta	FFG_147	897.90	Richey, 1989, 1	able 2, p.29
9	Magenta	FFG_104	55 1 .10	Richey, 1989, Table 2, p.27	47	Magenta	FFG_155	914.10	Richey, 1989, 1	able 2, p.30
10	Magenta	FFG_105	909.60	Richey, 1989, Table 2, p.27	48	Magenta	FFG_157	915.30	Richey, 1989, 1	able 2, p.30
11	Magenta	FFG_106	939.70	Richey, 1989, Table 2, p.27	49	Magenta	FFG_158	937.20	Richey, 1989, T	able 2, p.30
12	Magenta	FFG_107	923.00	Richey, 1989, Table 2, p.27	50	Magenta	FFG_159	936.70	Richey, 1989, 1	able 2, p.30
13	Magenta	FFG_108	918.40	Richey, 1989, Table 2, p.27	51	Magenta	FFG_160	929.70	Richey, 1989, 1	able 2, p.30
14	Magenta	FFG_109	898.90	Richey, 1989, Table 2, p.27	52	Magenta	FFG_161	936.10	Richey, 1989, T	able 2, p.30
15	Magenta	FFG_110	865.70	Richey, 1989, Table 2, p.27	53	Magenta	FFG_162	933.30	Richey, 1989, 1	able 2, p.30
16	Magenta	FFG_111	871.70	Richey, 1989, Table 2, p.27	54	Magenta	FFG_163	933.90	Richey, 1989, T	able 2, p.30
17	Magenta	FFG_112	861.00	Richey, 1989, Table 2, p.28	55	Magenta	FFG_166	936.00	Richey, 1989, T	able 2, p.31
18	Magenta	FFG_113	875.10	Richey, 1989, Table 2, p.28	56	Magenta	FFG_167	922.10	Richey, 1989, T	able 2, p.31
19	Magenta	FFG_114	905.60	Richey, 1989, Table 2, p.28	57	Magenta	FFG_168	944.60	Richey, 1989, T	able 2, p.31
20	Magenta	FFG_115	895.50	Richey, 1989, Table 2, p.28	58	Magenta	FFG_169	957.30	Richey, 1989, T	able 2, p.31
21	Magenta	FFG_116	911.00	Richey, 1989, Table 2, p.28	59	Magenta	FFG_170	922.90	Richey, 1989, T	able 2, p.31
22	Magenta	FFG_117	911.30	Richey, 1989, Table 2, p.28	60	Magenta	FFG_171	931.50	Richey, 1989, T	
23	Magenta	FFG_120	923.00	Richey, 1989, Table 2, p.28	61	Magenta	FFG_172	937.20	Richey, 1989, T	able 2, p.31
24	Magenta	FFG_121	928.10	Richey, 1989, Table 2, p.28	62	Magenta	FFG_173	914.10	Richey, 1989, T	-
25	Magenta	FFG_122	926.60	Richey, 1989, Table 2, p.28	63	Magenta	FFG_180	920.50	Richey, 1989, T	
26	Magenta	FFG_123	900.60	Richey, 1989, Table 2, p.28	64	Magenta	FFG_181	951.30	Richey, 1989, T	able 2, p.32
27	Magenta	FFG_124	865.30	Richey, 1989, Table 2, p.28	65	Magenta	FFG_182	847.60	Richey, 1989, T	able 2, p.32
28	Magenta	FFG_125	890.90	Richey, 1989, Table 2, p.28	66	Magenta	FFG_184	927.80	Richey, 1989, T	able 2, p.32
29	Magenta	FFG_126	886.20	Richey, 1989, Table 2, p.28	67	Magenta	FFG_185	934.50	Richey, 1989, T	able 2, p.32
30	Magenta	FFG_127	891.20	Richey, 1989, Table 2, p.28	68	Magenta	FFG_186	863.80	Richey, 1989, T	able 2, p.32
31	Magenta	FFG_128	926.60	Richey, 1989, Table 2, p.28	69	Magenta	FFG_188	874.10	Richey, 1989, T	able 2, p.32
32	Magenta	FFG_129	899.40	Richey, 1989, Table 2, p.28	70	Magenta	FFG_189	902.20	Richey, 1989, T	able 2, p.32
33	Magenta	FFG_130	929.60	Richey, 1989, Table 2, p.28	71	Magenta	FFG_190	882.40	Richey, 1989, T	able 2, p.32
34	Magenta	FFG_132	935.10	Richey, 1989, Table 2, p.29	72	Magenta	FFG_191	878.10	Richey, 1989, T	able 2, p.32
35	Magenta	FFG_133	938.10	Richey. 1989, Table 2, p.29	73	Magenta	FFG_192	815.30	Richey, 1989, T	able 2, p.32
36	Magenta	FFG_134	944.00	Richey, 1989, Table 2, p.29	74	Magenta	FFG_194	822.10	Richey, 1989, T	able 2, p.33
37	Magenta	FFG_135	917.50	Richey, 1989, Table 2, p.29	75	Magenta	FFG_195	834.00	Richey, 1989, T	able 2, p.33
38	Magenta	FFG 136	919.10	Richey, 1989, Table 2, p.29	76	Magenta	FFG_196	876.90	Richey, 1989, T	able 2, p.33

I.

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevat	ion	Source
Magenta	FFG_197	878.10	Richey, 1989, Table 2, p.33	39	Magenta	FFG_238	691.00	Richey, 1989,	Table 2, p.36
Magenta	FFG_198	877.50	Richey, 1989, Table 2, p.33	40	Magenta	FFG_239	679.10	Richey, 1989,	Table 2, p.36
Magenta	FFG_199	867.50	Richey, 1989, Table 2, p.33	41	Magenta	FFG_240	671.20	Richey, 1989,	Table 2, p.36
Magenta	FFG_200	880.90	Richey, 1989, Table 2, p.33	42	Magenta	FFG_241	666.30	Richey, 1989,	Table 2, p.36
Magenta	FFG_201	873.20	Richey, 1989, Table 2, p.33	43	Magenta	FFG_242	783.10	Richey, 1989,	Table 2, p.36
Magenta	FFG_202	816.50	Richey, 1989, Table 2, p.33	44	Magenta	FFG_243	743.10	Richey, 1989,	Table 2, p.36
Magenta	FFG_203	823.00	Richey, 1989, Table 2, p.33	45	Magenta	FFG_244	780.80	Richey, 1989,	Table 2, p.36
Magenta	FFG_204	846.50	Richey, 1989, Table 2, p.33	46	Magenta	FFG_245	573.00	Richey, 1989,	Table 2, p.36
Magenta	FFG_205	860.50	Richey, 1989, Table 2, p.33	47	Magenta	FFG_246	578.50	Richey, 1989,	Table 2, p.36
Magenta	FFG_206	874.50	Richey, 1989, Table 2, p.33	48	Magenta	FFG_247	563.80	Richey, 1989,	Table 2, p.36
Magenta	FFG_207	872.30	Richey, 1989, Table 2, p.33	49	Magenta	FFG_248	571.20	Richey, 1989,	Table 2, p.36
Magenta	FFG_208	882.10	Richey, 1989, Table 2, p.34	50	Magenta	FFG_249	569.70	Richey, 1989,	Table 2, p.36
Magenta	FFG_209	873.20	Richey, 1989, Table 2, p.34	51	Magenta	FFG_250	651.50	Richey, 1989,	Table 2, p.36
Magenta	FFG_210	865.90	Richey, 1989, Table 2, p.34	52	Magenta	FFG_251	544.90	Richey, 1989,	Table 2, p.36
Magenta	FFG_212	852.80	Richey, 1989, Table 2, p.34	53	Magenta	FFG_252	683.90	Richey, 1989,	Table 2, p.36
Magenta	FFG_213	874.50	Richey, 1989, Table 2, p.34	54	Magenta	FFG_253	639.20	Richey, 1989,	Table 2, p.36
Magenta	FFG_214	854.90	Richey, 1989, Table 2, p.34	55	Magenta	FFG_254	630.00	Richey, 1989,	Table 2, p.36
Magenta	FFG_215	831.20	Richey, 1989, Table 2, p.34	56	Magenta	FFG_255	587.70		Table 2, p.37
Magenta	FFG_216	716.80	Richey, 1989, Table 2, p.34	57	Magenta	FFG_256	535.20	Richey, 1989,	Table 2, p.37
Magenta	FFG_217	851.40	Richey, 1989, Table 2, p.34	58	Magenta	FFG_257	579.40	Richey, 1989,	Table 2, p.37
Magenta	FFG_218	844.00	Richey, 1989, Table 2, p.34	59	Magenta	FFG_258	594.90	Richey, 1989,	Table 2, p.37
Magenta	FFG_219	889.70	Richey, 1989, Table 2, p.34	60	Magenta	FFG_259	561.10	Richey, 1989,	Table 2, p.37
Magenta	FFG_220	836.70	Richey, 1989, Table 2, p.34	61	Magenta	FFG_260	603.80	Richey, 1989,	Table 2, p.37
Magenta	FFG_221	796.20	Richey, 1989, Table 2, p.34	62	Magenta	FFG_261	592.80	Richey, 1989,	Table 2, p.37
Magenta	FFG_222	749.80	Richey, 1989, Table 2, p.34	63	Magenta	FFG_263	526.60	Richey, 1989,	Table 2, p.37
Magenta	FFG_224	655.70	Richey, 1989, Table 2, p.35	64	Magenta	FFG_264	760.50	Richey, 1989,	Table 2, p.37
Magenta	FFG_225	662.40	Richey, 1989, Table 2, p.35	65	Magenta	FFG_265	755.90	• • • •	Table 2, p.37
Magenta	FFG_226	661.00	Richey, 1989, Table 2, p.35	66	Magenta	FFG_266	736.70	•	Table 2, p.37
Magenta	FFG_228	651.70	Richey, 1989, Table 2, p.35	67	Magenta	FFG_267	713.50	•	Table 2, p.37
Magenta	FFG_229	679.40	Richey, 1989, Table 2, p.35	68	Magenta	FFG_268	690.70	•	Table 2, p.37
Magenta	FFG_230	665.10	Richey, 1989, Table 2, p.35	69	Magenta	FFG_269	702.40	Richey, 1989,	Table 2, p.38
Magenta	FFG_231	681.80	Richey, 1989, Table 2, p.35	70	Magenta	FFG_270	774.50	Richey, 1989,	Table 2, p.38
Magenta	FFG_232	695.60	Richey, 1989, Table 2, p.35	71	Magenta	FFG_271	815.00	Richey, 1989,	
Magenta	FFG_233	685.80	Richey, 1989, Table 2, p.35	72	Magenta	FFG_272	822.50	Richey, 1989,	Table 2, p.38
Magenta	FFG_234	722.70	Richey, 1989, Table 2, p.35	73	Magenta	FFG_273	797.40	Richey, 1989,	Table 2, p.38
Magenta	FFG_235	698.60	Richey, 1989, Table 2, p.35	74	Magenta	FFG_274	834.20		Table 2, p.38
Magenta	FFG_236	746.40	Richey, 1989, Table 2, p.35	75	Magenta	FFG_275	840.30	Richey, 1989,	•
Magenta	FFG 237	712.10	Richey, 1989, Table 2, p.35	76	Magenta	FFG 276	845.20	Richey, 1989,	Table 2, p.38

 Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Magenta	FFG_277	836.70	Richey, 1989, Table 2, p.38	40	Magenta	FFG_317	777.00	Richey, 1989, Table 2, p.41
Magenta	FFG 278	845.80	Richey, 1989, Table 2, p.38	41	Magenta	FFG_318	742.20	Richey, 1989, Table 2, p.41
Magenta	FFG_279	840.90	Richey, 1989, Table 2, p.38	42	Magenta	FFG_319	751.60	Richey, 1989, Table 2, p.41
Magenta	FFG ⁻ 280	837.30	Richey, 1989, Table 2, p.38	43	Magenta	FFG_320	741.30	Richey, 1989, Table 2, p.41
Magenta	FFG_281	814.20	Richey, 1989, Table 2, p.38	44	Magenta	FFG_321	737.90	Richey, 1989, Table 2, p.41
Magenta	FFG 283	563.90	Richey, 1989, Table 2, p.39	45	Magenta	FFG_322	733.20	Richey, 1989, Table 2, p.41
Magenta	FFG ²⁸⁴	712.00	Richey, 1989, Table 2, p.39	46	Magenta	FFG_323	729.50	Richey, 1989, Table 2, p.41
Magenta	FFG_285	741.30	Richey, 1989, Table 2, p.39	47	Magenta	FFG_324	745.30	Richey, 1989, Table 2, p.41
Magenta	FFG_286	820.20	Richey, 1989, Table 2, p.39	48	Magenta	FFG_325	800.40	Richey, 1989, Table 2, p.41
Magenta	FFG_287	793.10	Richey, 1989, Table 2, p.39	49	Magenta	FFG_326	736.10	Richey, 1989, Table 2, p.41
Magenta	FFG_288	744.90	Richey, 1989, Table 2, p.39	50	Magenta	FFG_327	729.10	Richey, 1989, Table 2, p.42
Magenta	FFG_289	719.90	Richey, 1989, Table 2, p.39	51	Magenta	FFG_328	734.50	Richey, 1989, Table 2, p.42
Magenta	FFG_290	806.50	Richey, 1989, Table 2, p.39	52	Magenta	FFG_329	733.90	Richey, 1989, Table 2, p.42
Magenta	FFG_291	742.50	Richey, 1989, Table 2, p.39	53	Magenta	FFG_330	733.20	Richey, 1989, Table 2, p.42
Magenta	FFG_292	758.40	Richey, 1989, Table 2, p.39	54	Magenta	FFG_331	728.50	Richey, 1989, Table 2, p.42
Magenta	FFG_293	750.70	Richey, 1989, Table 2, p.39	55	Magenta	FFG_332	719.30	Richey, 1989, Table 2, p.42
Magenta	FFG_294	572.80	Richey, 1989, Table 2, p.39	56	Magenta	FFG_333	722.80	Richey, 1989, Table 2, p.42
Magenta	FFG_295	560.20	Richey, 1989, Table 2, p.39	57	Magenta	FFG_334	718.10	Richey, 1989, Table 2, p.42
Magenta	FFG_297	539.20	Richey, 1989, Table 2, p.39	58	Magenta	FFG_335	733.70	Richey, 1989, Table 2, p.42
Magenta	FFG_298	552.40	Richey, 1989, Table 2, p.40	59	Magenta	FFG_336	730.60	Richey, 1989, Table 2, p.42
Magenta	FFG_299	569.10	Richey, 1989, Table 2, p.40	60	Magenta	FFG_337	713.80	Richey, 1989, Table 2, p.42
Magenta	FFG_300	520.60	Richey, 1989, Table 2, p.40	61	Magenta	FFG_338	720.70	Richey, 1989, Table 2, p.42
Magenta	FFG_301	491.10	Richey, 1989, Table 2, p.40	62	Magenta	FFG_339	684.80	Richey, 1989, Table 2, p.42
Magenta	FFG_302	518.50	Richey, 1989, Table 2, p.40	63	Magenta	FFG_340	694.00	Richey, 1989, Table 2, p.42
Magenta	FFG_303	511.20	Richey, 1989, Table 2, p.40	64	Magenta	FFG_342	726.90	Richey, 1989, Table 2, p.43
Magenta	FFG_304	517.50	Richey, 1989, Table 2, p.40	65	Magenta	FFG_344	692.70	Richey, 1989, Table 2, p.43
Magenta	FFG_305	509.30	Richey, 1989, Table 2, p.40	66	Magenta	FFG_345	752.10	Richey, 1989, Table 2, p.43
Magenta	FFG_306	469.30	Richey, 1989, Table 2, p.40	67	Magenta	FFG_347	744.70	Richey, 1989, Table 2, p.43
Magenta	FFG_307	493.50	Richey, 1989, Table 2, p.40	68	Magenta	FFG_348	773.30	Richey, 1989, Table 2, p.43
Magenta	FFG_308	465.70	Richey, 1989, Table 2, p.40	69	Magenta	FFG_349	742.20	Richey, 1989, Table 2, p.43
Magenta	FFG_309	508.10	Richey, 1989, Table 2, p.40	70	Magenta	FFG_350	789.10	Richey, 1989, Table 2, p.43
Magenta	FFG_310	539.20	Richey, 1989, Table 2, p.40	71	Magenta	FFG_351	705.60	Richey, 1989, Table 2, p.43
Magenta	FFG_311	486.50	Richey, 1989, Table 2, p.40	72	Magenta	FFG_352	705.60	Richey, 1989, Table 2, p.43
Magenta	FFG_312	510.60	Richey, 1989, Table 2, p.40	73	Magenta	FFG_353	726.70	Richey, 1989, Table 2, p.43
Magenta	FFG_313	915.10	Richey, 1989, Table 2, p.41	74	Magenta	FFG_354	800.80	Richey, 1989, Table 2, p.43
Magenta	FFG_314	843.10	Richey, 1989, Table 2, p.41	75	Magenta	FFG_361	986.90	Richey, 1989, Table 2, p.44
Magenta	FFG_315	764.30	Richey, 1989, Table 2, p.41	76	Magenta	FFG_366	940.60	Richey, 1989, Table 2, p.44
Magenta	FFG 316	747.90	Richey, 1989, Table 2, p.41	77	Magenta	FFG 367	954.60	Richey, 1989, Table 2, p.44

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Magenta	FFG_371	997.70	Richey, 1989, Table 2, p.44	39	Magenta	FFG_472	538.30	Richey, 1989, Table 2, p.51
Magenta	FFG_374	940.90	Richey, 1989, Table 2, p.45	40	Magenta	FFG_473	468.20	Richey, 1989, Table 2, p.51
Magenta	FFG_383	938.80	Richey, 1989, Table 2, p.45	41	Magenta	FFG_474	729.40	Richey, 1989, Table 2, p.51
Magenta	FFG_384	945.80	Richey, 1989, Table 2, p.45	42	Magenta	FFG_475	728.90	Richey, 1989, Table 2, p.51
Magenta	FFG_387	940.30	Richey, 1989, Table 2, p.45	43	Magenta	FFG 476	805.00	Richey, 1989, Table 2, p.51
Magenta	FFG_388	936.70	Richey, 1989, Table 2, p.46	44	Magenta	FFG 477	760.80	Richey, 1989, Table 2, p.51
Magenta	FFG_390	954.00	Richey, 1989, Table 2, p.46	45	Magenta	FFG_478	739.70	Richey, 1989, Table 2, p.52
Magenta	FFG_391	951.50	Richey, 1989, Table 2, p.46	46	Magenta	FFG_479	736.40	Richey, 1989, Table 2, p.52
Magenta	FFG_392	948.60	Richey, 1989, Table 2, p.46	47	Magenta	FFG_480	732.50	Richey, 1989, Table 2, p.52
Magenta	FFG_393	816.10	Richey, 1989, Table 2, p.46	48	Magenta	FFG_481	715.70	Richey, 1989, Table 2, p.52
Magenta	FFG_394	908.60	Richey, 1989, Table 2, p.46	49	Magenta	FFG_482	744.30	Richey, 1989, Table 2, p.52
Magenta	FFG_395	901.60	Richey, 1989, Table 2, p.46	50	Magenta	FFG_483	767.80	Richey, 1989, Table 2, p.52
Magenta	FFG_396	884.30	Richey, 1989, Table 2, p.46	51	Magenta	FFG_484	753.60	Richey, 1989, Table 2, p.52
Magenta	FFG_398	805.60	Richey, 1989, Table 2, p.46	52	Magenta	FFG_485	762.60	Richey, 1989, Table 2, p.52
Magenta	FFG_402	979.40	Richey, 1989, Table 2, p.46	53	Magenta	FFG_486	749.50	Richey, 1989, Table 2, p.52
Magenta	FFG_403	941.40	Richey, 1989, Table 2, p.47	54	Magenta	FFG_487	746.50	Richey, 1989, Table 2, p.52
Magenta	FFG_404	901.60	Richey, 1989, Table 2, p.47	55	Magenta	FFG_488	731.20	Richey, 1989, Table 2, p.52
Magenta	FFG_407	940.00	Richey, 1989, Table 2, p.47	56	Magenta	FFG_489	748.40	Richey, 1989, Table 2, p.52
Magenta	FFG_408	913.20	Richey, 1989, Table 2, p.47	57	Magenta	FFG_490	838.80	Richey, 1989, Table 2, p.52
Magenta	FFG_419	976.60	Richey, 1989, Table 2, p.48	58	Magenta	FFG_491	836.40	Richey, 1989, Table 2, p.52
Magenta	FFG_420	973.50	Richey, 1989, Table 2, p.48	59	Magenta	FFG_492	798.60	Richey, 1989, Table 2, p.52
Magenta	FFG_421	960.10	Richey, 1989, Table 2, p.48	60	Magenta	FFG_493	785.30	Richey, 1989, Table 2, p.53
Magenta	FFG_422	958.30	Richey, 1989, Table 2, p.48	61	Magenta	FFG_494	792.10	Richey, 1989, Table 2, p.53
Magenta	FFG_432	924.10	Richey, 1989, Table 2, p.48	62	Magenta	FFG_495	783.00	Richey, 1989, Table 2, p.53
Magenta	FFG_438	874.60	Richey, 1989, Table 2, p.49	63	Magenta	FFG_496	688.60	Richey, 1989, Table 2, p.53
Magenta	FFG_455	817.50	Richey, 1989, Table 2, p.50	64	Magenta	FFG_497	701.10	Richey, 1989, Table 2, p.53
Magenta	FFG_456	812.50	Richey, 1989, Table 2, p.50	65	Magenta	FFG_498	714.10	Richey, 1989, Table 2, p.53
Magenta	FFG_457	868.10	Richey, 1989, Table 2, p.50	66	Magenta	FFG_499	689.50	Richey, 1989, Table 2, p.53
Magenta	FFG_458	872.60	Richey, 1989, Table 2, p.50	67	Magenta	FFG_500	704.70	Richey, 1989, Table 2, p.53
Magenta	FFG_459	799.50	Richey, 1989, Table 2, p.50	68	Magenta	FFG_501	710.10	Richey, 1989, Table 2, p.53
Magenta	FFG_462	865.80	Richey, 1989, Table 2, p.50	69	Magenta	FFG_502	702.90	Richey, 1989, Table 2, p.53
Magenta	FFG_463	893.10	Richey, 1989, Table 2, p.51	70	Magenta	FFG_503	684.00	Richey, 1989, Table 2, p.53
Magenta	FFG_464	880.00	Richey, 1989, Table 2, p.51	71	Magenta	FFG_504	706.00	Richey, 1989, Table 2, p.53
Magenta	FFG_465	883.00	Richey, 1989, Table 2, p.51	72	Magenta	FFG_505	739.50	Richey, 1989, Table 2, p.53
Magenta	FFG_467	488.20	Richey, 1989, Table 2, p.51	73	Magenta	FFG_506	730.90	Richey, 1989, Table 2, p.53
Magenta	FFG_468	465.50	Richey, 1989, Table 2, p.51	74	Magenta	FFG_507	692.40	Richey, 1989, Table 2, p.53
Magenta	FFG_470	484.90	Richey, 1989, Table 2, p.51	75	Magenta	FFG_508	744.10	Richey, 1989, Table 2, p.53
Magenta	FFG 471	500.50	Richey, 1989, Table 2, p.51	76	Magenta	FFG 509	745.20	Richey, 1989, Table 2, p.54

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

	Layer	Weil ID	Elevation	Source		Layer	Well ID	Elevation	Source
1	Magenta	FFG_510	744.80	Richey, 1989, Table 2, p.54	39	Magenta	FFG 640	630.80	Richey, 1989, Table 2, p.60
2	Magenta	FFG_511	702.30	Richey, 1989, Table 2, p.54	40	Magenta	FFG_643	669.70	Richey, 1989, Table 2, p.60
3	Magenta	FFG_512	720.80	Richey, 1989, Table 2, p.54	41	Magenta	FFG_644	706.40	Richey, 1989, Table 2, p.60
4	Magenta	FFG_513	740.70	Richey, 1989, Table 2, p.54	42	Magenta	FFG_648	541.30	Richey, 1989, Table 2, p.60
5	Magenta	FFG_514	731.20	Richey, 1989, Table 2, p.54	43	Magenta	FFG_652	859.80	Richey, 1989, Table 2, p.60
6	Magenta	FFG_515	697.90	Richey, 1989, Table 2, p.54	44	Magenta	FFG_653	859.90	Richey, 1989, Table 2, p.61
7	Magenta	FFG_516	691.30	Richey, 1989, Table 2, p.54	45	Magenta	FFG_654	880.00	Richey, 1989, Table 2, p.61
8	Magenta	FFG_517	788.80	Richey, 1989, Table 2, p.54	46	Magenta	FFG_655	878.10	Richey, 1989, Table 2, p.61
9	Magenta	FFG_518	778.10	Richey, 1989, Table 2, p.54	47	Magenta	FFG_656	876.90	Richey, 1989, Table 2, p.61
0	Magenta	FFG_519	743.70	Richey, 1989, Table 2, p.54	48	Magenta	FFG_657	889.80	Richey, 1989, Table 2, p.61
1	Magenta	FFG_520	635.40	Richey, 1989, Table 2, p.54	49	Magenta	FFG_658	881.80	Richey, 1989, Table 2, p.61
2	Magenta	FFG_521	655.00	Richey, 1989, Table 2, p.54	50	Magenta	FFG_659	886.10	Richey, 1989, Table 2, p.61
3	Magenta	FFG_522	504.30	Richey, 1989, Table 2, p.54	51	Magenta	FFG_660	901.50	Richey, 1989, Table 2, p.61
4	Magenta	FFG_523	516.90	Richey, 1989, Table 2, p.54	52	Magenta	FFG_662	876.30	Richey, 1989, Table 2, p.61
5	Magenta	FFG_524	675.10	Richey, 1989, Table 2, p.55	53	Magenta	FFG_664	868.40	Richey, 1989, Table 2, p.61
6	Magenta	FFG_525	513.70	Richey, 1989, Table 2, p.55	54	Magenta	FFG_666	920.50	Richey, 1989, Table 2, p.62
7	Magenta	FFG_527	938.70	Richey, 1989, Table 2, p.55	55	Magenta	FFG_667	905.60	Richey, 1989, Table 2, p.62
8	Magenta	FFG_528	934.20	Richey, 1989, Table 2, p.55	56	Magenta	FFG_670	926.90	Richey, 1989, Table 2, p.62
9	Magenta	FFG_532	915.60	Richey, 1989, Table 2, p.55	57	Magenta	FFG_672	925.70	Richey, 1989, Table 2, p.62
0	Magenta	FFG_535	919.90	Richey, 1989, Table 2, p.55	58	Magenta	FFG_674	921.70	Richey, 1989, Table 2, p.62
1	Magenta	FFG_548	914.10	Richey, 1989, Table 2, p.56	59	Magenta	FFG_675	877.70	Richey, 1989, Table 2, p.62
2	Magenta	FFG_562	652.30	Richey, 1989, Table 2, p.57	60	Magenta	FFG_676	891.90	Richey, 1989, Table 2, p.62
3	Magenta	FFG_563	564.80	Richey, 1989, Table 2, p.57	61	Magenta	FFG_677	917.80	Richey, 1989, Table 2, p.62
4	Magenta	FFG_569	670.60	Richey, 1989, Table 2, p.57	62	Magenta	FFG 679	917.10	Richey, 1989, Table 2, p.62
5	Magenta	FFG_584	767.70	Richey, 1989, Table 2, p.58	63	Magenta	FFG_689	799.50	Richey, 1989, Table 2, p.63
5	Magenta	FFG_600	727.60	Richey, 1989, Table 2, p.58	64	Magenta	FFG_690	805.00	Richey, 1989, Table 2, p.63
7	Magenta	FFG_601	623.00	Richey, 1989, Table 2, p.58	65	Magenta	FFG_691	796.20	Richey, 1989, Table 2, p.63
3	Magenta	FFG_606	703.50	Richey, 1989, Table 2, p.58	66	Magenta	FFG_692	786.40	Richey, 1989, Table 2, p.63
Э	Magenta	FFG_607	723.30	Richey, 1989, Table 2, p.59	67	Magenta	FFG_693	797.00	Richey, 1989, Table 2, p.63
0	Magenta	FFG_608	731.80	Richey, 1989, Table 2, p.59	68	Magenta	FFG 694	789.40	Richey, 1989, Table 2, p.63
1	Magenta	FFG_609	738.80	Richey, 1989, Table 2, p.59	69	Magenta	FFG_695	794.90	Richey, 1989, Table 2, p.63
2	Magenta	FFG_610	722.40	Richey, 1989, Table 2, p.59	70	Magenta	FFG 696	797.00	Richey, 1989, Table 2, p.63
3	Magenta	FFG_611	707.40	Richey, 1989, Table 2, p.59	71	Magenta	FFG_697	799.20	Richey, 1989, Table 2, p.64
4	Magenta	FFG_612	715.70	Richey, 1989, Table 2, p.59	72	Magenta	FFG_698	841.60	Richey, 1989, Table 2, p.64
5	Magenta	FFG_613	713.50	Richey, 1989, Table 2, p.59	73	Magenta	FFG_699	792.80	Richey, 1989, Table 2, p.64
5	Magenta	FFG_620	738.50	Richey, 1989, Table 2, p.59	74	Magenta	FFG_700	782.50	Richey, 1989, Table 2, p.64
7	Magenta	FFG_638	573.10	Richey, 1989, Table 2, p.60	75	Magenta	FFG_701	788.60	Richey, 1989, Table 2, p.64
3	Magenta	FFG_639	543.80	Richey, 1989, Table 2, p.60	76	Magenta	FFG 702	792.80	Richey, 1989, Table 2, p.64

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Magenta	FFG_703	798.90	Richey, 1989, Table 2, p.64	39	Magenta	FFG_742	753.70	Richey, 1989, Table 2, p.67
Magenta	FFG_704	785.50	Richey, 1989, Table 2, p.64	40	Magenta	FFG_743	740.40	Richey, 1989, Table 2, p.67
Magenta	FFG_705	715.60	Richey, 1989, Table 2, p.64	41	Magenta	FFG_744	722.90	Richey, 1989, Table 2, p.67
Magenta	FFG_706	736.10	Richey, 1989, Table 2, p.64	42	Magenta	FFG_745	708.90	Richey, 1989, Table 2, p.67
Magenta	FFG_707	720.30	Richey, 1989, Table 2, p.64	43	Magenta	FFG_746	699.10	Richey, 1989, Table 2, p.67
Magenta	FFG 708	773.30	Richey, 1989, Table 2, p.64	44	Magenta	H1	864.10	Mercer, 1983, Table 1
Magenta	FFG_709	664.50	Richey, 1989, Table 2, p.64	45	Magenta	H10C	741.00	Mercer, 1983, Table 1
Magenta	FFG_710	665.40	Richey, 1989, Table 2, p.64	46	Magenta	H2C	872.60	Mercer, 1983, Table 1
Magenta	FFG_711	675.20	Richey, 1989, Table 2, p.65	47	Magenta	НЗ	862.90	Mercer, 1983, Table 1
Magenta	FFG_712	718.80	Richey, 1989, Table 2, p.65	48	Magenta	H4C	901.30	Mercer, 1983, Table 1
Magenta	FFG_713	655.80	Richey, 1989, Table 2, p.65	49	Magenta	H5C	828.70	Mercer, 1983, Table 1
Magenta	FFG_714	770.20	Richey, 1989, Table 2, p.65	50	Magenta	H6C	871.10	Mercer, 1983, Table 1
Magenta	FFG_715	783.00	Richey, 1989, Table 2, p.65	51	Magenta	H7C	928.40	Mercer, 1983, Table 1
Magenta	FFG_716	680.80	Richey, 1989, Table 2, p.65	52	Magenta	H8C	904.40	Mercer, 1983, Table 1
Magenta	FFG_717	703.30	Richey, 1989, Table 2, p.65	53	Magenta	H9C	878.70	Mercer, 1983, Table 1
Magenta	FFG_718	706.70	Richey, 1989, Table 2, p.65	54	Magenta	P1	890.70	Mercer, 1983, Table 1
Magenta	FFG_719	679.40	Richey, 1989, Table 2, p.65	55	Magenta	P10	838.80	Mercer, 1983, Table 1
Magenta	FFG_720	679.10	Richey, 1989, Table 2, p.65	56	Magenta	P11	824.80	Mercer, 1983, Table 1
Magenta	FFG_721	679.10	Richey, 1989, Table 2, p.65	57	Magenta	P12	870.20	Mercer, 1983, Table 1
Magenta	FFG_723	791.70	Richey, 1989, Table 2, p.65	58	Magenta	P13	870.20	Mercer, 1983, Table 1
Magenta	FFG_724	719.10	Richey, 1989, Table 2, p.65	59	Magenta	P14	886.00	Mercer, 1983, Table 1
Magenta	FFG_725	694.90	Richey, 1989, Table 2, p.65	60	Magenta	P15	919.30	Mercer, 1983, Table 1
Magenta	FFG_726	682.70	Richey, 1989, Table 2, p.65	61	Magenta	P1ô	896.70	Mercer, 1983, Table 1
Magenta	FFG_727	680.00	Richey, 1989, Table 2, p.66	62	Magenta	P17	883.30	Mercer, 1983, Table 1
Magenta	FFG_728	677.80	Richey, 1989, Table 2, p.66	63	Magenta	P18	845.20	Mercer, 1983, Table 1
Magenta	FFG_729	688.90	Richey, 1989, Table 2, p.66	64	Magenta	P19	832.40	Mercer, 1983, Table 1
Magenta	FFG_730	705.60	Richey, 1989, Table 2, p.66	65	Magenta	P2	832.40	Mercer, 1983, Table 1
Magenta	FFG_731	703.00	Richey, 1989, Table 2, p.66	66	Magenta	P20	827.30	Mercer, 1983, Table 1
Magenta	FFG_732	720.60	Richey, 1989, Table 2, p.66	67	Magenta	P21	829.30	Mercer, 1983, Table 1
Magenta	FFG_733	787.60	Richey, 1989, Table 2, p.66	68	Magenta	P3	869.90	Mercer, 1983, Table 1
Magenta	FFG_734	741.90	Richey, 1989, Table 2, p.66	69	Magenta	P4	847.90	Mercer, 1983, Table 1
Magenta	FFG_735	684.60	Richey, 1989, Table 2, p.66	70	Magenta	P5	848.90	Mercer, 1983, Table 1
Magenta	FFG_736	739.10	Richey, 1989, Table 2, p.66	71	Magenta	P6	895.20	Mercer, 1983, Table 1
Magenta	FFG_737	682.80	Richey, 1989, Table 2, p.66	72	Magenta	P7	901.90	Mercer, 1983, Table 1
Magenta	FFG_738	697.00	Richey, 1989, Table 2, p.66	73	Magenta	P8	880.50	Mercer, 1983, Table 1
Magenta	FFG_739	734.40	Richey, 1989, Table 2, p.66	74	Magenta	P9	851.90	Mercer, 1983, Table 1
Magenta	FFG_740	736.70	Richey, 1989, Table 2, p.66	75	Magenta	REF	856.70	Rechard et al., 1991, Figure 2.2-1
Magenta	FFG 741	702.90	Richey, 1989, Table 2, p.66	76	Magenta	SaltShft	858.77	Bechtel, Inc., 1986, Appendix D

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

	Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
1	Magenta	WIPP11	822.60	Mercer, 1983, Table 1	39	Salado	FFG 011	570.30	Richey, 1989, Table 2, p.21
2	Magenta	WIPP11	822.70	SNL and USGS, 1982a, Table 2	40	Salado	FFG 012	572.10	Richey, 1989, Table 2, p.21
3	Magenta	WIPP12	847.30	SNL and D'Appolonia Consulting, 1983, Table 2		Salado	FFG 013	582.50	Richey, 1989, Table 2, p.21
4	Magenta	WIPP12	848.00	Mercer, 1983, Table 1	42	Salado	FFG 014	623.00	Richey, 1989, Table 2, p.21
5	Magenta	WIPP13	865.90	Mercer, 1983, Table 1	43	Salado	FFG 016	545.00	Richey, 1989, Table 2, p.21
6	Magenta	WIPP16	668.70	Mercer, 1983, Table 1	44	Salado	FFG 017	555.30	Richey, 1989, Table 2, p.22
7	Magenta	WIPP18	848.60	Mercer, 1983, Table 1	45	Salado	FFG 018	558.40	Richey, 1989, Table 2, p.22
8	Magenta	WIPP19	849.20	Mercer, 1983, Table 1	46	Salado	FFG 019	548.90	Richey, 1989, Table 2, p.22
9	Magenta	WIPP21	853.10	Mercer, 1983, Table 1	47	Salado	FFG 020	622.40	Richey, 1989, Table 2, p.22
0	Magenta	WIPP22	852.20	Mercer, 1983, Table 1	48	Salado	FFG 023	553.50	Richey, 1989, Table 2, p.22
1	Magenta	WIPP25	887.30	Mercer, 1983, Table 1	49	Salado	FFG 024	539.20	Richey, 1989, Table 2, p.22
2	Magenta	WIPP26	939.40	Mercer, 1983, Table 1	50	Salado	FFG_025	560.40	Richey, 1989, Table 2, p.22
3	Magenta	WIPP27	914.70	Mercer, 1983, Table 1	51	Salado	FFG_026	552.60	Richey, 1989, Table 2, p.22
4	Magenta	WIPP28	933.30	Mercer, 1983, Table 1	52	Salado	FFG_027	545.60	Richey, 1989, Table 2, p.22
5	Magenta	WIPP30	888.50	Mercer, 1983, Table 1	53	Salado	FFG_028	549.60	Richey, 1989, Table 2, p.22
6	Magenta	WIPP32	915.60	Mercer, 1983, Table 1	54	Salado	FFG_029	537.90	Richey, 1989, Table 2, p.22
7	Magenta	WIPP33	876.00	Mercer, 1983, Table 1	55	Salado	FFG_030	532.80	Richey, 1989, Table 2, p.22
8	Magenta	WIPP34	827.60	Mercer, 1983, Table 1	56	Salado	FFG_031	522.40	Richey, 1989, Table 2, p.22
9	Magenta	WastShft	857.36	Bechtel, Inc., 1986, Appendix E	57	Salado	FFG_032	519.00	Richey, 1989, Table 2, p.22
0	RSResid	AirShft	783.13	Holt and Powers, 1990, Figure 22	58	Salado	FFG_033	518.80	Richey, 1989, Table 2, p.22
1	RSResid	ExhtShft	779.98	Bechtel, Inc., 1986, Appendix F	59	Salado	FFG_034	517.80	Richey, 1989, Table 2, p.23
2	RSResid	SaltShft	780.44	Bechtel, Inc., 1986, Appendix D	60	Salado	FFG_035	504.90	Richey, 1989, Table 2, p.23
3	RSResid	WastShft	781.82	Bechtel, Inc., 1986, Appendix E	61	Salado	FFG_036	510.30	Richey, 1989, Table 2, p.23
4	ReposFlr	AirShft	383.74	Holt and Powers, 1990, Figure 22	62	Salado	FFG_037	502.90	Richey, 1989, Table 2, p.23
5	ReposFlr	ExhtShft	381.61	Bechtel, Inc., 1986, Appendix F	63	Salado	FFG_038	491.90	Richey, 1989, Table 2, p.23
6	ReposFlr	SaltShft	380.08	Bechtel, Inc., 1986, Appendix D	64	Salado	FFG 039	694.40	Richey, 1989, Table 2, p.23
7	ReposFlr	WastShft	380.70	Bechtel, Inc., 1986, Appendix E	65	Salado	FFG_040	624.90	Richey, 1989, Table 2, p.23
8	Salado	AEC7	811.60	Mercer, 1983, Table 1	66	Salado	FFG_041	691.90	Richey, 1989, Table 2, p.23
9	Salado	AEC8	776.40	Mercer, 1983, Table 1	67	Salado	FFG_042	695.20	Richey, 1989, Table 2, p.23
0	Salado	B25	782.20	Mercer, 1983, Table 1	68	Salado	FFG_043	697.00	Richey, 1989, Table 2, p.23
1	Salado	ERDA10	836.10	Mercer, 1983, Table 1	69	Salado	FFG_044	645.60	Richey, 1989, Table 2, p.23
2	Salado	ERDA6	830.60	Mercer, 1983, Table 1	70	Salado	FFG_047	526.10	Richey, 1989, Table 2, p.23
3	Salado	ERDA9	783.60	Mercer, 1983, Table 1	71	Salado	FFG_048	527.60	Richey, 1989, Table 2, p.23
1	Salado	FFG_002	578.80	Richey, 1989, Table 2, p.21	72	Salado	FFG_049	526.70	Richey, 1989, Table 2, p.23
5	Salado	FFG_004	627.90	Richey, 1989, Table 2, p.21	73	Salado	FFG_050	537.40	Richey, 1989, Table 2, p.24
ŝ	Salado	FFG_005	581.90	Richey, 1989, Table 2, p.21	74	Salado	FFG_051	530.90	Richey, 1989, Table 2, p.24
7	Salado	FFG_007	559.00	Richey, 1989, Table 2, p.21	75	Salado	FFG_052	565.70	Richey, 1989, Table 2, p.24
3	Salado	FFG_009	575.10	Richey, 1989, Table 2, p.21	76	Salado	FFG_053	510.50	Richey, 1989, Table 2, p.24

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Salado	FFG_054	518.80	Richey, 1989, Table 2, p.24	39	Salado	FFG_094	637.00	Richey, 1989, Table 2, p.26
Salado	FFG_055	521.20	Richey, 1989, Table 2, p.24	40	Salado	FFG_095	618.70	Richey, 1989, Table 2, p.26
Salado	FFG_056	520.90	Richey, 1989, Table 2, p.24	41	Salado	FFG_096	605.00	Richey, 1989, Table 2, p.26
Salado	FFG_057	524.60	Richey, 1989, Table 2, p.24	42	Salado	FFG_097	580.60	Richey, 1989, Table 2, p.27
Salado	FFG_058	526.70	Richey, 1989, Table 2, p.24	43	Salado	FFG_098	555.90	Richey, 1989, Table 2, p.27
Salado	FFG_059	529.70	Richey, 1989, Table 2, p.24	44	Salado	FFG_099	550.20	Richey, 1989, Table 2, p.27
Salado	FFG_060	532.80	Richey, 1989, Table 2, p.24	45	Salado	FFG_100	530.40	Richey, 1989, Table 2, p.27
Salado	FFG_061	532.50	Richey, 1989, Table 2, p.24	46	Salado	FFG_101	500.20	Richey, 1989, Table 2, p.27
Salado	FFG_062	479.20	Richey, 1989, Table 2, p.24	47	Salado	FFG_102	512.40	Richey, 1989, Table 2, p.27
Salado	FFG_063	438.40	Richey, 1989, Table 2, p.24	48	Salado	FFG_104	474.30	Richey, 1989, Table 2, p.27
Salado	FFG_064	461.20	Richey, 1989, Table 2, p.24	49	Salado	FFG_105	812.90	Richey, 1989, Table 2, p.27
Salado	FFG_065	449.60	Richey, 1989, Table 2, p.24	50	Salado	FFG_106	840.70	Richey, 1989, Table 2, p.27
Salado	FFG_066	401.70	Richey, 1989, Table 2, p.24	51	Salado	FFG_107	836.10	Richey, 1989, Table 2, p.27
Salado	FFG_067	435.90	Richey, 1989, Table 2, p.25	52	Salado	FFG_108	836.10	Richey, 1989, Table 2, p.27
Salado	FFG_068	396.50	Richey, 1989, Table 2, p.25	53	Salado	FFG_109	831.80	Richey, 1989, Table 2, p.27
Salado	FFG_069	407.90	Richey, 1989, Table 2, p.25	54	Salado	FFG_110	798.60	Richey, 1989, Table 2, p.27
Salado	FFG_070	442.00	Richey, 1989, Table 2, p.25	55	Salado	FFG_111	806.20	Richey, 1989, Table 2, p.27
Salado	FFG_071	700.20	Richey, 1989, Table 2, p.25	56	Salado	FFG_112	784.80	Richey, 1989, Table 2, p.28
Salado	FFG_072	645.80	Richey, 1989, Table 2, p.25	57	Salado	FFG_113	802.20	Richey, 1989, Table 2, p.28
Salado	FFG_073	623.30	Richey, 1989, Table 2, p.25	58	Salado	FFG_114	828.80	Richey, 1989, Table 2, p.28
Salado	FFG_074	630.70	Richey, 1989, Table 2, p.25	59	Salado	FFG_115	803.50	Richey, 1989, Table 2, p.28
Salado	FFG_075	683.40	Richey, 1989, Table 2, p.25	60	Salado	FFG_116	795.20	Richey, 1989, Table 2, p.28
Salado	FFG_076	741.90	Richey, 1989, Table 2, p.25	61	Salado	FFG_117	810.80	Richey, 1989, Table 2, p.28
Salado	FFG_078	776.90	Richey, 1989, Table 2, p.25	62	Salado	FFG_119	828.20	Richey, 1989, Table 2, p.28
Salado	FFG_079	750.40	Richey, 1989, Table 2, p.25	63	Salado	FFG_120	819.30	Richey, 1989, Table 2, p.28
Salado	FFG_080	727.50	Richey, 1989, Table 2, p.25	64	Salado	FFG_121	830.60	Richey, 1989, Table 2, p.28
Salado	FFG_081	644.40	Richey, 1989, Table 2, p.26	65	Salado	FFG_122	813.80	Richey, 1989, Table 2, p.28
Salado	FFG_082	673.00	Richey, 1989, Table 2, p.26	66	Salado	FFG_123	815.30	Richey, 1989, Table 2, p.28
Salado	FFG_083	604.60	Richey, 1989, Table 2, p.26	67	Salado	FFG_124	785.50	Richey, 1989, Table 2, p.28
Salado	FFG_084	626.00	Richey, 1989, Table 2, p.26	68	Salado	FFG_126	813.00	Richey, 1989, Table 2, p.28
Salado	FFG_085	620.90	Richey, 1989, Table 2, p.26	69	Salado	FFG_127	824.10	Richey, 1989, Table 2, p.28
Salado	FFG_086	630.30	Richey, 1989, Table 2, p.26	70	Salado	FFG_128	852.60	Richey, 1989, Table 2, p.28
Salado	FFG_087	601.30	Richey, 1989, Table 2, p.26	71	Salado	FFG_129	815.60	Richey, 1989, Table 2, p.28
Salado	FFG_088	595.30	Richey, 1989, Table 2, p.26	72	Salado	FFG_130	854.90	Richey, 1989, Table 2, p.28
Salado	FFG_089	576.70	Richey, 1989, Table 2, p.26	73	Salado	FFG_132	852.80	Richey, 1989, Table 2, p.29
Salado	FFG_091	614.20	Richey, 1989, Table 2, p.26	74	Salado	FFG_133	837.60	Richey, 1989, Table 2, p.29
Salado	FFG_092	633.70	Richey, 1989, Table 2, p.26	75	Salado	FFG_134	861.70	Richey, 1989, Table 2, p.29
Salado	FFG_093	637.70	Richey, 1989, Table 2, p.26	76	Salado	FFG 135	844.00	Richey, 1989, Table 2, p.29

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Laye	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Salado	FFG_136	844.40	Richey, 1989, Table 2, p.29	39	Salado	FFG_183	837.30	Richey, 1989, Table 2, p.32
Salado	-	853.20	Richey, 1989, Table 2, p.29	40	Salado	FFG_184	851.60	Richey, 1989, Table 2, p.32
Salado	FFG_138	798.30	Richey, 1989, Table 2, p.29	41	Salado	FFG_185	840.00	Richey, 1989, Table 2, p.32
Salado	FFG_139	810.10	Richey, 1989, Table 2, p.29	42	Salado	FFG_186	766.30	Richey, 1989, Table 2, p.32
Salado	FFG_140	750.00	Richey, 1989, Table 2, p.29	43	Salado	FFG_188	781.20	Richey, 1989, Table 2, p.32
Salado	FFG_141	782.90	Richey, 1989, Table 2, p.29	44	Salado	FFG_189	805.00	Richey, 1989, Table 2, p.32
Salado		757.80	Richey, 1989, Table 2, p.29	45	Salado	FFG_190	793.40	Richey, 1989, Table 2, p.32
Salado	FFG_144	825.10	Richey, 1989, Table 2, p.29	46	Salado	FFG_191	780.00	Richey, 1989, Table 2, p.32
Salado	FFG_145	830.60	Richey, 1989, Table 2, p.29	47	Salado	FFG_192	708.00	Richey, 1989, Table 2, p.32
Salado	FFG_146	826.00	Richey, 1989, Table 2, p.29	48	Salado	FFG_194	738.80	Richey, 1989, Table 2, p.33
Salado	FFG_147	816.30	Richey, 1989, Table 2, p.29	49	Salado	FFG_195	753.50	Richey, 1989, Table 2, p.33
Salado	FFG_148	832.10	Richey, 1989, Table 2, p.29	50 (Salado	FFG_196	792.50	Richey, 1989, Table 2, p.33
Salado	FFG_149	842.10	Richey, 1989, Table 2, p.30	51	Salado	FFG_197	790.10	Richey, 1989, Table 2, p.33
Salado	FFG_152	836.70	Richey, 1989, Table 2, p.30	52	Salado	FFG_198	783.90	Richey, 1989, Table 2, p.33
Salado	FFG_155	830.90	Richey, 1989, Table 2, p.30	53	Salado	FFG_199	780.60	Richey, 1989, Table 2, p.33
Salado	FFG_156	837.60	Richey, 1989, Table 2, p.30	54	Salado	FFG_200	785.20	Richey, 1989, Table 2, p.33
Salado	FFG_158	856.80	Richey, 1989, Table 2, p.30	55	Salado	FFG_201	778.70	Richey, 1989, Table 2, p.33
Salado	FFG_159	859.60	Richey, 1989, Table 2, p.30	56	Salado	FFG_202	723.60	Richey, 1989, Table 2, p.33
Salado	FFG_160	855.60	Richey, 1989, Table 2, p.30	57	Salado	FFG_203	727.60	Richey, 1989, Table 2, p.33
Salado	FFG_161	856.80	Richey, 1989, Table 2, p.30	58	Salado	FFG_204	767.20	Richey, 1989, Table 2, p.33
Salado	FFG_162	857.70	Richey, 1989, Table 2, p.30	59	Salado	FFG_205	768.50	Richey, 1989, Table 2, p.33
Salado	FFG_163	856.20	Richey, 1989, Table 2, p.30	60	Salado	FFG_206	779.40	Richey, 1989, Table 2, p.33
Salado	FFG_164	854.70	Richey, 1989, Table 2, p.30	61	Salado	FFG_207	775.70	Richey, 1989, Table 2, p.33
Salado	FFG_165	838.80	Richey, 1989, Table 2, p.30	62	Salado	FFG_208	780.30	Richey, 1989, Table 2, p.34
Salado	FFG_166	858.30	Richey, 1989, Table 2, p.31	63	Salado	FFG_209	787.30	Richey, 1989, Table 2, p.34
Salado	FFG_167	836.70	Richey, 1989, Table 2, p.31	64	Salado	FFG_210	766.00	Richey, 1989, Table 2, p.34
Salado	FFG_168	843.10	Richey, 1989, Table 2, p.31	65	Salado	FFG_212	768.40	Richey, 1989, Table 2, p.34
Salado	FFG_169	861.30	Richey, 1989, Table 2, p.31	66	Salado	FFG_213	795.30	Richey, 1989, Table 2, p.34
Salado	FFG_170	839.10	Richey, 1989, Table 2, p.31	67	Salado	FFG_214	757.70	Richey, 1989, Table 2, p.34
Salado	FFG_171	848.00	Richey, 1989, Table 2, p.31	68	Salado	FFG_215	734.60	Richey, 1989, Table 2, p.34
Salado	FFG_172	851.90	Richey, 1989, Table 2, p.31	69	Salado	FFG_216	520.60	Richey, 1989, Table 2, p.34
Salado	FFG_173	831.50	Richey, 1989, Table 2, p.31	70	Salado	FFG_217	756.30	Richey, 1989, Table 2, p.34
Salado	FFG_177	812.60	Richey, 1989, Table 2, p.31	71	Salado	FFG_218	744.00	Richey, 1989, Table 2, p.34
Salado	FFG_178	539.20	Richey, 1989, Table 2, p.31	72	Salado	FFG_219	783.30	Richey, 1989, Table 2, p.34
Salado	FFG_179	816.80	Richey, 1989, Table 2, p.31	73	Salado	FFG_220	742.20	Richey, 1989, Table 2, p.34
Salado	FFG_180	825.10	Richey, 1989, Table 2, p.31	74	Salado	FFG_221	684.90	Richey, 1989, Table 2, p.34
Salado	FFG_181	869.00	Richey, 1989, Table 2, p.32	75	Salado	FFG_222	604.50	Richey, 1989, Table 2, p.34
Salado	FFG_182	757.10	Richey, 1989, Table 2, p.32	76	Salado	FFG_224	558.10	Richey, 1989, Table 2, p.35

	Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
-	Salado	FFG 225	566.30	Richey, 1989, Table 2, p.35	39	Salado	FFG_264	653.50	Richey, 1989, Table 2, p.37
S	Salado	FFG_226	561.90	Richey, 1989, Table 2, p.35	40	Salado	FFG_265	634.60	Richey, 1989, Table 2, p.37
S	Salado	FFG_228	549.30	Richey, 1989, Table 2, p.35	41	Salado	FFG_266	609.60	Richey, 1989, Table 2, p.37
S	Salado	FFG_229	572.10	Richey, 1989, Table 2, p.35	42	Salado	FFG_267	582.70	Richey, 1989, Table 2, p.37
S	Salado	FFG 230	558.40	Richey, 1989, Table 2, p.35	43	Salado	FFG_268	563.30	Richey, 1989, Table 2, p.37
S	Salado	FFG_231	578.20	Richey, 1989, Table 2, p.35	44	Salado	FFG_269	568.30	Richey, 1989, Table 2, p.38
S	Salado	FFG_232	586.10	Richey, 1989, Table 2, p.35	45	Salado	FFG_270	689.40	Richey, 1989, Table 2, p.38
S	Salado	FFG_233	581.90	Richey, 1989, Table 2, p.35	46	Salado	FFG_271	733.30	Richey, 1989, Table 2, p.38
S	Salado	FFG_234	616.30	Richey, 1989, Table 2, p.35	47	Salado	FFG_272	697.20	Richey, 1989, Table 2, p.38
	Salado	FFG_235	595.90	Richey, 1989, Table 2, p.35	48	Salado	FFG_273	701.70	Richey, 1989, Table 2, p.38
	Salado	FFG 236	641.90	Richey, 1989, Table 2, p.35	49	Salado	FFG_274	747.40	Richey, 1989, Table 2, p.38
S	Salado	FFG_237	600.80	Richey, 1989, Table 2, p.35	50	Salado	FFG_275	767.20	Richey, 1989, Table 2, p.38
S	Salado	FFG 238	584.30	Richey, 1989, Table 2, p.36	51	Salado	FFG_276	766.20	Richey, 1989, Table 2, p.38
S	Salado	FFG_239	570.50	Richey, 1989, Table 2, p.36	52	Salado	FFG_277	753.50	Richey, 1989, Table 2, p.38
S	Salado	FFG_240	568.80	Richey, 1989, Table 2, p.36	53	Salado	FFG_278	722.40	Richey, 1989, Table 2, p.38
S	Salado	FFG_241	562.70	Richey, 1989, Table 2, p.36	54	Salado	FFG_279	735.70	Richey, 1989, Table 2, p.38
S	Salado	FFG [_] 242	681.30	Richey, 1989, Table 2, p.36	55	Salado	FFG_280	738.20	Richey, 1989, Table 2, p.38
S	Salado	FFG_243	615.10	Richey, 1989, Table 2, p.36	56	Salado	FFG_281	709.30	Richey, 1989, Table 2, p.38
S	Salado	FFG_244	689.30	Richey, 1989, Table 2, p.36	57	Salado	FFG_283	450.50	Richey, 1989, Table 2, p.39
S	Salado	FFG ²⁴⁵	470.60	Richey, 1989, Table 2, p.36	58	Salado	FFG_284	596.20	Richey, 1989, Table 2, p.39
S	Salado	FFG ²⁴⁶	473.10	Richey, 1989, Table 2, p.36	59	Salado	FFG_285	616.00	Richey, 1989, Table 2, p.39
S	Salado	FFG_247	460.10	Richey, 1989, Table 2, p.36	60	Salado	FFG_286	728.70	Richey, 1989, Table 2, p.39
S	Salado	FFG ²⁴⁸	464.50	Richey, 1989, Table 2, p.36	61	Salado	FFG_287	693.10	Richey, 1989, Table 2, p.39
S	Salado	FFG 249	464.20	Richey, 1989, Table 2, p.36	62	Salado	FFG_288	616.90	Richey, 1989, Table 2, p.39
S	Salado	FFG_250	545.50	Richey, 1989, Table 2, p.36	63	Salado	FFG_289	639.10	Richey, 1989, Table 2, p.39
S	Salado	FFG_251	432.20	Richey, 1989, Table 2, p.36	64	Salado	FFG_290	733.40	Richey, 1989, Table 2, p.39
S	Salado	FFG_252	567.50	Richey, 1989, Table 2, p.36	65	Salado	FFG_291	615.10	Richey, 1989, Table 2, p.39
S	Salado	FFG 253	521.90	Richey, 1989, Table 2, p.36	66	Salado	FFG_292	686.70	Richey, 1989, Table 2, p.39
S	Salado	FFG 254	517.80	Richey, 1989, Table 2, p.36	67	Salado	FFG_293	672.40	Richey, 1989, Table 2, p.39
S	Salado	FFG_255	467.30	Richey, 1989, Table 2, p.37	68	Salado	FFG_294	458.20	Richey, 1989, Table 2, p.39
S	Salado	FFG_256	438.90	Richey, 1989, Table 2, p.37	69	Salado	FFG_295	438.90	Richey, 1989, Table 2, p.39
S	Salado	FFG 257	484.00	Richey, 1989, Table 2, p.37	70	Salado	FFG_297	420.30	Richey, 1989, Table 2, p.39
S	Salado	FFG_258	497.70	Richey, 1989, Table 2, p.37	71	Salado	FFG_298	490.00	Richey, 1989, Table 2, p.40
S	Salado	FFG_259	456.80	Richey, 1989, Table 2, p.37	72	Salado	FFG_299	441.40	Richey, 1989, Table 2, p.40
S	Salado	FFG_260	515.10	Richey, 1989, Table 2, p.37	73	Salado	FFG_300	416.90	Richey, 1989, Table 2, p.40
S	Salado	FFG_261	502.60	Richey, 1989, Table 2, p.37	74	Salado	FFG_301	359.40	Richey, 1989, Table 2, p.40
S	Salado	FFG_262	440.50	Richey, 1989, Table 2, p.37	75	Salado	FFG_302	420.30	Richey, 1989, Table 2, p.40
S	Salado	FFG 263	406.80	Richey, 1989, Table 2, p.37	76	Salado	FFG 303	404.80	Richey, 1989, Table 2, p.40

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Salado	FFG 304	399.30	Richey, 1989, Table 2, p.40	39	Salado	FFG_344	622.60	Richey, 1989, Table 2, p.43
Salado	FFG_305	39 9.60	Richey, 1989, Table 2, p.40	40	Salado	FFG_345	628.60	Richey, 1989, Table 2, p.43
Salado	FFG_306	361.40	Richey, 1989, Table 2, p.40	41	Salado	FFG_347	655.30	Richey, 1989, Table 2, p.43
Salado	FFG_307	383.80	Richey, 1989, Table 2, p.40	42	Salado	FFG_348	686.10	Richey, 1989, Table 2, p.43
Salado	FFG_308	323.00	Richey, 1989, Table 2, p.40	43	Salado	FFG_349	678.80	Richey, 1989, Table 2, p.43
Salado	FFG_309	388.60	Richey, 1989, Table 2, p.40	44	Salado	FFG_350	712.30	Richey, 1989, Table 2, p.43
Salado	FFG_310	430.00	Richey, 1989, Table 2, p.40	45	Salado	FFG_351	571.50	Richey, 1989, Table 2, p.43
Salado	FFG_311	387.40	Richey, 1989, Table 2, p.40	46	Salado	FFG_352	573.10	Richey, 1989, Table 2, p.43
Salado	FFG_312	384.10	Richey, 1989, Table 2, p.40	47	Salado	FFG_353	598.40	Richey, 1989, Table 2, p.43
Salado	FFG_313	832.20	Richey, 1989, Table 2, p.41	48	Salado	FFG_354	722.40	Richey, 1989, Table 2, p.43
Salado	FFG_314	734.90	Richey, 1989, Table 2, p.41	49	Salado	FFG_361	905.80	Richey, 1989, Table 2, p.44
Salado	FFG_315	650.90	Richey, 1989, Table 2, p.41	50	Salado	FFG_362	841.50	Richey, 1989, Table 2, p.44
Salado	FFG_316	624.20	Richey, 1989, Table 2, p.41	51	Salado	FFG_363	881.50	Richey, 1989, Table 2, p.44
Salado	FFG_317	693.10	Richey, 1989, Table 2, p.41	52	Salado	FFG_366	863.80	Richey, 1989, Table 2, p.44
Salado	FFG_318	666.00	Richey, 1989, Table 2, p.41	53	Salado	FFG_367	876.90	Richey, 1989, Table 2, p.44
Salado	FFG_319	662.00	Richey, 1989, Table 2, p.41	54	Salado	FFG_370	919.30	Richey, 1989, Table 2, p.44
Salado	FFG_320	616.00	Richey, 1989, Table 2, p.41	55	Salado	FFG_371	919.90	Richey, 1989, Table 2, p.44
Salado	FFG_321	612.90	Richey, 1989, Table 2, p.41	56	Salado	FFG_374	855.00	Richey, 1989, Table 2, p.45
Salado	FFG_322	616.80	Richey, 1989, Table 2, p.41	57	Salado	FFG_376	896.40	Richey, 1989, Table 2, p.45
Salado	FFG_323	626.80	Richey, 1989, Table 2, p.41	58	Salado	FFG_381	875.10	Richey, 1989, Table 2, p.45
Salado	FFG_324	653.20	Richey, 1989, Table 2, p.41	59	Salado	FFG_383	867.20	Richey, 1989, Table 2, p.45
Salado	FFG_325	713.50	Richey, 1989, Table 2, p.41	60	Salado	FFG_385	856.50	Richey, 1989, Table 2, p.45
Salado	FFG_326	657.50	Richey, 1989, Table 2, p.41	61	Salado	FFG_387	862.00	Richey, 1989, Table 2, p.45
Salado	FFG_327	645.30	Richey, 1989, Table 2, p.42	62	Salado	FFG_390	863.50	Richey, 1989, Table 2, p.46
Salado	FFG_328	620.50	Richey, 1989, Table 2, p.42	63	Salado	FFG_391	868.30	Richey, 1989, Table 2, p.46
Salado	FFG_329	613.20	Richey, 1989, Table 2, p.42	64	Salado	FFG_392	863.20	Richey, 1989, Table 2, p.46
Salado	FFG_330	611.60	Richey, 1989, Table 2, p.42	65	Salado	FFG_393	752.70	Richey, 1989, Table 2, p.46
Salado	FFG_331	602.60	Richey, 1989, Table 2, p.42	66	Salado	FFG_394	846.70	Richey, 1989, Table 2, p.46
Salado	FFG_332	587.00	Richey, 1989, Table 2, p.42	67	Salado	FFG_395	842.20	Richey, 1989, Table 2, p.46
Salado	FFG_333	598.80	Richey, 1989, Table 2, p.42	68	Salado	FFG_396	787.30	Richey, 1989, Table 2, p.46
Salado	FFG_334	58 9.10	Richey, 1989, Table 2, p.42	69	Salado	FFG_403	846.90	Richey, 1989, Table 2, p.47
Salado	FFG_335	607.80	Richey, 1989, Table 2, p.42	70	Salado	FFG_408	827.80	Richey, 1989, Table 2, p.47
Salado	FFG_336	603.20	Richey, 1989, Table 2, p.42	71	Salado	FFG_411	789.10	Richey, 1989, Table 2, p.47
Salado	FFG_337	5 8 4.60	Richey, 1989, Table 2, p.42	72	Salado	FFG_413	835.20	Richey, 1989, Table 2, p.47
Salado	FFG_338	5 8 9.60	Richey, 1989, Table 2, p.42	73	Salado	FFG_421	879.40	Richey, 1989, Table 2, p.48
Salado	FFG_339	553.80	Richey, 1989, Table 2, p.42	74	Salado	FFG_426	856.50	Richey, 1989, Table 2, p.48
Salado	FFG_340	559.90	Richey, 1989, Table 2, p.42	75	Salado	FFG_432	837.30	Richey, 1989, Table 2, p.48
Salado	FFG_342	651.60	Richey, 1989, Table 2, p.43	76	Salado	FFG_433	816.80	Richey, 1989, Table 2, p.48

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Salado	FFG_438	797.50	Richey, 1989, Table 2, ρ.49	39	Salado	FFG_494	713.20	Richey, 1989, Table 2, ρ.53
Salado	FFG_445	827.20	Richey, 1989, Table 2, p.49	40	Salado	FFG_495	696.40	Richey, 1989, Table 2, p.53
Salado	FFG_453	726.50	Richey, 1989, Table 2, p.50	41	Salado	FFG_496	555.40	Richey, 1989, Table 2, p.53
Salado	FFG_455	723.90	Richey, 1989, Table 2, p.50	42	Salado	FFG_497	601.70	Richey, 1989, Table 2, p.53
Salado	FFG_456	730.90	Richey, 1989, Table 2, p.50	43	Salado	FFG_498	589.20	Richey, 1989, Table 2, p.53
Salado	FFG_457	784.50	Richey, 1989, Table 2, p.50	44	Salado	FFG_499	549.90	Richey, 1989, Table 2, p.53
Salado	FFG_458	785.50	Richey, 1989, Table 2, p.50	45	Salado	FFG_500	582.80	Richey, 1989, Table 2, p.53
Salado	FFG_459	717.20	Richey, 1989, Table 2, p.50	46	Salado	FFG_501	625.40	Richey, 1989, Table 2, p.53
Salado	FFG_462	781.30	Richey, 1989, Table 2, p.50	47	Salado	FFG_502	567.20	Richey, 1989, Table 2, p.53
Salado	FFG_463	811.40	Richey, 1989, Table 2, p.51	48	Salado	FFG_503	573.70	Richey, 1989, Table 2, p.53
Salado	FFG_464	787.60	Richey, 1989, Table 2, p.51	49	Salado	FFG_504	618.80	Richey, 1989, Table 2, p.53
Salado	FFG_465	783.90	Richey, 1989, Table 2, p.51	50	Salado	FFG_505	650.50	Richey, 1989, Table 2, p.53
Salado	FFG_467	380.30	Richey, 1989, Table 2, p.51	51	Salado	FFG_506	649.50	Richey, 1989, Table 2, p.53
Salado	FFG_468	322.20	Richey, 1989, Table 2, p.51	52	Salado	FFG_507	549.10	Richey, 1989, Table 2, p.53
Salado	FFG_470	360.00	Richey, 1989, Table 2, p.51	53	Salado	FFG_508	628.80	Richey, 1989, Table 2, p.53
Salado	FFG_471	372.40	Richey, 1989, Table 2, p.51	54	Salado	FFG_509	616.30	Richey, 1989, Table 2, p.54
Salado	FFG_472	439.30	Richey, 1989, Table 2, p.51	55	Salado	FFG_510	615.20	Richey, 1989, Table 2, p.54
Salado	FFG_473	339.50	Richey, 1989, Table 2, p.51	56	Salado	FFG_511	570.60	Richey, 1989, Table 2, p.54
Salado	FFG_474	634.90	Richey, 1989, Table 2, p.51	57	Salado	FFG_512	576.70	Richey, 1989, Table 2, p.54
Salado	FFG_475	637.80	Richey, 1989, Table 2, p.51	58	Salado	FFG_513	606.00	Richey, 1989, Table 2, p.54
Salado	FFG_476	711.40	Richey, 1989, Table 2, p.51	59	Salado	FFG_514	577.30	Richey, 1989, Table 2, p.54
Salado	FFG_477	679.70	Richey, 1989, Table 2, p.51	60	Salado	FFG_515	556.20	Richey, 1989, Table 2, p.54
Salado	FFG_478	655.30	Richey, 1989, Table 2, p.52	61	Salado	FFG_516	545.90	Richey, 1989, Table 2, p.54
Salado	FFG_479	661.10	Richey, 1989, Table 2, p.52	62	Salado	FFG_517	732.50	Richey, 1989, Table 2, p.54
Salado	FFG_480	641.60	Richey, 1989, Table 2, p.52	63	Salado	FFG_518	720.20	Richey, 1989, Table 2, p.54
Salado	FFG_481	635.20	Richey, 1989, Table 2, p.52	64	Salado	FFG_519	659.90	Richey, 1989, Table 2, p.54
Salado	FFG_482	665.40	Richey, 1989, Table 2, p.52	65	Salado	FFG_520	542.70	Richey, 1989, Table 2, p.54
Salado	FFG_483	690.90	Richey, 1989, Table 2, p.52	66	Salado	FFG_521	604.70	Richey, 1989, Table 2, p.54
Salado	FFG_484	672.20	Richey, 1989, Table 2, p.52	67	Salado	FFG_522	382.40	Richey, 1989, Table 2, p.54
Salado	FFG_485	682.80	Richey, 1989, Table 2, p.52	68	Salado	FFG_523	388.90	Richey, 1989, Table 2, p.54
Salado	FFG_486	668.70	Richey, 1989, Table 2, p.52	69	Salado	FFG_524	561.70	Richey, 1989, Table 2, p.55
Salado	FFG_487	669.40	Richey, 1989, Table 2, p.52	70	Salado	FFG_525	388.40	Richey, 1989, Table 2, p.55
Salado	FFG_488	648.90	Richey, 1989, Table 2, p.52	71	Salado	FFG_526	911.10	Richey, 1989, Table 2, p.55
Salado	FFG_489	663.10	Richey, 1989, Table 2, p.52	72	Salado	FFG_527	871.10	Richey, 1989, Table 2, p.55
Salado	FFG_490	765.70	Richey, 1989, Table 2, p.52	73	Salado	FFG_528	864.10	Richey, 1989, Table 2, p.55
Salado	FFG_491	752.60	Richey, 1989, Table 2, p.52	74	Salado	FFG_530	930.20	Richey, 1989, Table 2, p.55
Salado	FFG_492	720.50	Richey, 1989, Table 2, p.52	75	Salado	FFG_531	855.20	Richey, 1989, Table 2, p.55
Salado	FFG_493	709.70	Richey, 1989, Table 2, p.53	76	Salado	FFG 532	838.50	Richey, 1989, Table 2, p.55

 Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Salado	FFG_535	850.40	Richey, 1989, Table 2, p.55	39	Salado	FFG 676	831.80	Richey, 1989, Table 2, p.62
Salado	FFG_536	853.50	Richey, 1989, Table 2, p.55	40	Salado	FFG_677	857.10	Richey, 1989, Table 2, p.62
Salado	FFG_537	840.60	Richey, 1989, Table 2, p.55	41	Salado	FFG_679	861.10	Richey, 1989, Table 2, p.62
Salado	FFG_564	557.80	Richey, 1989, Table 2, p.57	42	Salado	FFG_685	825.70	Richey, 1989, Table 2, p.63
Salado	FFG_584	690.90	Richey, 1989, Table 2, p.58	43	Salado	FFG_689	718.10	Richey, 1989, Table 2, p.63
Salado	FFG_585	643.40	Richey, 1989, Table 2, p.58	44	Salado	FFG_690	718.10	Richey, 1989, Table 2, p.63
Salado	FFG_602	743.70	Richey, 1989, Table 2, p.58	45	Salado	FFG_691	711.40	Richey, 1989, Table 2, p.63
Salado	FFG_606	603.20	Richey, 1989, Table 2, p.58	46	Salado	FFG 693	712.60	Richey, 1989, Table 2, p.63
Salado	FFG_607	624.30	Richey, 1989, Table 2, p.59	47	Salado	FFG_694	680.30	Richey, 1989, Table 2, p.63
Salado	FFG_608	593.70	Richey, 1989, Table 2, p.59	48	Salado	FFG 695	702.60	Richey, 1989, Table 2, p.63
Salado	FFG_609	586.10	Richey, 1989, Table 2, p.59	49	Salado	FFG_696	703.10	Richey, 1989, Table 2, p.63
Salado	FFG_610	588.30	Richey, 1989, Table 2, p.59	50	Salado	FFG 697	699.90	Richey, 1989, Table 2, p.64
Salado	FFG_611	579.40	Richey, 1989, Table 2, p.59	51	Salado	FFG_698	734.90	Richey, 1989, Table 2, p.64
Salado	FFG_612	624.90	Richey, 1989, Table 2, p.59	52	Salado	FFG_699	691.00	Richey, 1989, Table 2, p.64
Salado	FFG_613	621.80	Richey, 1989, Table 2, p.59	53	Salado	FFG_700	682.20	Richey, 1989, Table 2, p.64
Salado	FFG_640	519.50	Richey, 1989, Table 2, p.60	54	Salado	FFG 701	686.50	Richey, 1989, Table 2, p.64
Salado	FFG 643	576.10	Richey, 1989, Table 2, p.60	55	Salado	FFG_702	693.70	Richey, 1989, Table 2, p.64
Salado	FFG_652	786.40	Richey, 1989, Table 2, p.60	56	Salado	FFG 703	716.90	Richey, 1989, Table 2, p.64
Salado	FFG 653	788.60	Richey, 1989, Table 2, p.61	57	Salado	FFG ⁷⁰⁴	686.40	Richey, 1989, Table 2, p.64
Salado	FFG_654	812.30	Richey, 1989, Table 2, p.61	58	Salado	FFG_705	610.80	Richey, 1989, Table 2, p.64
Salado	FFG_655	812.90	Richey, 1989, Table 2, p.61	59	Salado	FFG_706	637.10	Richey, 1989, Table 2, p.64
Salado	FFG_656	808.90	Richey, 1989, Table 2, p.61	60	Salado	FFG 707	616.70	Richey, 1989, Table 2, p.64
Salado	FFG_657	830.00	Richey, 1989, Table 2, p.61	61	Salado	FFG_708	669.70	Richey, 1989, Table 2, p.64
Salado	FFG_658	816.20	Richey, 1989, Table 2, p.61	62	Salado	FFG_710	579.20	Richey, 1989, Table 2, p.64
Salado	FFG_659	821.10	Richey, 1989, Table 2, p.61	63	Salado	FFG_711	570.60	Richey, 1989, Table 2, p.65
Salado	FFG_660	845.10	Richey, 1989, Table 2, p.61	64	Salado	FFG 716	553.10	Richey, 1989, Table 2, p.65
Salado	FFG_662	810.20	Richey, 1989, Table 2, p.61	65	Salado	FFG 717	621.90	Richey, 1989, Table 2, p.65
Salado	FFG_664	794.90	Richey, 1989, Table 2, p.61	66	Salado	FFG_718	612.80	Richey, 1989, Table 2, p.65
Salado	FFG_666	860.10	Richey, 1989, Table 2, p.62	67	Salado	FFG_719	571.20	Richey, 1989, Table 2, p.65
Salado	FFG_667	845.80	Richey, 1989, Table 2, p.62	68	Salado	FFG_720	570.60	Richey, 1989, Table 2, p.65
Salado	FFG_668	905.10	Richey, 1989, Table 2, p.62	69	Salado	FFG_721	594.40	Richey, 1989, Table 2, p.65
Salado	FFG_669	890.60	Richey, 1989, Table 2, p.62	70	Salado	FFG_723	712.50	Richey, 1989, Table 2, p.65
Salado	FFG_670	876.00	Richey, 1989, Table 2, p.62	71	Salado	FFG_724	633.80	Richey, 1989, Table 2, p.65
Salado	FFG_671	873.50	Richey, 1989, Table 2, p.62	72	Salado	FFG_725	610.50	Richey, 1989, Table 2, p.65
Salado	FFG_672	868.10	Richey, 1989, Table 2, p.62	73	Salado	FFG_726	589.10	Richey, 1989, Table 2, p.65
Salado	FFG_673	870.50	Richey, 1989, Table 2, p.62	74	Salado	FFG_727	575.50	Richey, 1989, Table 2, p.66
Salado	FFG_674	860.20	Richey, 1989, Table 2, p.62	75	Salado	FFG_728	590.40	Richey, 1989, Table 2, p.66
Salado	FFG_675	819.20	Richey, 1989, Table 2, p.62	76	Salado	FFG 729	595.90	Richey, 1989, Table 2, p.66

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Salado	FFG_730	622.70	Richey, 1989, Table 2, p.66	39	Salado	P20	746.80	Mercer, 1983, Table 1
Salado	FFG_731	617. 70	Richey, 1989, Table 2, p.66	40	Salado	P21	751.60	Mercer, 1983, Table 1
Salado	FFG_733	698. 30	Richey, 1989, Table 2, p.66	41	Salado	P3	791.50	Mercer, 1983, Table 1
Salado	FFG_734	654. 1 O	Richey, 1989, Table 2, p.66	42	Salado	P4	766.20	Mercer, 1983, Table 1
Salado	FFG_735	584. OO	Richey, 1989, Table 2, p.66	43	Salado	P5	769.40	Mercer, 1983, Table 1
Salado	FFG_736	615. 40	Richey, 1989, Table 2, p.66	44	Salado	P6	821.40	Mercer, 1983, Table 1
Salado	FFG_737	559. 30	Richey, 1989, Table 2, p.66	45	Salado	P7	823.60	Mercer, 1983, Table 1
Salado	FFG_738	610.2 0	Richey, 1989, Table 2, p.66	46	Salado	P8	799.80	Mercer, 1983, Table 1
Salado	FFG_739	628. 60	Richey, 1989, Table 2, p.66	47	Salado	P9	771.50	Mercer, 1983, Table 1
Salado	FFG_740	609. DO	Richey, 1989, Table 2, p.66	48	Salado	WIPP11	754.30	Mercer, 1983, Table 1
Salado	FFG_741	602. 30	Richey, 1989, Table 2, p.66	49	Salado	WIPP12	767.20	Mercer, 1983, Table 1
Salado	FFG_742	646. 50	Richey, 1989, Table 2, p.67	50	Salado	WIPP13	780.50	Mercer, 1983, Table 1
Salado	FFG_743	630.7 0	Richey, 1989, Table 2, p.67	51	Salado	WIPP18	770.50	Mercer, 1983, Table 1
Salado	FFG_744	630. DO	Richey, 1989, Table 2, p.67	52	Salado	WIPP19	773.90	Mercer, 1983, Table 1
Salado	FFG_745	598. 30	Richey, 1989, Table 2, p.67	53 (Salado	WIPP21	776.90	Mercer, 1983, Table 1
Salado	FFG_746	581. 80	Richey, 1989, Table 2, p.67	54	Salado	WIPP22	775.10	Mercer, 1983, Table 1
Salado	H1	784.50	Mercer, 1983, Table 1	55	Salado	WIPP25	807.10	Mercer, 1983, Table 1
Salado	H10C	666. 30	Mercer, 1983, Table 1	56	Salado	WIPP26	866.50	Mercer, 1983, Table 1
Salado	H2C	796.7 O	Mercer, 1983, Table 1	57	Salado	WIPP27	841.50	Mercer, 1983, Table 1
Salado	H3	783.1 O	Mercer, 1983, Table 1	58	Salado	WIPP28	858.40	Mercer, 1983, Table 1
Salado	H4C	825. 40	Mercer, 1983, Table 1	59	Salado	WIPP29	863.80	Mercer, 1983, Table 1
Salado	H5C	751.6 0	Mercer, 1983, Table 1	60	Salado	WIPP30	816.60	Mercer, 1983, Table 1
Salado	H6C	800.7 O	Mercer, 1983, Table 1	61	Salado	WIPP32	870.80	Mercer, 1983, Table 1
Salado	H7C	877.8O	Mercer, 1983, Table 1	62	Salado	WIPP33	812.60	Mercer, 1983, Table 1
Salado	H8C	823. DO	Mercer, 1983, Table 1	63	Salado	WIPP34	749.80	Mercer, 1983, Table 1
Salado	H9C	7 97. DO	Mercer, 1983, Table 1	64	Supra_R	AEC7	1113.70	Mercer, 1983, Table 1
Salado	P1	813. 3O	Mercer, 1983, Table 1	65	Supra_R	AEC8	1076.60	Mercer, 1983, Table 1
Salado	P10	738.5 0	Mercer, 1983, Table 1	66	Supra_R	B25	1039.10	Mercer, 1983, Table 1
Salado	P11	745.5 0	Mercer, 1983, Table 1	67	Supra_R	ERDA10	1027.50	Mercer, 1983, Table 1
Salado	P12	800.1 O	Mercer, 1983, Table 1	68	Supra_R	ERDA6	1079.00	Mercer, 1983, Table 1
Salado	P13	799. 8 0	Mercer, 1983, Table 1	69	Supra_R	ERDA9	1042.10	Mercer, 1983, Table 1
Salado	P14	814.7 0	Mercer, 1983, Table 1	70	Supra_R	FFG_002	1090.30	Richey, 1989, Table 2, p.21
Salado	P15	843.7 O	Mercer, 1983, Table 1	71	Supra_R	FFG_004	1068.30	Richey, 1989, Table 2, p.21
Salado	P16	814. 40	Mercer, 1983, Table 1	72	Supra_R	FFG_005	1089.70	Richey, 1989, Table 2, p.21
Salado	P17	798. 90	Mercer, 1983, Table 1	73	Supra_R	FFG_006	1091.50	Richey, 1989, Table 2, p.21
Salado	P18	728.2 0	Mercer, 1983, Table 1	74	Supra_R	FFG_007	1093.90	Richey, 1989, Table 2, p.21
Salado	P19	740. DO	Mercer, 1983, Table 1	75	Supra_R	FFG_009	1094.80	Richey, 1989, Table 2, p.21
Salado	P2	753.2 0	Mercer, 1983, Table 1	76	Supra_R	FFG_011	1092.70	Richey, 1989, Table 2, p.21

 Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Supra P	FFG 012	1092.10	Richey, 1989, Table 2, p.21	20	Supra P	FFG 055	1145.10	Richey, 1989, Table 2, p.24
Supra_R Supra_R	FFG_012	1092.10	Richey, 1989, Table 2, p.21	39 40	Supra_R Supra_R	FFG_055	1136.60	Richey, 1989, Table 2, p.24
Supra_R	FFG 014	1068.60	Richey, 1989, Table 2, p.21 Richey, 1989, Table 2, p.21	40	Supra_R	FFG_057	1134.80	Richey, 1989, Table 2, p.24
Supra R	FFG 016	1099.70	Richey, 1989, Table 2, p.21	42	Supra R	FFG 058	1147.70	Richey, 1989, Table 2, p.24
Supra_R	FFG 017	1100.90	Richey, 1989, Table 2, p.22	43	Supra R	FFG_059	1156.10	Richey, 1989, Table 2, p.24
Supra R	FFG 018	1116.50	Richey, 1989, Table 2, p.22	44	Supra R	FFG_060	1138.40	Richey, 1989, Table 2, p.24
Supra R	FFG 019	1111.00	Richey, 1989, Table 2, p.22	45	Supra R	FFG_061	1137.50	Richey, 1989, Table 2, p.24
Supra R	FFG 020	1091.50	Richey, 1989, Table 2, p.22	46	Supra R	FFG 062	1122.60	Richey, 1989, Table 2, p.24
Supra R	FFG 023	1109.80	Richey, 1989, Table 2, p.22	47	Supra R	FFG 063	1118.10	Richey, 1989, Table 2, p.24
Supra R	FFG 024	1124.60	Richey, 1989, Table 2, p.22	48	Supra R	FFG_064	1127.20	Richey, 1989, Table 2, p.24
Supra R	FFG 025	1117.60	Richey, 1989, Table 2, p.22	49	Supra_R	FFG_065	1110.70	Richey, 1989, Table 2, p.24
Supra R	FFG 026	1116.00	Richey, 1989, Table 2, p.22	50	Supra R	FFG 066	1113.70	Richey, 1989, Table 2, p.24
Supra R	FFG 027	1117.40	Richey, 1989, Table 2, p.22	51	Supra R	FFG 067	1127.50	Richey, 1989, Table 2, p.25
Supra R	FFG 028	1183.90	Richey, 1989, Table 2, p.22	52	Supra R	FFG 068	1125.00	Richey, 1989, Table 2, p.25
Supra R	FFG 029	1145.40	Richey, 1989, Table 2, p.22	53	Supra R	FFG 069	1130.20	Richey, 1989, Table 2, p.25
Supra R	FFG 030	1154.30	Richey, 1989, Table 2, p.22	54	Supra R	FFG 070	1130.80	Richey, 1989, Table 2, p.25
Supra R	FFG_031	1168.30	Richey, 1989, Table 2, p.22	55	Supra R	FFG 071	1115.30	Richey, 1989, Table 2, p.25
Supra R	FFG_032	1158.50	Richey, 1989, Table 2, p.22	56	Supra R	FFG 072	1105.20	Richey, 1989, Table 2, p.25
Supra R	FFG_033	1143.60	Richey, 1989, Table 2, p.22	57	Supra R	FFG 073	1107.40	Richey, 1989, Table 2, p.25
Supra R	FFG_034	1139.30	Richey, 1989, Table 2, p.23	58	Supra_R	FFG_074	1107.00	Richey, 1989, Table 2, p.25
Supra R	FFG_035	1121.10	Richey, 1989, Table 2, p.23	59	Supra R	FFG_075	1108.30	Richey, 1989, Table 2, p.25
Supra R	FFG_036	1147.60	Richey, 1989, Table 2, p.23	60	Supra R	FFG_076	1097.30	Richey, 1989, Table 2, p.25
Supra R	FFG_037	1129.30	Richey, 1989, Table 2, p.23	61	Supra R	FFG_078	1087.20	Richey, 1989, Table 2, p.25
Supra R	FFG_038	1118.30	Richey, 1989, Table 2, p.23	62	Supra R	FFG ⁰⁷⁹	1091.20	Richey, 1989, Table 2, p.25
Supra R	FFG_039	1046.10	Richey, 1989, Table 2, p.23	63	Supra R	FFG_080	1082.30	Richey, 1989, Table 2, p.25
Supra R	FFG 040	1077.20	Richey, 1989, Table 2, p.23	64	Supra R	FFG_081	1097.00	Richey, 1989, Table 2, p.26
Supra R	FFG_041	1065.30	Richey, 1989, Table 2, p.23	65	Supra R	FFG_082	1084.80	Richey, 1989, Table 2, p.26
Supra R	FFG_042	1069.50	Richey, 1989, Table 2, p.23	66	Supra_R	FFG_083	1115.60	Richey, 1989, Table 2, p.26
Supra_R	FFG_043	1067.10	Richey, 1989, Table 2, p.23	67	Supra_R	FFG_084	1107.60	Richey, 1989, Table 2, p.26
Supra R	FFG_044	1080.50	Richey, 1989, Table 2, p.23	68	SupraR	FFG_085	1108.90	Richey, 1989, Table 2, p.26
Supra_R	FFG_047	1112.80	Richey, 1989, Table 2, p.23	69	SupraR	FFG_086	1107.30	Richey, 1989, Table 2, p.26
Supra_R	FFG_048	1106.10	Richey, 1989, Table 2, p.23	70	SupraR	FFG_087	1107.30	Richey, 1989, Table 2, p.26
Supra_R	FFG_049	1119.20	Richey, 1989, Table 2, p.23	71	Supra R	FFG_088	1108.90	Richey, 1989, Table 2, p.26
Supra_R	FFG_050	1132.50	Richey, 1989, Table 2, p.24	72	Supra_R	FFG_089	1108.60	Richey, 1989, Table 2, p.26
Supra_R	FFG_051	1131.10	Richey, 1989, Table 2, p.24	73	Supra_R	FFG_091	1091.20	Richey, 1989, Table 2, p.26
Supra_R	FFG_052	1132.00	Richey, 1989, Table 2, p.24	74	Supra_R	FFG_092	1097.60	Richey, 1989, Table 2, p.26
Supra_R	FFG_053	1137.50	Richey, 1989, Table 2, p.24	75	Supra_R	FFG_093	1097.90	Richey, 1989, Table 2, p.26
Supra_R	FFG_054	1150.20	Richey, 1989, Table 2, p.24	76	Supra_R	FFG_094	1095.10	Richey, 1989, Table 2, p.26

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Supra R	FFG_095	1138.70	Richey, 1989, Table 2, p.26	39	Supra_R	FFG_135	1002.50	Richey, 1989, Table 2, p.29
Supra_R	FFG_096	1174.40	Richey, 1989, Table 2, p.26	40	Supra_R	FFG_136	1007.50	Richey, 1989, Table 2, p.29
SupraR	FFG_097	1149.40	Richey, 1989, Table 2, p.27	41	Supra_R	FFG_137	1007.40	Richey, 1989, Table 2, p.29
Supra R	FFG_098	1208.20	Richey, 1989, Table 2, p.27	42	Supra_R	FFG_138	1023.90	Richey, 1989, Table 2, p.29
Supra_R	FFG_099	1205.80	Richey, 1989, Table 2, p.27	43	Supra_R	FFG_139	1023.50	Richey, 1989, Table 2, p.29
Supra_R	FFG_100	1153.10	Richey, 1989, Table 2, p.27	44	Supra_R	FFG_140	1042.60	Richey, 1989, Table 2, p.29
Supra_R	FFG_101	1142.70	Richey, 1989, Table 2, p.27	45	Supra_R	FFG_141	1030.40	Richey, 1989, Table 2, p.29
Supra_R	FFG_102	1127.20	Richey, 1989, Table 2, p.27	46	Supra_R	FFG_142	1042.80	Richey, 1989, Table 2, p.29
Supra_R	FFG_103	1108.60	Richey, 1989, Table 2, p.27	47	Supra_R	FFG_143	1052.70	Richey, 1989, Table 2, p.29
Supra_R	FFG_104	1127.50	Richey, 1989, Table 2, p.27	48	Supra_R	FFG_144	905.00	Richey, 1989, Table 2, p.29
Supra_R	FFG_105	995.20	Richey, 1989, Table 2, p.27	49	Supra_R	FFG_145	905.30	Richey, 1989, Table 2, p.29
Supra_R	FFG_106	981.50	Richey, 1989, Table 2, p.27	50	Supra_R	FFG_146	912.90	Richey, 1989, Table 2, p.29
Supra_R	FFG_107	987.60	Richey, 1989, Table 2, p.27	51	Supra_R	FFG_147	908.30	Richey, 1989, Table 2, p.29
Supra_R	FFG_108	1015.90	Richey, 1989, Table 2, p.27	52	Supra_R	FFG_148	907.70	Richey, 1989, Table 2, p.29
Supra_R	FFG_109	1039.10	Richey, 1989, Table 2, p.27	53	Supra_R	FFG_149	916.50	Richey, 1989, Table 2, p.30
Supra_R	FFG_110	1045.50	Richey, 1989, Table 2, p.27	54	Supra_R	FFG_152	905.30	Richey, 1989, Table 2, p.30
Supra_R	FFG_111	1062.20	Richey, 1989, Table 2, p.27	55	Supra_R	FFG_155	918.10	Richey, 1989, Table 2, p.30
Supra_R	FFG_112	1056.10	Richey, 1989, Table 2, p.28	56	Supra_R	FFG_156	908.30	Richey, 1989, Table 2, p.30
Supra_R	FFG_113	1054.90	Richey, 1989, Table 2, p.28	57	Supra_R	FFG_157	926.00	Richey, 1989, Table 2, p.30
Supra_R	FFG_114	1014.70	Richey, 1989, Table 2, p.28	58	Supra_R	FFG_158	941.80	Richey, 1989, Table 2, p.30
Supra_R	FFG_115	970.50	Richey, 1989, Table 2, p.28	59	Supra_R	FFG_159	1001.30	Richey, 1989, Table 2, p.30
Supra_R	FFG_116	972.00	Richey, 1989, Table 2, p.28	60	Supra_R	FFG_160	1002.50	Richey, 1989, Table 2, p.30
Supra_R	FFG_117	966.20	Richey, 1989, Table 2, p.28	61	Supra_R	FFG_161	987.90	Richey, 1989, Table 2, p.30
Supra_R	FFG_119	950.10	Richey, 1989, Table 2, p.28	62	Supra_R	FFG_162	988.80	Richey, 1989, Table 2, p.30
Supra_R	FFG_120	956.50	Richey, 1989, Table 2, p.28	63	Supra_R	FFG_163	988.80	Richey, 1989, Table 2, p.30
Supra_R	FFG_121	958.60	Richey, 1989, Table 2, p.28	64	Supra_R	FFG_164	955.90	Richey, 1989, Table 2, p.30
Supra_R	FFG_122	954.00	Richey, 1989, Table 2, p.28	65	Supra_R	FFG_165	935.70	Richey, 1989, Table 2, p.30
Supra_R	FFG_123	961.60	Richey, 1989, Table 2, p.28	66	Supra_R	FFG_166	993.00	Richey, 1989, Table 2, p.31
Supra_R	FFG_124	977.20	Richey, 1989, Table 2, p.28	67	Supra_R	FFG_167	1019.60	Richey, 1989, Table 2, p.31
Supra_R	FFG_125	976.20	Richey, 1989, Table 2, p.28	68	Supra_R	FFG_168	1001.00	Richey, 1989, Table 2, p.31
Supra_R	FFG_126	1014.20	Richey, 1989, Table 2, p.28	69	Supra_R	FFG_169	986.00	Richey, 1989, Table 2, p.31
Supra_R	FFG_127	1019.20	Richey, 1989, Table 2, p.28	70	Supra_R	FFG_170	934.80	Richey, 1989, Table 2, p.31
Supra_R	FFG_128	994.30	Richey, 1989, Table 2, p.28	71	Supra_R	FFG_171	956.80	Richey, 1989, Table 2, p.31
Supra_R	FFG_129	961.90	Richey, 1989, Table 2, p.28	72	Supra_R	FFG_172	986.00	Richey, 1989, Table 2, p.31
Supra_R	FFG_130	979.90	Richey, 1989, Table 2, p.28	73	Supra_R	FFG_173	1022.60	Richey, 1989, Table 2, p.31
Supra_R	FFG_132	1002.20	Richey, 1989, Table 2, p.29	74	Supra_R	FFG_177	913.20	Richey, 1989, Table 2, p.31
Supra_R	FFG_133	993.00	Richey, 1989, Table 2, p.29	75	Supra_R	FFG_178	888.20	Richey, 1989, Table 2, p.31
Supra R	FFG 134	988.20	Richey, 1989, Table 2, p.29	76	Supra R	FFG 179	896.40	Richey, 1989, Table 2, p.31

	Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
1	Supra R	FFG 180	1062.20	Richey, 1989, Table 2, p.31	39	Supra R	FFG 221	1027.80	Richey, 1989, Table 2, p.34
2	Supra R	FFG_181	1016.50	Richey, 1989, Table 2, p.32	40	Supra R	FFG ²²²	1019.90	Richey, 1989, Table 2, p.34
3	SupraR	FFG_182	986.00	Richey, 1989, Table 2, p.32	41	Supra_R	FFG_224	1133.60	Richey, 1989, Table 2, p.35
4	Supra_R	FFG_183	1020.50	Richey, 1989, Table 2, p.32	42	Supra_R	FFG_225	1138.30	Richey, 1989, Table 2, p.35
5	SupraR	FFG_184	1047.90	Richey, 1989, Table 2, p.32	43	Supra_R	FFG_226	1150.30	Richey, 1989, Table 2, p.35
6	Supra R	FFG 185	1022.60	Richey, 1989, Table 2, p.32	44	Supra_R	FFG_228	1133.60	Richey, 1989, Table 2, p.35
7	Supra R	FFG 186	1013.50	Richey, 1989, Table 2, p.32	45	Supra_R	FFG_229	1146.00	Richey, 1989, Table 2, p.35
В	Supra R	FFG_188	979.00	Richey, 1989, Table 2, p.32	46	Supra R	FFG_230	1134.50	Richey, 1989, Table 2, p.35
9	SupraR	FFG_189	1046.10	Richey, 1989, Table 2, p.32	47	Supra_R	FFG_231	1120.10	Richey, 1989, Table 2, p.35
כ	Supra R	FFG 190	1037.80	Richey, 1989, Table 2, p.32	48	Supra R	FFG 232	1124.10	Richey, 1989, Table 2, p.35
1	Supra R	FFG_191	1041.50	Richey, 1989, Table 2, p.32	49	Supra_R	FFG_233	1114.70	Richey, 1989, Table 2, p.35
2	Supra_R	FFG_192	1031.40	Richey, 1989, Table 2, p.32	50	Supra R	FFG_234	1112.80	Richey, 1989, Table 2, p.35
3	SupraR	FFG 194	1075.40	Richey, 1989, Table 2, p.33	51	Supra_R	FFG_235	1117.10	Richey, 1989, Table 2, p.35
1	Supra R	FFG 195	1059.20	Richey, 1989, Table 2, p.33	52	Supra R	FFG 236	1101.20	Richey, 1989, Table 2, p.35
5	Supra R	FFG 196	1042.40	Richey, 1989, Table 2, p.33	53	Supra_R	FFG 237	1137.80	Richey, 1989, Table 2, p.35
5	Supra_R	FFG_197	1034.50	Richey, 1989, Table 2, p.33	54	Supra R	FFG ²³⁸	1152.80	Richey, 1989, Table 2, p.36
7	Supra R	FFG_198	1031.40	Richey, 1989, Table 2, p.33	55	Supra_R	FFG_239	1177.10	Richey, 1989, Table 2, p.36
3	Supra R	FFG_199	1038.80	Richey, 1989, Table 2, p.33	56	Supra R	FFG ²⁴⁰	1162.20	Richey, 1989, Table 2, p.36
9	Supra R	FFG ²⁰⁰	1040.90	Richey, 1989, Table 2, p.33	57	Supra_R	FFG ²⁴¹	1165.30	Richey, 1989, Table 2, p.36
)	Supra R	FFG_201	1074.10	Richey, 1989, Table 2, p.33	58	Supra R	FFG ²⁴²	1115.00	Richey, 1989, Table 2, p.36
1	Supra R	FFG [_] 202	1075.60	Richey, 1989, Table 2, p.33	59	Supra_R	FFG ²⁴³	1153.70	Richey, 1989, Table 2, p.36
2	Supra R	FFG 203	1071.40	Richey, 1989, Table 2, p.33	60	SupraR	FFG 244	1120.00	Richey, 1989, Table 2, p.36
3	Supra R	FFG ²⁰⁴	1096.40	Richey, 1989, Table 2, p.33	61	SupraR	FFG_245	1170.70	Richey, 1989, Table 2, p.36
1	Supra R	FFG ²⁰⁵	1082.00	Richey, 1989, Table 2, p.33	62	SupraR	FFG ²⁴⁶	1161.90	Richey, 1989, Table 2, p.36
5	Supra R	FFG 206	1067.70	Richey, 1989, Table 2, p.33	63	Supra R	FFG_247	1145.40	Richey, 1989, Table 2, p.36
6	Supra R	FFG_207	1072.60	Richey, 1989, Table 2, p.33	64	SupraR	FFG 248	1150.00	Richey, 1989, Table 2, p.36
7	Supra R	FFG [_] 208	1060.10	Richey, 1989, Table 2, p.34	65	SupraR	FFG_249	1169.20	Richey, 1989, Table 2, p.36
3	Supra R	FFG [_] 209	1074.10	Richey, 1989, Table 2, p.34	66	Supra R	FFG 250	1159.80	Richey, 1989, Table 2, p.36
)	Supra R	FFG_210	1066.20	Richey, 1989, Table 2, p.34	67	Supra R	FFG_251	1139.00	Richey, 1989, Table 2, p.36
)	Supra R	FFG [_] 212	1078.40	Richey, 1989, Table 2, p.34	68	Supra_R	FFG 252	1134.10	Richey, 1989, Table 2, p.36
	Supra R	FFG_213	1051.60	Richey, 1989, Table 2, p.34	69	Supra_R	FFG ²⁵³	1108.60	Richey, 1989, Table 2, p.36
2	Supra R	FFG_214	1061.60	Richey, 1989, Table 2, p.34	70	Supra R	FFG 254	1111.60	Richey, 1989, Table 2, p.36
3	Supra R	FFG_215	1041.80	Richey, 1989, Table 2, p.34	71	Supra R	FFG_255	1122.60	Richey, 1989, Table 2, p.37
ļ	Supra R	FFG 216	993.60	Richey, 1989, Table 2, p.34	72	Supra R	FFG ²⁵⁶	1136.00	Richey, 1989, Table 2, p.37
5	Supra R	FFG_217	1057.70	Richey, 1989, Table 2, p.34	73	Supra R	FFG 257	1137.20	Richey, 1989, Table 2, p.37
5	Supra R	FFG_218	1053.10	Richey, 1989, Table 2, p.34	74	Supra R	FFG ²⁵⁸	1120.40	Richey, 1989, Table 2, p.37
,	SupraR	FFG_219	1036.30	Richey, 1989, Table 2, p.34	75	Supra R	FFG_259	1139.60	Richey, 1989, Table 2, p.37
3	Supra R	FFG 220	1051.00	Richey, 1989, Table 2, p.34	76	Supra R	FFG_260	1111.00	Richey, 1989, Table 2, p.37

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Supra_R	FFG 261	1106.10	Richey, 1989, Table 2, p.37	39	Supra R	FFG 301	1046.40	Richey, 1989, Table 2, p.40
Supra_R	FFG_262	1109.50	Richey, 1989, Table 2, p.37	40	Supra R	FFG 302	1092.70	Richey, 1989, Table 2, p.40
Supra_R	FFG_263	1115.60	Richey, 1989, Table 2, p.37	41	Supra R	FFG 303	1099.30	Richey, 1989, Table 2, p.40
Supra_R	FFG_264	112 1 .10	Richey, 1989, Table 2, p.37	42	Supra R	FFG_304	1088.10	Richey, 1989, Table 2, p.40
Supra_R	FFG_265	1130.80	Richey, 1989, Table 2, p.37	43	Supra R	FFG_305	1093.90	Richey, 1989, Table 2, p.40
Supra_R	FFG_266	1131.40	Richey, 1989, Table 2, p.37	44	Supra R	FFG_306	1075.90	Richey, 1989, Table 2, p.40
Supra_R	FFG_267	1120.40	Richey, 1989, Table 2, p.37	45	Supra R	FFG_307	1078.70	Richey, 1989, Table 2, p.40
Supra_R	FFG_268	1115.90	Richey, 1989, Table 2, p.37	46	Supra R	FFG_308	1075.90	Richey, 1989, Table 2, p.40
Supra_R	FFG_269	1105.80	Richey, 1989, Table 2, p.38	47	Supra R	FFG_309	1093.60	Richey, 1989, Table 2, p.40
Supra_R	FFG_270	1057.00	Richey, 1989, Table 2, p.38	48	Supra R	FFG_310	1087.50	Richey, 1989, Table 2, p.40
Supra_R	FFG_271	1049.40	Richey, 1989, Table 2, p.38	49	Supra_R	FFG_311	1085.40	Richey, 1989, Table 2, p.40
Supra_R	FFG_272	1073.50	Richey, 1989, Table 2, p.38	50	Supra_R	FFG_312	1076.90	Richey, 1989, Table 2, p.40
Supra_R	FFG_273	1079.20	Richey, 1989, Table 2, p.38	51	Supra_R	FFG_313	1106.10	Richey, 1989, Table 2, p.41
Supra_R	FFG_274	1137.20	Richey, 1989, Table 2, p.38	52	Supra_R	FFG_314	1121.10	Richey, 1989, Table 2, p.41
Supra_R	FFG_275	1135.70	Richey, 1989, Table 2, p.38	53	Supra_R	FFG_315	1131.10	Richey, 1989, Table 2, p.41
Supra_R	FFG_276	1125.90	Richey, 1989, Table 2, p.38	54	Supra_R	FFG_316	1133.20	Richey, 1989, Table 2, p.41
Supra_R	FFG_277	1123.20	Richey, 1989, Table 2, p.38	55	Supra_R	FFG_317	1097.60	Richey, 1989, Table 2, p.41
Supra_R	FFG_278	1098.20	Richey, 1989, Table 2, p.38	56	Supra_R	FFG_318	1123.50	Richey, 1989, Table 2, p.41
Supra_R	FFG_279	1107.90	Richey, 1989, Table 2, p.38	57	Supra_R	FFG_319	1120.70	Richey, 1989, Table 2, p.41
Supra_R	FFG_280	1120.30	Richey, 1989, Table 2, p.38	58	Supra_R	FFG_320	1129.60	Richey, 1989, Table 2, p.41
Supra_R	FFG_281	1147.30	Richey, 1989, Table 2, p.38	59	Supra_R	FFG_321	1124.70	Richey, 1989, Table 2, p.41
Supra_R	FFG_283	1090.90	Richey, 1989, Table 2, p.39	60	Supra_R	FFG_322	1124.70	Richey, 1989, Table 2, p.41
Supra_R	FFG_284	1117.10	Richey, 1989, Table 2, p.39	61	Supra_R	FFG_323	1120.40	Richey, 1989, Table 2, p.41
Supra_R	FFG_285	1112.50	Richey, 1989, Table 2, p.39	62	Supra_R	FFG_324	1122.00	Richey, 1989, Table 2, p.41
Supra_R	FFG_286	1101.50	Richey, 1989, Table 2, p.39	63	Supra_R	FFG_325	1079.90	Richey, 1989, Table 2, p.41
Supra_R	FFG_287	1094.60	Richey, 1989, Table 2, p.39	64	Supra_R	FFG_326	1117.70	Richey, 1989, Table 2, p.41
Supra_R	FFG_288	1110.40	Richey, 1989, Table 2, p.39	65	Supra_R	FFG_327	1102.20	Richey, 1989, Table 2, p.42
Supra_R	FFG_289	1081.90	Richey, 1989, Table 2, p.39	66	Supra_R	FFG_328	1121.40	Richey, 1989, Table 2, p.42
Supra_R	FFG_290	1103.40	Richey, 1989, Table 2, p.39	67	Supra_R	FFG_329	1120.40	Richey, 1989, Table 2, p.42
Supra_R	FFG_291	1132.00	Richey, 1989, Table 2, p.39	68	Supra_R	FFG_330	1115.60	Richey, 1989, Table 2, p.42
Supra_R	FFG_292	1090.60	Richey, 1989, Table 2, p.39	69	Supra_R	FFG_331	1103.70	Richey, 1989, Table 2, p.42
Supra_R	FFG_293	1085.10	Richey, 1989, Table 2, p.39	70	Supra_R	FFG_332	1124.70	Richey, 1989, Table 2, p.42
Supra_R	FFG_294	1095.50	Richey, 1989, Table 2, p.39	71	Supra_R	FFG_333	1130.50	Richey, 1989, Table 2, p.42
Supra_R	FFG_295	1087.50	Richey, 1989, Table 2, p.39	72	Supra_R	FFG_334	1125.90	Richey, 1989, Table 2, p.42
Supra_R	FFG_297	1104.90	Richey, 1989, Table 2, p.39	73	Supra_R	FFG_335	1129.60	Richey, 1989, Table 2, p.42
Supra_R	FFG_298	1070.00	Richey, 1989, Table 2, p.40	74	Supra_R	FFG_336	1124.10	Richey, 1989, Table 2, p.42
Supra_R Supra_R	FFG_299 FFG_300	1078.40 1062.20	Richey, 1989, Table 2, p.40 Richey, 1989, Table 2, p.40	75 76	Supra_R Supra_R	FFG_337 FFG_338	1124.40 1123.50	Richey, 1989, Table 2, p.42 Richey, 1989, Table 2, p.42

 Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

	Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
1	Supra_R	FFG_339	1107.90	Richey, 1989, Table 2, p.42	39	Supra_R	FFG_396	1090.00	Richey, 1989, Table 2, p.46
2	Supra_R	FFG_340	1107.00	Richey, 1989, Table 2, p.42	40	Supra_R	FFG_398	1011.60	Richey, 1989, Table 2, p.46
3	Supra_R	FFG_342	1056.10	Richey, 1989, Table 2, p.43	41	Supra_R	FFG_399	1001.60	Richey, 1989, Table 2, p.46
4	Supra_R	FFG_344	1040.60	Richey, 1989, Table 2, p.43	42	Supra_R	FFG_401	972.30	Richey, 1989, Table 2, p.46
5	Supra_R	FFG_345	1073.20	Richey, 1989, Table 2, p.43	43	Supra_R	FFG_402	1023.10	Richey, 1989, Table 2, p.46
6	Supra_R	FFG_347	1039.70	Richey, 1989, Table 2, p.43	44	Supra_R	FFG_403	995.20	Richey, 1989, Table 2, p.47
7	Supra_R	FFG_348	1035.70	Richey, 1989, Table 2, p.43	45	Supra_R	FFG_404	976.60	Richey, 1989, Table 2, p.47
8	Supra_R	FFG_349	1034.80	Richey, 1989, Table 2, p.43	46	Supra_R	FFG_407	969.90	Richey, 1989, Table 2, p.47
9	Supra_R	FFG_350	1041.50	Richey, 1989, Table 2, p.43	47	Supra_R	FFG_408	965.00	Richey, 1989, Table 2, p.47
0	Supra_R	FFG_351	1102.80	Richey, 1989, Table 2, p.43	48	Supra_R	FFG_409	970.50	Richey, 1989, Table 2, p.47
1	Supra_R	FFG_352	1103.10	Richey, 1989, Table 2, p.43	49	Supra_R	FFG_411	957.70	Richey, 1989, Table 2, p.47
2	Supra_R	FFG_353	1095.80	Richey, 1989, Table 2, p.43	50	Supra_R	FFG_413	968.70	Richey, 1989, Table 2, p.47
3	Supra_R	FFG_354	1051.00	Richey, 1989, Table 2, p.43	51	Supra_R	FFG_418	1033.90	Richey, 1989, Table 2, p.48
4	Supra_R	FFG_361	1012.50	Richey, 1989, Table 2, p.44	52	Supra_R	FFG_419	1052.50	Richey, 1989, Table 2, p.48
5	Supra_R	FFG_362	1010.70	Richey, 1989, Table 2, p.44	53	Supra_R	FFG_420	1045.10	Richey, 1989, Table 2, p.48
6	Supra_R	FFG_363	1009.50	Richey, 1989, Table 2, p.44	54	Supra_R	FFG_421	1047.00	Richey, 1989, Table 2, p.48
7	Supra_R	FFG_364	993.60	Richey, 1989, Table 2, p.44	55	Supra_R	FFG_422	1054.30	Richey, 1989, Table 2, p.48
3	Supra_R	FFG_366	1010.40	Richey, 1989, Table 2, p.44	56	Supra_R	FFG_426	996.10	Richey, 1989, Table 2, p.48
Э	Supra_R	FFG_367	1006.40	Richey, 1989, Table 2, p.44	57	Supra_R	FFG_432	978.40	Richey, 1989, Table 2, p.48
2	Supra_R	FFG_370	1012.90	Richey, 1989, Table 2, p.44	58	Supra_R	FFG_433	968.00	Richey, 1989, Table 2, p.48
1	Supra_R	FFG_371	1012.90	Richey, 1989, Table 2, p.44	59	Supra_R	FFG 438	1082.20	Richey, 1989, Table 2, p.49
2	Supra_R	FFG_372	1006.40	Richey, 1989, Table 2, p.45	60	Supra_R	FFG_445	960.70	Richey, 1989, Table 2, p.49
3	Supra_R	FFG_373	998.10	Richey, 1989, Table 2, p.45	61	Supra_R	FFG_453	1049.50	Richey, 1989, Table 2, p.50
1	Supra_R	FFG_374	995.20	Richey, 1989, Table 2, p.45	62	Supra_R	FFG_455	1061.30	Richey, 1989, Table 2, p.50
5	Supra_R	FFG_376	1010.40	Richey, 1989, Table 2, p.45	63	Supra_R	FFG_456	1063.40	Richey, 1989, Table 2, p.50
5	Supra_R	FFG_381	1021.40	Richey, 1989, Table 2, p.45	64	Supra R	FFG_457	1023.50	Richey, 1989, Table 2, p.50
7	Supra_R	FFG_383	1046.10	Richey, 1989, Table 2, p.45	65	Supra R	FFG 458	1025.80	Richey, 1989, Table 2, p.50
3	Supra_R	FFG_384	976.00	Richey, 1989, Table 2, p.45	66	Supra_R	FFG_459	1070.50	Richey, 1989, Table 2, p.50
)	Supra_R	FFG_385	990.60	Richey, 1989, Table 2, p.45	67	Supra_R	FFG 462	1032.10	Richey, 1989, Table 2, p.50
)	Supra_R	FFG_387	1019.90	Richey, 1989, Table 2, p.45	68	Supra R	FFG 463	1021.10	Richey, 1989, Table 2, p.51
I	Supra_R	FFG_388	1019.60	Richey, 1989, Table 2, p.46	69	SupraR	FFG_464	1035.40	Richey, 1989, Table 2, p.51
2	Supra_R	FFG_389	1008.00	Richey, 1989, Table 2, p.46	70	SupraR	FFG_465	1031.40	Richey, 1989, Table 2, p.51
}	Supra_R	FFG_390	1022.60	Richey, 1989, Table 2, p.46	71	Supra_R	FFG_467	1025.70	Richey, 1989, Table 2, p.51
ł	Supra_R	FFG_391	1025.30	Richey, 1989, Table 2, p.46	72	Supra_R	FFG_468	1064.70	Richey, 1989, Table 2, p.51
5	Supra_R	FFG_392	1019.60	Richey, 1989, Table 2, p.46	73	Supra_R	FFG_470	1067.10	Richey, 1989, Table 2, p.51
5	Supra_R	FFG_393	1061.60	Richey, 1989, Table 2, p.46	74	Supra R	FFG_471	1036.60	Richey, 1989, Table 2, p.51
,	Supra_R	FFG_394	1050.30	Richey, 1989, Table 2, p.46	75	Supra_R	FFG_472	1032.40	Richey, 1989, Table 2, p.51
3	Supra R	FFG_395	1059.20	Richey, 1989, Table 2, p.46	76	Supra R	FFG 473	1060.70	Richey, 1989, Table 2, p.51

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Supra_R	FFG_474	1100.60	Richey, 1989, Table 2, p.51	39	Supra_R	FFG_512	1073.50	Richey, 1989, Table 2, p.54
Supra_R	FFG_475	1103.70	Richey, 1989, Table 2, p.51	40	Supra_R	FFG_513	1061.00	Richey, 1989, Table 2, p.54
Supra_R	FFG_476	1090.10	Richey, 1989, Table 2, p.51	41	Supra_R	FFG_514	1060.10	Richey, 1989, Table 2, p.54
Supra_R	FFG_477	1102.80	Richey, 1989, Table 2, p.51	42	Supra_R	FFG_515	1082.30	Richey, 1989, Table 2, p.54
Supra_R	FFG_478	1104.80	Richey, 1989, Table 2, p.52	43	Supra_R	FFG_516	1075.00	Richey, 1989, Table 2, p.54
Supra_R	FFG_479	1106.40	Richey, 1989, Table 2, p.52	44	Supra_R	FFG_517	1053.10	Richey, 1989, Table 2, p.54
Supra_R	FFG_480	1096.10	Richey, 1989, Table 2, p.52	45	Supra_R	FFG_518	1036.30	Richey, 1989, Table 2, p.54
Supra_R	FFG_481	1090.90	Richey, 1989, Table 2, p.52	46	Supra_R	FFG_519	1033.90	Richey, 1989, Table 2, p.54
Supra_R	FFG_482	1103.40	Richey, 1989, Table 2, p.52	47	Supra_R	FFG_520	1030.80	Richey, 1989, Table 2, p.54
Supra_R	FFG_483	1094.20	Richey, 1989, Table 2, p.52	48	Supra_R	FFG_521	1028.70	Richey, 1989, Table 2, p.54
Supra_R	FFG_484	1095.60	Richey, 1989, Table 2, p.52	49	Supra_R	FFG_522	1055.20	Richey, 1989, Table 2, p.54
Supra_R	FFG_485	1096.50	Richey, 1989, Table 2, p.52	50	Supra_R	FFG_523	1041.80	Richey, 1989, Table 2, p.54
Supra_R	FFG_486	1097.60	Richey, 1989, Table 2, p.52	51	Supra_R	FFG_524	1024.10	Richey, 1989, Table 2, p.55
Supra_R	FFG_487	1097.00	Richey, 1989, Table 2, p.52	52	Supra_R	FFG_525	1047.00	Richey, 1989, Table 2, p.55
Supra_R	FFG_488	1088.60	Richey, 1989, Table 2, p.52	53	Supra_R	FFG_526	1033.90	Richey, 1989, Table 2, p.55
Supra_R	FFG_489	1086.60	Richey, 1989, Table 2, p.52	54	Supra_R	FFG_527	1031.70	Richey, 1989, Table 2, p.55
Supra_R	FFG_490	1072.60	Richey, 1989, Table 2, p.52	55	Supra_R	FFG_528	1023.50	Richey, 1989, Table 2, p.55
Supra_R	FFG_491	1077.50	Richey, 1989, Table 2, p.52	56	Supra_R	FFG_530	1016.50	Richey, 1989, Table 2, p.55
Supra_R	FFG_492	1067.40	Richey, 1989, Table 2, p.52	57	Supra_R	FFG_531	998.20	Richey, 1989, Table 2, p.55
Supra_R	FFG_493	1069.20	Richey, 1989, Table 2, p.53	58	Supra_R	FFG_532	990.30	Richey, 1989, Table 2, p.55
Supra_R	FFG_494	1069.50	Richey, 1989, Table 2, p.53	59	Supra_R	FFG_534	1021.10	Richey, 1989, Table 2, p.55
Supra_R	FFG495	1072.30	Richey, 1989, Table 2, p.53	60	Supra_R	FFG_535	995.90	Richey, 1989, Table 2, p.55
Supra_R	FFG_496	1108.30	Richey, 1989, Table 2, p.53	61	Supra_R	FFG_536	996.10	Richey, 1989, Table 2, p.55
Supra_R	FFG_497	1090.60	Richey, 1989, Table 2, p.53	62	Supra_R	FFG_537	985.40	Richey, 1989, Table 2, p.55
Supra_R	FFG_498	1104.90	Richey, 1989, Table 2, p.53	63	Supra_R	FFG_543	997.90	Richey, 1989, Table 2, p.56
Supra_R	FFG_499	1091.50	Richey, 1989, Table 2, p.53	64	Supra_R	FFG_548	1047.30	Richey, 1989, Table 2, p.56
Supra_R	FFG_500	1091.50	Richey, 1989, Table 2, p.53	65	Supra_R	FFG_552	922.90	Richey, 1989, Table 2, p.56
Supra_R	FFG_501	1075.60	Richey, 1989, Table 2, p.53	66	Supra_R	FFG_562	981.50	Richey, 1989, Table 2, p.57
Supra_R	FFG_502	1092.40	Richey, 1989, Table 2, p.53	67	Supra_R	FFG_563	969.90	Richey, 1989, Table 2, p.57
Supra_R	FFG_503	1064.10	Richey, 1989, Table 2, p.53	68	Supra_R	FFG_564	969.30	Richey, 1989, Table 2, p.57
Supra_R	FFG_504	1070.50	Richey, 1989, Table 2, p.53	69	Supra_R	FFG_568	957.10	Richey, 1989, Table 2, p.57
Supra_R	FFG_505	1077.80	Richey, 1989, Table 2, p.53	70	Supra_R	FFG_569	952.20	Richey, 1989, Table 2, p.57
Supra_R	FFG_506	1069.80	Richey, 1989, Table 2, p.53	71	Supra_R	FFG_584	1006.80	Richey, 1989, Table 2, p.58
Supra_R	FFG_507	1051.90	Richey, 1989, Table 2, p.53	72	Supra_R	FFG_585	1025.00	Richey, 1989, Table 2, p.58
Supra_R	FFG_508	1051.90	Richey, 1989, Table 2, p.53	73	Supra_R	FFG_600	1003.40	Richey, 1989, Table 2, p.58
Supra_R	FFG_509	1066.50	Richey, 1989, Table 2, p.54	74	Supra_R	FFG_601	983.90	Richey, 1989, Table 2, p.58
Supra_R	FFG_510	1080.50	Richey, 1989, Table 2, p.54	75	Supra_R	FFG_602	1053.10	Richey, 1989, Table 2, p.58
Supra R	FFG_511	1102.80	Richey, 1989, Table 2, p.54	76	Supra R	FFG 606	1012.90	Richey, 1989, Table 2, p.58

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Supra R	FFG 607	1001.30	Richey, 1989, Table 2, p.59	39	Supra_R	FFG_677	1064.40	Richey, 1989, Table 2, p.62
Supra R	FFG_608	1018.60	Richey, 1989, Table 2, p.59	40	Supra_R	FFG_679	1060.70	Richey, 1989, Table 2, p.62
Supra_R	FFG_609	1025.30	Richey, 1989, Table 2, p.59	41	Supra_R	FFG_685	1003.50	Richey, 1989, Table 2, p.63
Supra_R	FFG_610	1023.20	Richey, 1989, Table 2, p.59	42	Supra_R	FFG_689	1059.20	Richey, 1989, Table 2, p.63
Supra R	FFG_611	1009.20	Richey, 1989, Table 2, p.59	43	Supra_R	FFG_690	1052.20	Richey, 1989, Table 2, p.63
Supra R	FFG_612	977.10	Richey, 1989, Table 2, p.59	44	Supra_R	FFG_691	1052.50	Richey, 1989, Table 2, p.63
Supra R	FFG_613	945.90	Richey, 1989, Table 2, p.59	45	Supra_R	FFG_692	1057.70	Richey, 1989, Table 2, p.63
Supra R	FFG_618	897.00	Richey, 1989, Table 2, p.59	46	Supra_R	FFG_693	1050.60	Richey, 1989, Table 2, p.63
Supra R	FFG_620	909.90	Richey, 1989, Table 2, p.59	47	Supra_R	FFG_694	1042.40	Richey, 1989, Table 2, p.63
Supra R	FFG 621	905.90	Richey, 1989, Table 2, p.59	48	Supra_R	FFG_695	1048.50	Richey, 1989, Table 2, p.63
Supra_R	FFG_638	975.40	Richey, 1989, Table 2, p.60	49	Supra_R	FFG_696	1050.60	Richey, 1989, Table 2, p.63
Supra R	FFG_639	961.50	Richey, 1989, Table 2, p.60	50	Supra_R	FFG_697	1045.80	Richey, 1989, Table 2, p.64
Supra_R	FFG_640	966.20	Richey, 1989, Table 2, p.60	51	Supra_R	FFG_698	1039.70	Richey, 1989, Table 2, p.64
Supra_R	FFG_643	975.40	Richey, 1989, Table 2, p.60	52	Supra_R	FFG_699	1029.60	Richey, 1989, Table 2, p.64
Supra_R	FFG_644	936.70	Richey, 1989, Table 2, p.60	53	Supra_R	FFG700	1027.10	Richey, 1989, Table 2, p.64
Supra R	FFG 648	960.70	Richey, 1989, Table 2, p.60	54	Supra_R	FFG_701	1032.10	Richey, 1989, Table 2, p.64
Supra_R	FFG_652	1106.40	Richey, 1989, Table 2, p.60	55	Supra_R	FFG_702	1036.60	Richey, 1989, Table 2, p.64
Supra_R	FFG_653	1096.10	Richey, 1989, Table 2, p.61	56	Supra_R	FFG_703	1047.00	Richey, 1989, Table 2, p.64
Supra_R	FFG_654	1098.50	Richey, 1989, Table 2, p.61	57	Supra_R	FFG_704	1032.70	Richey, 1989, Table 2, p.64
Supra R	FFG_655	1093.00	Richey, 1989, Table 2, p.61	58	Supra_R	FFG_705	1023.80	Richey, 1989, Table 2, p.64
Supra_R	FFG_656	1091.80	Richey, 1989, Table 2, p.61	59	Supra_R	FFG_706	1025.70	Richey, 1989, Table 2, p.64
Supra R	FFG_657	1083.30	Richey, 1989, Table 2, p.61	60	Supra_R	FFG_707	1019.30	Richey, 1989, Table 2, p.64
Supra_R	FFG_658	1088.10	Richey, 1989, Table 2, p.61	61	Supra_R	FFG_708	1026.60	Richey, 1989, Table 2, p.64
Supra R	FFG_659	1072.60	Richey, 1989, Table 2, p.61	62	Supra_R	FFG_709	1008.60	Richey, 1989, Table 2, p.64
Supra_R	FFG_660	1071.10	Richey, 1989, Table 2, p.61	63	Supra_R	FFG_710	1007.40	Richey, 1989, Table 2, p.64
Supra_R	FFG_662	1085.70	Richey, 1989, Table 2, p.61	64	Supra_R	FFG_711	1012.90	Richey, 1989, Table 2, p.65
Supra R	FFG 664	1084.50	Richey, 1989, Table 2, p.61	65	Supra_R	FFG_712	1018.00	Richey, 1989, Table 2, p.65
SupraR	FFG 666	1063.10	Richey, 1989, Table 2, p.62	66	Supra_R	FFG_713	1011.30	Richey, 1989, Table 2, p.65
Supra_R	FFG_667	1059.20	Richey, 1989, Table 2, p.62	67	Supra_R	FFG_714	1024.10	Richey, 1989, Table 2, p.65
Supra R	FFG_668	1043.30	Richey, 1989, Table 2, p.62	68	Supra_R	FFG_715	1025.30	Richey, 1989, Table 2, p.65
SupraR	FFG_669	1036.30	Richey, 1989, Table 2, p.62	69	Supra_R	FFG_716	1060.60	Richey, 1989, Table 2, p.65
Supra R	FFG_670	1049.10	Richey, 1989, Table 2, p.62	70	Supra_R	FFG_717	1056.10	Richey, 1989, Table 2, p.65
Supra_R	FFG_671	1044.90	Richey, 1989, Table 2, p.62	71	Supra_R	FFG_718	1044.90	Richey, 1989, Table 2, p.65
Supra_R	FFG_672	1058.00	Richey, 1989, Table 2, p.62	72	Supra_R	FFG_719	1040.40	Richey, 1989, Table 2, p.65
Supra_R	FFG_673	1037.20	Richey, 1989, Table 2, p.62	73	Supra_R	FFG_720	1019.90	Richey, 1989, Table 2, p.65
Supra_R	FFG_674	1064.70	Richey, 1989, Table 2, p.62	74	Supra_R	FFG_721	1026.90	Richey, 1989, Table 2, p.65
Supra_R	FFG_675	1078.40	Richey, 1989, Table 2, p.62	75	Supra_R	FFG_723	1054.30	Richey, 1989, Table 2, p.65
Supra_R	FFG_676	1084.50	Richey, 1989, Table 2, p.62	76	Supra R	FFG 724	1044.20	Richey, 1989, Table 2, p.65

La	ayer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Sup	ora_R	FFG 725	1029.60	Richey, 1989, Table 2, p.65	39	Supra_R	P15	1008.90	Mercer, 1983, Table 1
	ora R	FFG_726	1018.60	Richey, 1989, Table 2, p.65	40	Supra R	P16	1011.30	Mercer, 1983, Table 1
Sup	ora R	FFG_727	1020.80	Richey, 1989, Table 2, p.66	41	Supra R	P17	1016.80	Mercer, 1983, Table 1
Sup	ora R	FFG 728	1012.20	Richey, 1989, Table 2, p.66	42	SupraR	P18	1059.80	Mercer, 1983, Table 1
Sup	ora R	FFG_729	1014.40	Richey, 1989, Table 2, p.66	43	SupraR	P19	1080.50	Mercer, 1983, Table 1
Sup	ora R	FFG_730	1018.90	Richey, 1989, Table 2, p.66	44	Supra R	P2	1060.40	Mercer, 1983, Table 1
Sup	ora R	FFG_731	1022.30	Richey, 1989, Table 2, p.66	45	Supra_R	P20	1083.00	Mercer, 1983, Table 1
Sup	ora_R	FFG_732	1040.30	Richey, 1989, Table 2, p.66	46	Supra R	P21	1069.50	Mercer, 1983, Table 1
Sup	ora_R	FFG 733	1028.40	Richey, 1989, Table 2, p.66	47	Supra_R	P3	1031.10	Mercer, 1983, Table 1
Sup	ora_R	FFG_734	1029.00	Richey, 1989, Table 2, p.66	48	Supra_R	P4	1049.70	Mercer, 1983, Table 1
Sup	ora_R	FFG_735	1016.50	Richey, 1989, Table 2, p.66	49	Supra_R	P5	1058.00	Mercer, 1983, Table 1
Sup	ora_R	FFG_736	1025.60	Richey, 1989, Table 2, p.66	50	Supra_R	P6	1022.30	Mercer, 1983, Table 1
Sup	ora_R	FFG_737	1040.50	Richey, 1989, Table 2, p.66	51	Supra_R	P7	1015.60	Mercer, 1983, Table 1
Sup	ora_R	FFG_738	1018.30	Richey, 1989, Table 2, p.66	52	Supra_R	P8	1017.70	Mercer, 1983, Table 1
Sup	ora_R	FFG_739	1015.10	Richey, 1989, Table 2, p.66	53	Supra_R	P9	1040.00	Mercer, 1983, Table 1
Sup	ora_R	FFG_740	1015.60	Richey, 1989, Table 2, p.66	54	Supra_R	WIPP11	1044.20	Mercer, 1983, Table 1
Sup	ora_R	FFG_741	1014.70	Richey, 1989, Table 2, p.66	55	Supra_R	WIPP12	1058.30	Mercer, 1983, Table 1
Sup	ora_R	FFG_742	1023.80	Richey, 1989, Table 2, p.67	56	Supra_R	WIPP13	1037.80	Mercer, 1983, Table 1
Sup	ora_R	FFG_743	1013.20	Richey, 1989, Table 2, p.67	57	Supra_R	WIPP15	996.40	Mercer, 1983, Table 1
Sup	ora_R	FFG_744	1012.50	Richey, 1989, Table 2, p.67	58	Supra_R	WIPP16	1031.10	Mercer, 1983, Table 1
Sup	ora_R	FFG_745	1006.40	Richey, 1989, Table 2, p.67	59	Supra_R	WIPP18	1053.40	Mercer, 1983, Table 1
Sup	ora_R	FFG_746	1007.50	Richey, 1989, Table 2, p.67	60	Supra_R	WIPP19	1046.40	Mercer, 1983, Table 1
Sup	ora_R	H1	1035.70	Mercer, 1983, Table 1	61	Supra_R	WIPP21	1041.50	Mercer, 1983, Table 1
Sup	ora_R	H10C	1123.80	Mercer, 1983, Table 1	62	Supra_R	WIPP22	1044.20	Mercer, 1983, Table 1
Sup	ora_R	H2C	1029.60	Mercer, 1983, Table 1	63	Supra_R	WIPP25	979.30	Mercer, 1983, Table 1
Sup	ora_R	H3	1033.30	Mercer, 1983, Table 1	64	Supra_R	WIPP26	960.70	Mercer, 1983, Table 1
Sup	vra_R	H4C	1016.20	Mercer, 1983, Table 1	65	Supra_R	WIPP27	968.30	Mercer, 1983, Table 1
Sup	ra_R	H5C	1068.90	Mercer, 1983, Table 1	66	Supra_R	WIPP28	1020.20	Mercer, 1983, Table 1
Sup	ra_R	H6C	1020.50	Mercer, 1983, Table 1	67	Supra_R	WIPP29	907.40	Mercer, 1983, Table 1
Sup	ora_R	H7C	964.10	Mercer, 1983, Table 1	68	Supra_R	WIPP30	1044.90	Mercer, 1983, Table 1
Sup	vra_R	H8C	1046.40	Mercer, 1983, Table 1	69	Supra_R	WIPP32	921.40	Mercer, 1983, Table 1
Sup	ra_R	H9C	1038.10	Mercer, 1983, Table 1	70	Supra_R	WIPP33	1012.90	Mercer, 1983, Table 1
Sup	ra_R	P1	1019.60	Mercer, 1983, Table 1	71	Supra_R	WIPP34	1046.40	Mercer, 1983, Table 1
Sup	ra_R	P10	1069.50	Mercer, 1983, Table 1	72	Tamarisk	AEC7	882.40	Mercer, 1983, Table 1
Sup	ra_R	P11	1068.00	Mercer, 1983, Table 1	73	Tamarisk	AEC8	851.70	Mercer, 1983, Table 1
Sup	ra_R	P12	1028.40	Mercer, 1983, Table 1	74	Tamarisk	AirShft	850.99	Holt and Powers, 1990, Figure 22
Sup	ra_R	P13	1019.60	Mercer, 1983, Table 1	75	Tamarisk	B25	851.00	Mercer, 1983, Table 1
Sup	ra R	P14	1024.10	Mercer, 1983, Table 1	76	Tamarisk	ERDA10	910.20	Mercer, 1983, Table 1

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elevation	Source
Tamarisk	ERDA6	889.70	Mercer, 1983, Table 1	39	Tamarisk	FFG_043	782.00	Richey, 1989, Table 2, p.23
Tamarisk	ERDA9	853.10	Mercer, 1983, Table 1	40	Tamarisk	FFG_044	733.60	Richey, 1989, Table 2, p.23
Tamarisk	ExhtShft	847.97	Bechtel, Inc., 1986, Appendix F	41	Tamarisk	FFG_047	607.50	Richey, 1989, Table 2, p.23
Tamarisk	FFG_002	660.50	Richey, 1989, Table 2, p.21	42	Tamarisk	FFG_048	623.30	Richey, 1989, Table 2, p.23
Tamarisk	FFG_004	710.80	Richey, 1989, Table 2, p.21	43	Tamarisk	FFG_049	614.80	Richey, 1989, Table 2, p.23
Tamarisk	FFG_005	667.90	Richey, 1989, Table 2, p.21	44	Tamarisk	FFG_050	621.50	Richey, 1989, Table 2, p.24
Tamarisk	FFG_006	661.40	Richey, 1989, Table 2, p.21	45	Tamarisk	FFG_051	622.10	Richey, 1989, Table 2, p.24
Tamarisk	FFG_007	649.80	Richey, 1989, Table 2, p.21	46	Tamarisk	FFG_052	624.20	Richey, 1989, Table 2, p.24
Tamarisk	FFG_009	650.10	Richey, 1989, Table 2, p.21	47	Tamarisk	FFG_053	615.40	Richey, 1989, Table 2, p.24
Tamarisk	FFG_011	657.10	Richey, 1989, Table 2, p.21	48	Tamarisk	FFG_054	613.30	Richey, 1989, Table 2, p.24
Tamarisk	FFG_012	659.60	Richey, 1989, Table 2, p.21	49	Tamarisk	FFG_055	612.60	Richey, 1989, Table 2, p.24
Tamarisk	FFG_013	667.80	Richey, 1989, Table 2, p.21	50	Tamarisk	FFG_056	615.40	Richey, 1989, Table 2, p.24
Tamarisk	FFG_014	713.50	Richey, 1989, Table 2, p.21	51	Tamarisk	FFG_057	617.60	Richey, 1989, Table 2, p.24
Tamarisk	FFG_016	637.60	Richey, 1989, Table 2, p.21	52	Tamarisk	FFG_058	615.10	Richey, 1989, Table 2, p.24
Tamarisk	FFG_017	640.70	Richey, 1989, Table 2, p.22	53	Tamarisk	FFG_059	617.50	Richey, 1989, Table 2, p.24
Tamarisk	FFG_018	645.90	Richey, 1989, Table 2, p.22	54	Tamarisk	FFG_060	618.10	Richey, 1989, Table 2, p.24
Tamarisk	FFG_019	637.60	Richey, 1989, Table 2, p.22	55	Tamarisk	FFG_061	619.90	Richey, 1989, Table 2, p.24
Tamarisk	FFG_020	712.30	Richey, 1989, Table 2, p.22	56	Tamarisk	FFG_062	547.10	Richey, 1989, Table 2, p.24
Tamarisk	FFG_023	647.40	Richey, 1989, Table 2, p.22	57	Tamarisk	FFG_063	508.50	Richey, 1989, Table 2, p.24
Tamarisk	FFG_024	632.10	Richey, 1989, Table 2, p.22	58	Tamarisk	FFG_064	531.90	Richey, 1989, Table 2, p.24
Tamarisk	FFG_025	646.10	Richey, 1989, Table 2, p.22	59	Tamarisk	FFG_065	515.40	Richey, 1989, Table 2, p.24
Tamarisk	FFG_026	643.40	Richey, 1989, Table 2, p.22	60	Tamarisk	FFG_066	469.40	Richey, 1989, Table 2, p.24
Tamarisk	FFG_027	636.40	Richey, 1989, Table 2, p.22	61	Tamarisk	FFG_067	511.20	Richey, 1989, Table 2, p.25
Tamarisk	FFG_028	607.50	Richey, 1989, Table 2, p.22	62	Tamarisk	FFG_068	475.80	Richey, 1989, Table 2, p.25
Tamarisk	FFG_029	594.00	Richey, 1989, Table 2, p.22	63	Tamarisk	FFG_069	496.30	Richey, 1989, Table 2, p.25
Tamarisk	FFG_030	592.90	Richey, 1989, Table 2, p.22	64	Tamarisk	FFG_070	526.10	Richey, 1989, Table 2, p.25
Tamarisk	FFG_031	584.00	Richey, 1989, Table 2, p.22	65	Tamarisk	FFG_071	784.30	Richey, 1989, Table 2, p.25
Tamarisk	FFG_032	586.00	Richey, 1989, Table 2, p.22	66	Tamarisk	FFG_072	715.00	Richey, 1989, Table 2, p.25
Tamarisk	FFG_033	582.80	Richey, 1989, Table 2, p.22	67	Tamarisk	FFG_073	690.60	Richey, 1989, Table 2, p.25
Tamarisk	FFG_034	577.90	Richey, 1989, Table 2, p.23	68	Tamarisk	FFG_074	698.40	Richey, 1989, Table 2, p.25
Tamarisk	FFG_035	566.50	Richey, 1989, Table 2, p.23	69	Tamarisk	FFG_075	749.20	Richey, 1989, Table 2, p.25
Tamarisk	FFG_036	576.70	Richey, 1989, Table 2, p.23	70	Tamarisk	FFG_076	810.50	Richey, 1989, Table 2, p.25
Tamarisk	FFG_037	566.90	Richey, 1989, Table 2, p.23	71	Tamarisk	FFG_078	847.00	Richey, 1989, Table 2, p.25
Tamarisk	FFG_038	554.10	Richey, 1989, Table 2, p.23	72	Tamarisk	FFG_079	823.60	Richey, 1989, Table 2, p.25
Tamarisk	FFG_039	772.10	Richey, 1989, Table 2, p.23	73	Tamarisk	FFG_080	800.40	Richey, 1989, Table 2, p.25
Tamarisk	FFG_040	713.60	Richey, 1989, Table 2, p.23	74	Tamarisk	FFG_081	720.90	Richey, 1989, Table 2, p.26
Tamarisk	FFG_041	773.60	Richey, 1989, Table 2, p.23	75	Tamarisk	FFG_082	753.20	Richey, 1989, Table 2, p.26
Tamarisk	FFG 042	777,80	Richey, 1989, Table 2, p.23	76	Tamarisk	FFG 083	668.60	Richey, 1989, Table 2, p.26

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

_	Layer	Well ID	Elevation	Source		Layer	Well ID	Eleva	ation	Source
Т	amarisk	FFG 084	694.60	Richey, 1989, Table 2, p.26	40	Tamarisk	FFG_124	857.70	Richey, 1989	, Table 2, p.28
Ta	amarisk	FFG_085	687.40	Richey, 1989, Table 2, p.26	41	Tamarisk	FFG_125	883.20	Richey, 1989	, Table 2, p.28
T	amarisk	FFG_086	697.30	Richey, 1989, Table 2, p.26	42	Tamarisk	FFG_126	880.10	Richey, 1989	, Table 2, p.28
T	amarisk	FFG_087	671.40	Richey, 1989, Table 2, p.26	43	Tamarisk	FFG_127	885.10	Richey, 1989	, Table 2, p.28
Ta	amarisk	FFG_088	667.20	Richey, 1989, Table 2, p.26	44	Tamarisk	FFG_128	917.50	Richey, 1989	, Table 2, p.28
T	amarisk	FFG_089	649.60	Richey, 1989, Table 2, p.26	45	Tamarisk	FFG_129	893.30	Richey, 1989	, Table 2, p.28
Ta	amarisk	FFG_091	692.80	Richey, 1989, Table 2, p.26	46	Tamarisk	FFG_130	920.50	Richey, 1989	, Table 2, p.28
T	amarisk	FFG_092	706.50	Richey, 1989, Table 2, p.26	47	Tamarisk	FFG_132	929.00	Richey, 1989	, Table 2, p.29
Ta	amarisk	FFG ⁰⁹³	710.20	Richey, 1989, Table 2, p.26	48	Tamarisk	FFG_133	932.00	Richey, 1989	, Table 2, p.29
Ta	amarisk	FFG_094	713.20	Richey, 1989, Table 2, p.26	49	Tamarisk	FFG_134	935.50	Richey, 1989	, Table 2, p.29
Т	amarisk	FFG 095	681.50	Richey, 1989, Table 2, p.26	50	Tamarisk	FFG_135	910.80	Richey, 1989	, Table 2, p.29
Ta	amarisk	FFG_096	665.10	Richey, 1989, Table 2, p.26	51	Tamarisk	FFG_136	911.50	Richey, 1989	, Table 2, p.29
Ta	amarisk	FFG_097	645.00	Richey, 1989, Table 2, p.27	52	Tamarisk	FFG_137	919.30	Richey, 1989	, Table 2, p.29
T	amarisk	FFG_098	619.90	Richey, 1989, Table 2, p.27	53	Tamarisk	FFG_138	874.50	Richey, 1989	, Table 2, p.29
Ta	amarisk	FFG_099	615.40	Richey, 1989, Table 2, p.27	54	Tamarisk	FFG_139	882.40	Richey, 1989	, Table 2, p.29
Ta	amarisk	FFG_100	598.10	Richey, 1989, Table 2, p.27	55	Tamarisk	FFG_140	823.10	Richey, 1989	, Table 2, p.29
Ta	amarisk	FFG 101	569.40	Richey, 1989, Table 2, p.27	56	Tamarisk	FFG_141	845.70	Richey, 1989	, Table 2, p.29
T	amarisk	FFG ¹⁰²	587.40	Richey, 1989, Table 2, p.27	57	Tamarisk	FFG_142	821.80	Richey, 1989	, Table 2, p.29
Ta	amarisk	FFG_103	652.00	Richey, 1989, Table 2, p.27	58	Tamarisk	FFG_143	831.70	Richey, 1989	, Table 2, p.29
Ta	amarisk	FFG 104	545.00	Richey, 1989, Table 2, p.27	59	Tamarisk	FFG_144	903.50	Richey, 1989	, Table 2, p.29
Т	amarisk	FFG_105	901.30	Richey, 1989, Table 2, p.27	60	Tamarisk	FFG_145	905.30	Richey, 1989	, Table 2, p.29
Т	amarisk	FFG_106	931.80	Richey, 1989, Table 2, p.27	61	Tamarisk	FFG_146	912.90	Richey, 1989	, Table 2, p.29
Ta	amarisk	FFG_107	916.90	Richey, 1989, Table 2, p.27	62	Tamarisk	FFG_147	893.70	Richey, 1989	, Table 2, p.29
Ta	amarisk	FFG_108	912.30	Richey, 1989, Table 2, p.27	63	Tamarisk	FFG_148	907.70	Richey, 1989	, Table 2, p.29
Ta	amarisk	FFG_109	892.80	Richey, 1989, Table 2, p.27	64	Tamarisk	FFG_149	912.20	Richey, 1989	, Table 2, p.30
Ta	amarisk	FFG 110	859.60	Richey, 1989, Table 2, p.27	65	Tamarisk	FFG_155	905.60	Richey, 1989	, Table 2, p.30
Та	amarisk	FFG_111	867.10	Richey, 1989, Table 2, p.27	66	Tamarisk	FFG_157	907.10	Richey, 1989	, Table 2, p.30
Та	amarisk	FFG_112	854.90	Richey, 1989, Table 2, p.28	67	Tamarisk	FFG_158	931.10	Richey, 1989	, Table 2, p.30
Τa	amarisk	FFG_113	869.00	Richey, 1989, Table 2, p.28	68	Tamarisk	FFG_159	928.80	Richey, 1989	, Table 2, p.30
Ta	amarisk	FFG 114	898.30	Richey, 1989, Table 2, p.28	69	Tamarisk	FFG_160	924.20		, Table 2, p.30
Та	amarisk	FFG_115	889.40	Richey, 1989, Table 2, p.28	70	Tamarisk	FFG_161	930.00	Richey, 1989	, Table 2, p.30
Та	amarisk	FFG_116	904.90	Richey, 1989, Table 2, p.28	71	Tamarisk	FFG_162	925.40	Richey, 1989	, Table 2, p.30
Та	amarisk	FFG_117	902.20	Richey, 1989, Table 2, p.28	72	Tamarisk	FFG_163	927.80	Richey, 1989	, Table 2, p.30
Та	amarisk	FFG_119	937.90	Richey, 1989, Table 2, p.28	73	Tamarisk	FFG_164	955.90	Richey, 1989	, Table 2, p.30
Та	amarisk	FFG_120	913.80	Richey, 1989, Table 2, p.28	74	Tamarisk	FFG_165	935.70	Richey, 1989	, Table 2, p.30
Та	amarisk	FFG_121	922.00	Richey, 1989, Table 2, p.28	75	Tamarisk	FFG_166	928.40	Richey, 1989	, Table 2, p.31
Та	amarisk	FFG 122	920.50	Richey, 1989, Table 2, p.28	76	Tamarisk	FFG_167	914.40	Richey, 1989	, Table 2, p.31
Ta	amarisk	FFG 123	894.50	Richey, 1989, Table 2, p.28	77	Tamarisk	FFG_168	933.90	Richey, 1989	, Table 2, p.31

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Eleva	ation	Source
Tamarisk	FFG 169	949.10	Richey, 1989, Table 2, p.31	39	Tamarisk	FFG_216	710.40	Richey, 1989	, Table 2, p.34
Tamarisk	FFG 170	916.80	Richey, 1989, Table 2, p.31	40	Tamarisk	FFG_217	843.70	Richey, 1989	, Table 2, p.34
Tamarisk	FFG 171	924.20	Richey, 1989, Table 2, p.31	41	Tamarisk	FFG_218	835.80	Richey, 1989	, Table 2, p.34
Tamarisk	FFG_172	933.00	Richey, 1989, Table 2, p.31	42	Tamarisk	FFG_219	879.90	Richey, 1989	, Table 2, p.34
Tamarisk	FFG_173	906.50	Richey, 1989, Table 2, p.31	43	Tamarisk	FFG_220	832.20	Richey, 1989	, Table 2, p.34
Tamarisk	FFG_180	915.00	Richey, 1989, Table 2, p.31	44	Tamarisk	FFG_221	787.00	Richey, 1989	, Table 2, p.34
Tamarisk	FFG ⁻ 181	946.70	Richey, 1989, Table 2, p.32	45	Tamarisk	FFG_222	741.60	Richey, 1989	, Table 2, p.34
Tamarisk	FFG_182	842.40	Richey, 1989, Table 2, p.32	46	Tamarisk	FFG_224	648.10	Richey, 1989	, Table 2, p.35
Tamarisk	FFG_183	939.10	Richey, 1989, Table 2, p.32	47	Tamarisk	FFG_225	656.30	Richey, 1989	, Table 2, p.35
Tamarisk	FFG_184	924.80	Richey, 1989, Table 2, p.32	48	Tamarisk	FFG_226	654.00	Richey, 1989	, Table 2, p.35
Tamarisk	FFG ⁻ 185	929.90	Richey, 1989, Table 2, p.32	49	Tamarisk	FFG_228	643.20	Richey, 1989	, Table 2, p.35
Tamarisk	FFG_186	857.70	Richey, 1989, Table 2, p.32	50	Tamarisk	FFG_229	672.00	Richey, 1989	, Table 2, p.35
Tamarisk	FFG ¹⁸⁸	869.00	Richey, 1989, Table 2, p.32	51	Tamarisk	FFG_230	658.10	Richey, 1989	, Table 2, p.35
Tamarisk	FFG_189	894.30	Richey, 1989, Table 2, p.32	52	Tamarisk	FFG_231	674.20	Richey, 1989	, Table 2, p.35
Tamarisk	FFG_190	874.70	Richey, 1989, Table 2, p.32	53	Tamarisk	FFG_232	688.20	Richey, 1989	, Table 2, p.35
Tamarisk	FFG_191	870.50	Richey, 1989, Table 2, p.32	54	Tamarisk	FFG_233	678.80	Richey, 1989	, Table 2, p.35
Tamarisk	FFG [_] 192	806.50	Richey, 1989, Table 2, p.32	55	Tamarisk	FFG_234	715.00	Richey, 1989	, Table 2, p.35
Tamarisk	FFG ¹⁹⁴	815.60	Richey, 1989, Table 2, p.33	56	Tamarisk	FFG_235	691.30	Richey, 1989	, Table 2, p.35
Tamarisk	FFG 195	828.80	Richey, 1989, Table 2, p.33	57	Tamarisk	FFG_236	738.50	Richey, 1989	, Table 2, p.35
Tamarisk	FFG_196	869.90	Richey, 1989, Table 2, p.33	58	Tamarisk	FFG_237	704.80	Richey, 1989	, Table 2, p.35
Tamarisk	FFG ⁻ 197	870.80	Richey, 1989, Table 2, p.33	59	Tamarisk	FFG_238	685.50	Richey, 1989	, Table 2, p.36
Tamarisk	FFG_198	871.40	Richey, 1989, Table 2, p.33	60	Tamarisk	FFG_239	673.30	Richey, 1989	, Table 2, p.36
Tamarisk	FFG ¹⁹⁹	859.90	Richey, 1989, Table 2, p.33	61	Tamarisk	FFG_240	664.50	Richey, 1989	, Table 2, p.36
Tamarisk	FFG ²⁰⁰	873.00	Richey, 1989, Table 2, p.33	62	Tamarisk	FFG_241	659.00	Richey, 1989	, Table 2, p.36
Tamarisk	FFG_201	865.60	Richey, 1989, Table 2, p.33	63	Tamarisk	FFG_242	776.70	Richey, 1989	, Table 2, p.36
Tamarisk	FFG 202	808.30	Richey, 1989, Table 2, p.33	64	Tamarisk	FFG_243	735.50	Richey, 1989	, Table 2, p.36
Tamarisk	FFG_203	815.70	Richey, 1989, Table 2, p.33	65	Tamarisk	FFG_244	773.10	Richey, 1989	, Table 2, p.36
Tamarisk	FFG_204	837.90	Richey, 1989, Table 2, p.33	66	Tamarisk	FFG_245	566.90		, Table 2, p.36
Tamarisk	FFG_205	853.20	Richey, 1989, Table 2, p.33	67	Tamarisk	FFG_246	573.00		, Table 2, p.36
Tamarisk	FFG_206	867.40	Richey, 1989, Table 2, p.33	68	Tamarisk	FFG_247	558.00		, Table 2, p.36
Tamarisk	FFG_207	865.00	Richey, 1989, Table 2, p.33	69	Tamarisk	FFG_248	566.00		, Table 2, p.36
Tamarisk	FFG_208	874.20	Richey, 1989, Table 2, p.34	70	Tamarisk	FFG_249	564.20		, Table 2, p.36
Tamarisk	FFG_209	866.20	Richey, 1989, Table 2, p.34	71	Tamarisk	FFG_250	644.50	Richey, 1989	, Table 2, p.36
Tamarisk	FFG_210	858.90	Richey, 1989, Table 2, p.34	72	Tamarisk	FFG_251	538.50	Richey, 1989	, Table 2, p.36
Tamarisk	FFG_212	845.20	Richey, 1989, Table 2, p.34	73	Tamarisk	FFG_252	677.80	Richey, 1989	, Table 2, p.36
Tamarisk	FFG_213	868.40	Richey, 1989, Table 2, p.34	74	Tamarisk	FFG_253	632.50	Richey, 1989	, Table 2, p.36
Tamarisk	FFG_214	848.20	Richey, 1989, Table 2, p.34	75	Tamarisk	FFG_254	623.90	Richey, 1989	, Table 2, p.36
Tamarisk	FFG_215	823.60	Richey, 1989, Table 2, p.34	76	Tamarisk	FFG 255	580.10	Richey, 1989	, Table 2, p.37

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source	N=1	Layer	Well ID	Elev	ation	Source
Tamarisk	FFG_256	529.80	Richey, 1989, Table 2, p.37	39	Tamarisk	FFG 295	554.70	Richey, 1989,	Table 2, p.39
Tamarisk	FFG 257	573.60	Richey, 1989, Table 2, p.37	40	Tamarisk	FFG 297	532.50	Richey, 1989,	Table 2, p.39
Tamarisk	FFG_258	587.60	Richey, 1989, Table 2, p.37	41	Tamarisk	FFG 298	546.70	Richey, 1989,	Table 2, p.40
Tamarisk	FFG_259	553.50	Richey, 1989, Table 2, p.37	42	Tamarisk	FFG 299	564.20	Richey, 1989,	Table 2, p.40
Tamarisk	FFG_260	597.40	Richey, 1989, Table 2, p.37	43	Tamarisk	FFG 300	515.40	Richey, 1989,	Table 2, p.40
Tamarisk	FFG_261	586.40	Richey, 1989, Table 2, p.37	44	Tamarisk	FFG 301	485.60	Richey, 1989,	Table 2, p.40
Tamarisk	FFG_262	1109.50	Richey, 1989, Table 2, p.37	45	Tamarisk	FFG_302	514.20	Richey, 1989,	Table 2, p.40
Tamarisk	FFG_263	521.10	Richey, 1989, Table 2, p.37	46	Tamarisk	FFG_303	505.10	Richey, 1989,	-
Tamarisk	FFG_264	753.20	Richey, 1989, Table 2, p.37	47	Tamarisk	FFG_304	512.90	Richey, 1989,	Table 2, p.40
Tamarisk	FFG_265	749.80	Richey, 1989, Table 2, p.37	48	Tamarisk	FFG_305	503.20	Richey, 1989,	Table 2, p.40
Tamarisk	FFG_266	730.90	Richey, 1989, Table 2, p.37	49	Tamarisk	FFG_306	465.10	Richey, 1989,	Table 2, p.40
Tamarisk	FFG_267	708.30	Richey, 1989, Table 2, p.37	50	Tamarisk	FFG_307	488.00	Richey, 1989,	Table 2, p.40
Tamarisk	FFG_268	684.60	Richey, 1989, Table 2, p.37	51	Tamarisk	FFG_308	460.50	Richey, 1989,	Table 2, p.40
Tamarisk	FFG_269	696.90	Richey, 1989, Table 2, p.38	52	Tamarisk	FFG_309	503.20	Richey, 1989,	Table 2, p.40
Tamarisk	FFG_270	769.30	Richey, 1989, Table 2, p.38	53	Tamarisk	FFG_310	534.60	Richey, 1989,	Table 2, p.40
Tamarisk	FFG_271	808.90	Richey, 1989, Table 2, p.38	54	Tamarisk	FFG_311	481.00	Richey, 1989,	Table 2, p.40
Tamarisk	FFG_272	816.40	Richey, 1989, Table 2, p.38	55	Tamarisk	FFG_312	504.50	Richey, 1989,	Table 2, p.40
Tamarisk	FFG_273	790.10	Richey, 1989, Table 2, p.38	56	Tamarisk	FFG_313	908.10	Richey, 1989,	Table 2, p.41
Tamarisk	FFG_274	827.20	Richey, 1989, Table 2, p.38	57	Tamarisk	FFG_314	836.10	Richey, 1989,	Table 2, p.41
Tamarisk	FFG_275	834.30	Richey, 1989, Table 2, p.38	58	Tamarisk	FFG_315	758.50	Richey, 1989,	Table 2, p.41
Tamarisk	FFG_276	837.60	Richey, 1989, Table 2, p.38	59	Tamarisk	FFG_316	742.10	Richey, 1989,	Table 2, p.41
Tamarisk	FFG_277	829.10	Richey, 1989, Table 2, p.38	60	Tamarisk	FFG_317	772.70	Richey, 1989,	Table 2, p.41
Tamarisk	FFG_278	838.50	Richey, 1989, Table 2, p.38	61	Tamarisk	FFG_318	734.60	Richey, 1989,	Table 2, p.41
Tamarisk	FFG_279	833.30	Richey, 1989, Table 2, p.38	62	Tamarisk	FFG_319	745.80	Richey, 1989, 1	Table 2, p.41
Tamarisk	FFG_280	830.90	Richey, 1989, Table 2, p.38	63	Tamarisk	FFG_320	735.50	Richey, 1989,	Table 2, p.41
Tamarisk	FFG_281	807.40	Richey, 1989, Table 2, p.38	64	Tamarisk	FFG_321	732.10	Richey, 1989,	Table 2, p.41
Tamarisk	FFG_283	558.10	Richey, 1989, Table 2, p.39	65	Tamarisk	FFG_322	727.40	Richey, 1989, 1	Table 2, p.41
Tamarisk	FFG_284	705.90	Richey, 1989, Table 2, p.39	66	Tamarisk	FFG_323	723.40	Richey, 1989,	Table 2, p.41
Tamarisk	FFG_285	734.90	Richey, 1989, Table 2, p.39	67	Tamarisk	FFG_324	738.00	Richey, 1989,	Table 2, p.41
Tamarisk	FFG_286	814.10	Richey, 1989, Table 2, p.39	68	Tamarisk	FFG_325	793.40	Richey, 1989,	Table 2, p.41
Tamarisk	FFG_287	786.10	Richey, 1989, Table 2, p.39	69	Tamarisk	FFG_326	729.10	Richey, 1989,	Table 2, p.41
Tamarisk	FFG_288	738.80	Richey, 1989, Table 2, p.39	70	Tamarisk	FFG_327	723.60	Richey, 1989, ⁻	Table 2, p.42
Tamarisk	FFG_289	713.80	Richey, 1989, Table 2, p.39	71	Tamarisk	FFG_328	728.70	Richey, 1989, 7	Table 2, p.42
Tamarisk	FFG_290	799.50	Richey, 1989, Table 2, p.39	72	Tamarisk	FFG_329	728.40	Richey, 1989, ⁻	Table 2, p.42
Tamarisk	FFG_291	736.70	Richey, 1989, Table 2, p.39	73	Tamarisk	FFG_330	728.00	Richey, 1989, ⁻	Table 2, p.42
Tamarisk	FFG_292	752.30	Richey, 1989, Table 2, p.39	74	Tamarisk	FFG_331	722.70	Richey, 1989,	Table 2, p.42
Tamarisk	FFG_293	744.60	Richey, 1989, Table 2, p.39	75	Tamarisk	FFG_332	713.80	Richey, 1989, ⁻	Table 2, p.42
Tamarisk	FFG_294	567.00	Richey, 1989, Table 2, p.39	76	Tamarisk	FFG_333	717.30	Richey, 1989, ⁻	Table 2, p.42

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elev	ation	Source
Tamarisk	FFG_334	712.60	Richey, 1989, Table 2, p.42	39	Tamarisk	FFG_391	944.50	Richey, 19	89, Table 2, p.46
Tamarisk	FFG_335	724.80	Richey, 1989, Table 2, p.42	40	Tamarisk	FFG 392	941.90	Richey, 19	89, Table 2, p.46
Tamarisk	FFG_336	725.10	Richey, 1989, Table 2, p.42	41	Tamarisk	FFG_393	810.60	Richey, 19	89, Table 2, p.46
Tamarisk	FFG_337	708.00	Richey, 1989, Table 2, p.42	42	Tamarisk	FFG_394	903.10	Richey, 198	89, Table 2, p.46
Tamarisk	FFG_338	715.20	Richey, 1989, Table 2, p.42	43	Tamarisk	FFG_395	895.80	Richey, 19	89, Table 2, p.46
Tamarisk	FFG_339	680.30	Richey, 1989, Table 2, p.42	44	Tamarisk	FFG_396	877.20	Richey, 19	89, Table 2, p.46
Tamarisk	FFG_340	688.80	Richey, 1989, Table 2, p.42	45	Tamarisk	FFG_398	798.50	Richey, 198	39, Table 2, p.46
Tamarisk	FFG_342	720.20	Richey, 1989, Table 2, p.43	46	Tamarisk	FFG_399	838.50	Richey, 19	89, Table 2, p.46
Tamarisk	FFG_344	685.10	Richey, 1989, Table 2, p.43	47	Tamarisk	FFG_401	874.80	Richey, 198	89, Table 2, p.46
Tamarisk	FFG_345	746.60	Richey, 1989, Table 2, p.43	48	Tamarisk	FFG_402	972.00	Richey, 198	39, Table 2, p.46
Tamarisk	FFG_347	736.70	Richey, 1989, Table 2, p.43	49	Tamarisk	FFG_403	935.30	Richey, 198	39, Table 2, p.47
Tamarisk	FFG_348	768.10	Richey, 1989, Table 2, p.43	50	Tamarisk	FFG_404	897.40	Richey, 198	39, Table 2, p.47
Tamarisk	FFG_349	738.00	Richey, 1989, Table 2, p.43	51	Tamarisk	FFG_407	932.40	Richey, 198	89, Table 2, p.47
Tamarisk	FFG_350	783.00	Richey, 1989, Table 2, p.43	52	Tamarisk	FFG_408	908.60	Richey, 198	39, Table 2, p.47
Tamarisk	FFG_351	701.10	Richey, 1989, Table 2, p.43	53	Tamarisk	FFG_409	970.50	Richey, 198	39, Table 2, p.47
Tamarisk	FFG_352	699.50	Richey, 1989, Table 2, p.43	54	Tamarisk	FFG 418	983.30	Richey, 198	39, Table 2, p.48
Tamarisk	FFG_353	721.20	Richey, 1989, Table 2. p.43	55	Tamarisk	FFG_419	969.00	Richey, 198	39, Table 2, p.48
Tamarisk	FFG_354	795.30	Richey, 1989, Table 2. p.43	56	Tamarisk	FFG_420	964.30	Richey, 198	39, Table 2, p.48
Tamarisk	FFG_361	982.60	Richey, 1989, Table 2, p.44	57	Tamarisk	FFG_421	955.00	Richey, 198	39, Table 2, p.48
Tamarisk	FFG_362	956.40	Richey, 1989, Table 2, p.44	58	Tamarisk	FFG_422	946.10	Richey, 198	39, Table 2, p.48
Tamarisk	FFG_363	972.90	Richey, 1989, Table 2, p.44	59	Tamarisk	FFG_426	962.00	Richey, 198	39, Table 2, p.48
Tamarisk	FFG_364	942.70	Richey, 1989, Table 2, p.44	60	Tamarisk	FFG_432	918.00	Richey, 198	39, Table 2, p.48
Tamarisk	FFG_366	933.90	Richey, 1989, Table 2, p.44	61	Tamarisk	FFG_433	920.50	Richey, 198	39, Table 2, p.48
Tamarisk	FFG_367	948.50	Richey, 1989, Table 2, p.44	62	Tamarisk	FFG_438	866.70	Richey, 198	39, Table 2, p.49
Tamarisk	FFG_370	1012.90	Richey, 1989, Table 2, p.44	63	Tamarisk	FFG_453	862.20	Richey, 198	39, Table 2, p.50
Tamarisk	FFG_371	994.60	Richey, 1989, Table 2, p.44	64	Tamarisk	FFG_455	810.40	Richey, 198	39, Table 2, p.50
Tamarisk	FFG_372	1006.40	Richey, 1989, Table 2, p.45	65	Tamarisk	FFG_456	805.20	Richey, 198	39, Table 2, p.50
Tamarisk	FFG_373	945.00	Richey, 1989, Table 2, p.45	66	Tamarisk	FFG_457	861.30	Richey, 198	39, Table 2, p.50
Tamarisk	FFG_374	929.70	Richey, 1989, Table 2, p.45	67	Tamarisk	FFG_458	862.30	Richey, 198	39, Table 2, p.50
Tamarisk	FFG_376	984.80	Richey, 1989, Table 2, p.45	68 (Tamarisk	FFG_459	791.90	Richey, 198	89, Table 2, p.50
Tamarisk	FFG_381	1021.40	Richey, 1989, Table 2, p.45	69	Tamarisk	FFG_462	857.50	Richey, 198	89, Table 2, p.50
Tamarisk	FFG_383	931.20	Richey, 1989, Table 2, p.45	70	Tamarisk	FFG_463	886.40	Richey, 198	89, Table 2, p.51
Tamarisk	FFG_384	937.90	Richey, 1989, Table 2, p.45	71	Tamarisk	FFG_464	872.30	Richey, 198	9, Table 2, p.51
Tamarisk	FFG_385	922.00	Richey, 1989, Table 2, p.45	72	Tamarisk	FFG_465	875.30	Richey, 198	9, Table 2, p.51
Tamarisk	FFG_387	934.60	Richey, 1989, Table 2, p.45	73	Tamarisk	FFG_467	483.30	Richey, 198	9, Table 2, p.51
Tamarisk	FFG_388	929.40	Richey, 1989, Table 2, p.46	74	Tamarisk	FFG_468	460.00	Richey, 198	9, Table 2, p.51
Tamarisk	FFG_389	976.60	Richey, 1989, Table 2, p.46	75	Tamarisk	FFG_470	480.10	Richey, 198	9, Table 2, p.51
Tamarisk	FFG 390	945.50	Richey, 1989, Table 2, p.46	76	Tamarisk	FFG 471	495.00	Richey, 198	9, Table 2, p.51

Layer	Weil ID	Elevation	Source		Layer	Well ID	Eleva	ation	Source
Tamarisk	FFG 472	532.80	Richey, 1989, Table 2, p.51	39	Tamarisk	FFG_510	738.70	Richey, 1989	, Table 2, p.54
Tamarisk	FFG_473	463.60	Richey, 1989, Table 2, p.51	40	Tamarisk	FFG_511	696.50	Richey, 1989,	, Table 2, p.54
Tamarisk	FFG_474	723.30	Richey, 1989, Table 2, p.51	41	Tamarisk	FFG_512	714.80	Richey, 1989,	, Table 2, p.54
Tamarisk	FFG_475	723.80	Richey, 1989, Table 2, p.51	42	Tamarisk	FFG_513	734.90	Richey, 1989	, Table 2, p.54
Tamarisk	FFG 476	797.40	Richey, 1989, Table 2, p.51	43	Tamarisk	FFG_514	726.00	Richey, 1989	, Table 2, p.54
Tamarisk	FFG_477	751.70	Richey, 1989, Table 2, p.51	44	Tamarisk	FFG_515	692.80	Richey, 1989	, Table 2, p.54
Tamarisk	FFG_478	733.60	Richey, 1989, Table 2, p.52	45	Tamarisk	FFG_516	685.50	Richey, 1989	, Table 2, p.54
Tamarisk	FFG_479	730.00	Richey, 1989, Table 2, p.52	46	Tamarisk	FFG_517	783.70	Richey, 1989	, Table 2, p.54
Tamarisk	FFG_480	726.40	Richey, 1989, Table 2, p.52	47	Tamarisk	FFG_518	772.00	Richey, 1989,	, Table 2, p.54
Tamarisk	FFG_481	709.00	Richey, 1989, Table 2, p.52	48	Tamarisk	FFG_519	740.10	Richey, 1989	, Table 2, p.54
Tamarisk	FFG 482	738.60	Richey, 1989, Table 2, p.52	49	Tamarisk	FFG_520	631.70	Richey, 1989	, Table 2, p.54
Tamarisk	FFG_483	761.40	Richey, 1989, Table 2, p.52	50	Tamarisk	FFG_521	650.40	Richey, 1989	, Table 2, p.54
Tamarisk	FFG_484	748.10	Richey, 1989, Table 2, p.52	51	Tamarisk	FFG_522	499.70	Richey, 1989	, Table 2, p.54
Tamarisk	FFG_485	756.80	Richey, 1989, Table 2, p.52	52	Tamarisk	FFG_523	509.30	Richey, 1989	, Table 2, p.54
Tamarisk	FFG_486	743.40	Richey, 1989, Table 2, p.52	53	Tamarisk	FFG_524	670.80	Richey, 1989	, Table 2, p.55
Tamarisk	FFG_487	740.40	Richey, 1989, Table 2, p.52	54	Tamarisk	FFG_525	508.50	Richey, 1989	, Table 2, p.55
Tamarisk	FFG_488	726.60	Richey, 1989, Table 2, p.52	55	Tamarisk	FFG_526	973.50	Richey, 1989	, Table 2, p.55
Tamarisk	FFG_489	742.30	Richey, 1989, Table 2, p.52	56	Tamarisk	FFG_527	933.60	Richey, 1989	, Table 2, p.55
Tamarisk	FFG_490	832.70	Richey, 1989, Table 2, p.52	57	Tamarisk	FFG_528	926.00	Richey, 1989	, Table 2, p.55
Tamarisk	FFG 491	830.30	Richey, 1989, Table 2, p.52	58	Tamarisk	FFG_530	1000.30	Richey, 1989	, Table 2, p.55
Tamarisk	FFG_492	792.50	Richey, 1989, Table 2, p.52	59	Tamarisk	FFG_531	919.30	Richey, 1989	, Table 2, p.55
Tamarisk	FFG_493	779.80	Richey, 1989, Table 2, p.53	60	Tamarisk	FFG_532	907.10	•	, Table 2, p.55
Tamarisk	FFG_494	786.00	Richey, 1989, Table 2, p.53	61	Tamarisk	FFG_534	946.40	Richey, 1989.	, Table 2, p.55
Tamarisk	FFG_495	777.20	Richey, 1989, Table 2, p.53	62	Tamarisk	FFG_535	912.80	•	, Table 2, p.55
Tamarisk	FFG_496	684.30	Richey, 1989, Table 2, p.53	63	Tamarisk	FFG_536	928.40	Richey, 1989	, Table 2, p.55
Tamarisk	FFG_497	695.60	Richey, 1989, Table 2, p.53	64	Tamarisk	FFG_537	904.60	Richey, 1989,	, Table 2, p.55
Tamarisk	FFG_498	708.40	Richey, 1989, Table 2, p.53	65	Tamarisk	FFG_543	970.90	Richey, 1989,	, Table 2, p.56
Tamarisk	FFG_499	684.60	Richey, 1989, Table 2, p.53	66	Tamarisk	FFG_548	907.70	Richey, 1989,	, Table 2, p.56
Tamarisk	FFG_500	698.60	Richey, 1989, Table 2, p.53	67	Tamarisk	FFG_562	645.30	Richey, 1989	, Table 2, p.57
Tamarisk	FFG_501	704.00	Richey, 1989, Table 2, p.53	68	Tamarisk	FFG_563	557.50		, Table 2, p.57
Tamarisk	FFG_502	697.40	Richey, 1989, Table 2, p.53	69	Tamarisk	FFG_568	634.60	Richey, 1989,	, Table 2, p.57
Tamarisk	FFG_{503}	679.40	Richey, 1989, Table 2, p.53	70	Tamarisk	FFG_569	663.20	• • •	, Table 2, p.57
Tamarisk	FFG_504	699.90	Richey, 1989, Table 2, p.53	71	Tamarisk	FFG_584	764.30	•	, Table 2, p.58
Tamarisk	FFG_505	734.30	Richey, 1989, Table 2, p.53	72	Tamarisk	FFG_585	730.90		, Table 2, p.58
Tamarisk	FFG_506	725.40	Richey, 1989, Table 2, p.53	73	Tamarisk	FFG_600	722.10		, Table 2, p.58
Tamarisk	FFG_507	688.40	Richey, 1989, Table 2, p.53	74	Tamarisk	FFG_601	615.70		, Table 2, p.58
Tamarisk	FFG_508	738.60	Richey, 1989, Table 2, p.53	75	Tamarisk	FFG_602	1053.10	•	, Table 2, p.58
Tamarisk	FFG 509	739.10	Richey, 1989, Table 2, p.54	76	Tamarisk	FFG 606	695.90	Richey, 1989,	, Table 2, p.58

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elev	ration Source
Tamarisk	FFG_607	718.40	Richey, 1989, Table 2, p.59	39	Tamarisk	FFG_689	793.70	Richey, 1989, Table 2, p.63
Tamarisk	FFG_608	726.60	Richey, 1989, Table 2, p.59	40	Tamarisk	FFG_690	798.90	Richey, 1989, Table 2, p.63
Tamarisk	FFG_609	732.70	Richey, 1989, Table 2, p.59	41	Tamarisk	FFG_691	790.40	Richey, 1989, Table 2, p.63
Tamarisk	FFG_610	713.20	Richey, 1989, Table 2, p.59	42	Tamarisk	FFG_692	780.30	Richey, 1989, Table 2, p.63
Tamarisk	FFG_611	703.20	Richey, 1989, Table 2, p.59	43	Tamarisk	FFG_693	790.90	Richey, 1989, Table 2, p.63
Tamarisk	FFG_612	712.70	Richey, 1989, Table 2, p.59	44	Tamarisk	FFG_694	783.30	Richey, 1989, Table 2, p.63
Tamarisk	FFG_613	705.90	Richey, 1989, Table 2, p.59	45	Tamarisk	FFG_695	788.80	Richey, 1989, Table 2, p.63
Tamarisk	FFG_618	701.90	Richey, 1989, Table 2, p.59	46	Tamarisk	FFG_696	790.60	Richey, 1989, Table 2, p.63
Tamarisk	FFG_638	567.30	Richey, 1989, Table 2, p.60	47	Tamarisk	FFG_697	793.70	Richey, 1989, Table 2, p.64
Tamarisk	FFG_639	537.40	Richey, 1989, Table 2, p.60	48	Tamarisk	FFG_698	835.50	Richey, 1989, Table 2, p.64
Tamarisk	FFG_640	623.10	Richey, 1989, Table 2, p.60	49	Tamarisk	FFG_699	786.70	Richey, 1989, Table 2, p.64
Tamarisk	FFG_643	662.40	Richey, 1989, Table 2, p.60	50	Tamarisk	FFG_700	777.00	Richey, 1989, Table 2, p.64
Tamarisk	FFG_644	701.20	Richey, 1989, Table 2, p.60	51	Tamarisk	FFG_701	781.90	Richey, 1989, Table 2, p.64
Tamarisk	FFG_648	536.10	Richey, 1989, Table 2, p.60	52	Tamarisk	FFG_702	786.70	Richey, 1989, Table 2, p.64
Tamarisk	FFG_652	853.70	Richey, 1989, Table 2, p.60	53	Tamarisk	FFG_703	791.60	Richey, 1989, Table 2, p.64
Tamarisk	FFG_653	854.10	Richey, 1989, Table 2, p.61	54	Tamarisk	FFG_704	779.40	Richey, 1989, Table 2, p.64
Tamarisk	FFG_654	874.80	Richey, 1989, Table 2, p.61	55	Tamarisk	FFG_705	709.60	Richey, 1989, Table 2, p.64
Tamarisk	FFG_655	873.20	Richey, 1989, Table 2, p.61	56	Tamarisk	FFG_706	730.70	Richey, 1989, Table 2, p.64
Tamarisk	FFG_656	870.80	Richey, 1989, Table 2, p.61	57	Tamarisk	FFG_707	714.20	Richey, 1989, Table 2, p.64
Tamarisk	FFG_657	883.70	Richey, 1989, Table 2, p.61	58	Tamarisk	FFG_708	767.20	Richey, 1989, Table 2, p.64
Tamarisk	FFG_658	874.40	Richey, 1989, Table 2, p.61	59	Tamarisk	FFG_709	658.70	Richey, 1989, Table 2, p.64
Tamarisk	FFG_659	879.70	Richey, 1989, Table 2, p.61	60	Tamarisk	FFG_710	659.30	Richey, 1989, Table 2, p.64
Tamarisk	FFG_660	896.90	Richey, 1989, Table 2, p.61	61	Tamarisk	FFG_711	668.20	Richey, 1989, Table 2, p.65
Tamarisk	FFG_662	870.80	Richey, 1989, Table 2, p.61	62	Tamarisk	FFG_712	710.90	Richey, 1989, Table 2, p.65
Tamarisk	FFG_664	862.00	Richey, 1989, Table 2, p.61	63	Tamarisk	FFG_713	648.10	Richey, 1989, Table 2, p.65
Tamarisk	FFG_666	914.40	Richey, 1989, Table 2, p.62	64	Tamarisk	FFG_714	761.90	Richey, 1989, Table 2, p.65
Tamarisk	FFG_667	899.50	Richey, 1989, Table 2, p.62	65	Tamarisk	FFG_715	774.80	Richey, 1989, Table 2, p.65
Tamarisk	FFG_668	947.70	Richey, 1989, Table 2, p.62	66	Tamarisk	FFG_716	676.60	Richey, 1989, Table 2, p.65
Tamarisk	FFG_669	934.20	Richey, 1989, Table 2, p.62	67	Tamarisk	FFG_717	698.10	Richey, 1989, Table 2, p.65
Tamarisk	FFG_670	919.30	Richey, 1989, Table 2, p.62	68	Tamarisk	FFG_718	700.90	Richey, 1989, Table 2, p.65
Tamarisk	FFG_671	917.70	Richey, 1989, Table 2, p.62	69	Tamarisk	FFG_719	674.20	Richey, 1989, Table 2, p.65
Tamarisk	FFG_672	919.90	Richey, 1989, Table 2, p.62	70	Tamarisk	FFG_720	671.50	Richey, 1989, Table 2, p.65
Tamarisk	FFG_673	914.70	Richey, 1989, Table 2, p.62	71	Tamarisk	FFG_721	673.60	Richey, 1989, Table 2, p.65
Tamarisk	FFG_674	915.00	Richey, 1989, Table 2, p.62	72	Tamarisk	FFG_723	785.30	Richey, 1989, Table 2, p.65
Tamarisk	FFG_675	871.60	Richey, 1989, Table 2, p.62	73	Tamarisk	FFG_724	713.60	Richey, 1989, Table 2, p.65
Tamarisk	FFG_676	884.20	Richey, 1989, Table 2, p.62	74	Tamarisk	FFG_725	689.70	Richey, 1989, Table 2, p.65
The second start		010 50			—			

Tamarisk

Tamarisk

677.50

674.90

Richey, 1989, Table 2, p.65

Richey, 1989, Table 2, p.66

FFG_726

FFG_727

Tamarisk

Tamarisk

FFG_677

FFG_679

910.50

910.40

Richey, 1989, Table 2, p.62

Richey, 1989, Table 2, p.62

Layer	Well ID	Elevation	Source		Layer	Well ID	Eleva	ation	Source
Tamarisk	FFG 728	673.30	Richey, 1989, Table 2, p.66	39	Tamarisk	P18	837.30	Mercer, 1983	Table 1
Tamarisk	FFG 729	683.70	Richey, 1989, Table 2, p.66	40	Tamarisk	P19	824.80	Mercer, 1983	Table 1
Tamarisk	FFG 730	701.30	Richey, 1989, Table 2, p.66	41	Tamarisk	P2	824.80	Mercer, 1983	Table 1
Tamarisk	FFG_731	697.80	Richey, 1989, Table 2, p.66	42	Tamarisk	P20	819.00	Mercer, 1983	Table 1
Tamarisk	FFG 732	713.20	Richey, 1989, Table 2, p.66	43	Tamarisk	P21	822.00	Mercer, 1983	Table 1
Tamarisk	FFG 733	781.20	Richey, 1989, Table 2, p.66	44	Tamarisk	P3	862.50	Mercer, 1983	Table 1
Tamarisk	FFG [_] 734	737.00	Richey, 1989, Table 2, p.66	45	Tamarisk	P4	840.60	Mercer, 1983	Table 1
Tamarisk	FFG_735	679.10	Richey, 1989, Table 2, p.66	46	Tamarisk	P5	841.30	Mercer, 1983	Table 1
Tamarisk	FFG ⁻ 736	732.40	Richey, 1989, Table 2, p.66	47	Tamarisk	P6	887.30	Mercer, 1983	Table 1
Tamarisk	FFG 737	678.80	Richey, 1989. Table 2, p.66	48	Tamarisk	P7	894.30	Mercer, 1983	Table 1
Tamarisk	FFG_738	692.50 [,]	Richey, 1989, Table 2, p.66	49	Tamarisk	P8	873.20	Mercer, 1983	Table 1
Tamarisk	FFG_739	729.80	Richey, 1989, Table 2, p.66	50	Tamarisk	P9	843.70	Mercer, 1983	Table 1
Tamarisk	FFG_740	730.60	Richey, 1989, Table 2, p.66	51	Tamarisk	SaltShft	848.11	Bechtel, Inc.,	1986, Appendix D
Tamarisk	FFG_741	697.70	Richey, 1989, Table 2, p.66	52	Tamarisk	WIPP11	815.60	Mercer, 1983	Table 1
Tamarisk	FFG 742	748.60	Richey, 1989, Table 2, p.67	53	Tamarisk	WIPP12	840.40	Mercer, 1983	Table 1
Tamarisk	FFG 743	735.20	Richey, 1989, Table 2, p.67	54	Tamarisk	WIPP13	860.10	Mercer, 1983	Table 1
Tamarisk	FFG_744	717.80	Richey, 1989, Table 2, p.67	55	Tamarisk	WIPP18	841.30	Mercer, 1983	Table 1
Tamarisk	FFG_745	705.90	Richey, 1989, Table 2, p.67	56	Tamarisk	WIPP19	841.60	Mercer, 1983	Table 1
Tamarisk	FFG_746	693.00	Richey, 1989, Table 2, p.67	57	Tamarisk	WIPP21	846.10	Mercer, 1983	Table 1
Tamarisk	H1	856.20	Mercer, 1983, Table 1	58	Tamarisk	WIPP22	844.90	Mercer, 1983	Table 1
Tamarisk	H10C	733.70	Mercer, 1983, Table 1	59	Tamarisk	WIPP25	879.30	Mercer, 1983	
Tamarisk	H2C	864.10	Mercer, 1983, Table 1	60	Tamarisk	WIPP26	930.50	Mercer, 1983	
Tamarisk	HЗ	855.30	Mercer, 1983, Table 1	61	Tamarisk	WIPP27	909.20	Mercer, 1983	
Tamarisk	H4C	893.40	Mercer, 1983, Table 1	62	Tamarisk	WIPP28	925.70	Mercer, 1983	
Tamarisk	H5C	821.40	Mercer, 1983, Table 1	63	Tamarisk	WIPP29	907.40	Mercer, 1983	Table 1
Tamarisk	H6C	863.80	Mercer, 1983, Table 1	64	Tamarisk	WIPP30	881.20	Mercer, 1983.	
Tamarisk	H7C	921.40	Mercer, 1983, Table 1	65	Tamarisk	WIPP32	910.40	Mercer, 1983	
Tamarisk	H8C	897.70	Mercer, 1983, Table 1	66	Tamarisk	WIPP33	870.30	Mercer, 1983	
Tamarisk	H9C	869.20	Mercer, 1983, Table 1	67	Tamarisk	WIPP34	820.50	Mercer, 1983.	
Tamarisk	P1	883.00	Mercer, 1983, Table 1	68	Tamarisk	WastShft	849.83		1986, Appendix E
Tamarisk	P10	831.50	Mercer, 1983, Table 1	69	Tamerisk	DOE1	831.60		p 1982, Table 2
Tamarisk	P11	817.10	Mercer, 1983, Table 1	70	Tamerisk	DOE2	821.70		1987, Table 3-2
Tamarisk	P12	862.90	Mercer, 1983, Table 1	71	Tamerisk	ERDA9	849.10		iS, 1982b, Table 2
Tamarisk	P13	862.90	Mercer, 1983, Table 1	72	Tamerisk	REF	849.10		,1991, Figure 2.2-1
Tamarisk	P14	878.70	Mercer, 1983, Table 1	73	Tamerisk	WIPP11	815.70		S, 1982a, Table 2
Tamarisk	P15	911.10	Mercer, 1983, Table 1	74	Tamerisk	WIPP12	840.10		Consulting, 1983, Table 2
Tamarisk	P16	889.10	Mercer, 1983, Table 1	75	U_Member	AirShft	782.57		n, 1990, Figure 22
Tamarisk	P17	875.70	Mercer, 1983, Table 1	76	U Member	DOE1	761.00	TME 3159, Se	p 1982, Table 2

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elev	ation	Source
U Member	DOE2	749.00	Mercer et al., 1987, Table 3-2	39	Unnamed	FFG 027	578.50	Richey, 1989	, Table 2, p.22
UMember	ERDA9	779.70	SNL and USGS, 1982b, Table 2	40	Unnamed	FFG_028	572.50	Richey, 1989	, Table 2, p.22
UMember	ExhtShft	779.82	Bechtel, Inc., 1986, Appendix F	41	Unnamed	FFG_029	558.10	Richey, 1989	, Table 2, p.22
U_Member	REF	779.70	Rechard et al., 1991, Figure 2.2-1	42	Unnamed	FFG_030	557.20	Richey, 1989	, Table 2, p.22
U_Member	SaltShft	779.83	Bechtel, Inc., 1986, Appendix D	43	Unnamed	FFG_031	547.40	Richey, 1989	, Table 2, p.22
U_Member	WIPP11	754.40	SNL and USGS, 1982a, Table 2	44	Unnamed	FFG_032	546.10	Richey, 1989	, Table 2, p.22
U_Member	WIPP12	767.40	D'Appolonia Consulting, 1983, Table 2	45	Unnamed	FFG_033	542.20	Richey, 1989	, Table 2, p.22
U_Member	WastShft	781.32	Bechtel, Inc., 1986, Appendix E	46	Unnamed	FFG_034	542.50	Richey, 1989	, Table 2, p.23
Unnamed	AEC7	840.60	Mercer, 1983, Table 1	47	Unnamed	FFG_035	530.90	Richey, 1989	, Table 2, p.23
Unnamed	AEC8	814.80	Mercer, 1983, Table 1	48	Unnamed	FFG_036	535.60	Richey, 1989	, Table 2, p.23
Unnamed	AirShft	817.19	IT Corporation, 1990, Figure 22	49	Unnamed	FFG_037	528.80	Richey, 1989	, Table 2, p.23
Unnamed	B25	817.20	Mercer, 1983, Table 1	50	Unnamed	FFG_038	517.50	Richey, 1989	, Table 2, p.23
Unnamed	DOE1	799.40	TME 3159, Sep 1982, Table 2	51	Unnamed	FFG_039	725.50	Richey, 1989	, Table 2, p.23
Unnamed	DOE2	784.10	Mercer et al., 1987, Table 3-2	52	Unnamed	FFG_040	645.30	Richey, 1989	Table 2, p.23
Unnamed	ERDA10	873.90	Mercer, 1983, Table 1	53	Unnamed	FFG_041	726.40	Richey, 1989	, Table 2, p.23
Unnamed	ERDA6	855.00	Mercer, 1983, Table 1	54	Unnamed	FFG_042	730.00	Richey, 1989.	, Table 2, p.23
Unnamed	ERDA9	820.50	Mercer, 1983, Table 1	55	Unnamed	FFG_043	728.70	Richey, 1989	, Tabie 2, p.23
Unnamed	ERDA9	816.40	SNL and USGS, 1982b, Table 2	56	Unnamed	FFG_044	680.90	Richey, 1989,	, Table 2, p.23
Unnamed	ExhtShft	814.75	Bechtel, Inc., 1986, Appendix F	57	Unnamed	FFG_047	556.00		, Table 2, p.23
Unnamed	FFG_002	618.10	Richey, 1989, Table 2, p.21	58	Unnamed	FFG_048	573.30	Richey, 1989,	, Table 2, p.23
Unnamed	FFG_004	659.90	Richey, 1989, Table 2, p.21	59	Unnamed	FFG_049	559.60	Richey, 1989.	, Table 2, p.23
Unnamed	FFG_005	622.10	Richey, 1989, Table 2, p.21	60	Unnamed	FFG_050	574.90	Richey, 1989,	Table 2, p.24
Unnamed	FFG_006	608.10	Richey, 1989, Table 2, p.21	61	Unnamed	FFG_051	566.30	Richey, 1989,	Table 2, p.24
Unnamed	FFG_007	593.70	Richey, 1989, Table 2, p.21	62	Unnamed	FFG_052	589.80	Richey, 1989,	Table 2, p.24
Unnamed	FFG_009	596.50	Richey, 1989, Table 2, p.21	63	Unnamed	FFG_053	555.60	Richey, 1989,	Table 2, p.24
Unnamed	FFG_011	603.50	Richey, 1989, Table 2, p.21	64	Unnamed	FFG_054	556.60	Richey, 1989,	Table 2, p.24
Unnamed	FFG_012	606.20	Richey, 1989, Table 2, p.21	65	Unnamed	FFG_055	557.80		Table 2, p.24
Unnamed	FFG_013	634.30	Richey, 1989, Table 2, p.21	66	Unnamed	FFG_056	556.90	•	Table 2, p.24
Unnamed	FFG_014	658.90	Richey, 1989, Table 2, p.21	67	Unnamed	FFG_057	558.10	-	Table 2, p.24
Unnamed	FFG_016	579.40	Richey, 1989, Table 2, p.21	68	Unnamed	FFG_058	560.80	•	Table 2, p.24
Unnamed	FFG_017	587.30	Richey, 1989, Table 2, p.22	69	Unnamed	FFG_059	564.80	-	Table 2, p.24
Unnamed	FFG_018	590.70	Richey, 1989, Table 2, p.22	70	Unnamed	FFG_060	563.20	•	Table 2, p.24
Unnamed	FFG_019	580.30	Richey, 1989, Table 2, p.22	71	Unnamed	FFG_061	565.10		Table 2, p.24
Unnamed	FFG_020	655.30	Richey, 1989, Table 2, p.22	72	Unnamed	FFG_062	507.20	. ,	Table 2, p.24
Unnamed	FFG_023	587.70	Richey, 1989, Table 2, p.22	73	Unnamed	FFG_063	465.80		Table 2, p.24
Unnamed	FFG_024	571.80	Richey, 1989, Table 2, p.22	74	Unnamed	FFG_064	488.90		Table 2, p.24
Unnamed	FFG_025	591.80	Richey, 1989, Table 2, p.22	75	Unnamed	FFG_065	464.50	•	Table 2, p.24
Unnamed	FFG_026	585.50	Richey, 1989, Table 2, p.22	76	Unnamed	FFG 066	429.10	Richey, 1989,	Table 2, p.24

Layer		Well ID	Elevation	Source		Layer	Well ID	Elev	ation	Source
Unnam	ed	FFG_067	464.00	Richey, 1989, Table 2, p.25	39	Unnamed	FFG 107	878.80	Richey, 198	9, Table 2, p.27
Unnam	ed	FFG_068	424.00	Richey, 1989, Table 2, p.25	40	Unnamed	FFG_108	869.60	•	9, Table 2, p.27
Unnam	ed	FFG_069	441.40	Richey, 1989, Table 2, p.25	41	Unnamed	FFG 109	856.20	•	9, Table 2, p.27
Unnam	ed	FFG_070	479.10	Richey, 1989, Table 2, p.25	42	Unnamed	FFG_110	824.50	•	9, Table 2, p.27
Unname	ed	FFG_071	748.30	Richey, 1989, Table 2, p.25	43	Unnamed	FFG_111	830.60	Richey, 198	9, Table 2, p.27
Unname	ed	FFG_072	674.20	Richey, 1989, Table 2, p.25	44	Unnamed	FFG 112	816.80	Richey, 198	9, Table 2, p.28
Unnam	ed	FFG_073	652.20	Richey, 1989, Table 2, p.25	45	Unnamed	FFG_113	830.90	•	9, Table 2, p.28
Unnam	ed	FFG_074	660.30	Richey, 1989, Table 2, p.25	46	Unnamed	FFG_114	863.20	•	9, Table 2, p.28
Unname	ed	FFG_075	712.10	Richey, 1989, Table 2, p.25	47	Unnamed	FFG 115	848.30), Table 2, p.28
Unname		FFG_076	771.50	Richey, 1989, Table 2, p.25	48	Unnamed	FFG_116	865.30	•	9, Table 2, p.28
Unname	ed	FFG_078	807.70	Richey, 1989, Table 2, p.25	49	Unnamed	FFG_117	856.50		9, Table 2, p.28
Unname	ed	FFG_079	780.90	Richey, 1989, Table 2, p.25	50	Unnamed	FFG_119	864.80	Richey, 1989), Table 2, p.28
Unname	ed	FFG_080	758.30	Richey, 1989, Table 2, p.25	51	Unnamed	FFG 120	865.10	-), Table 2, p.28
Unname	ed	FFG_081	674.90	Richey, 1989, Table 2, p.26	52	Unnamed	FFG 121	873.30	Richey, 1989), Table 2, p.28
Unname	ed	FFG_082	705.30	Richey, 1989, Table 2, p.26	53	Unnamed	FFG 122	868.70	•), Table 2, p.28
Unname	ed	FFG_083	632.00	Richey, 1989, Table 2, p.26	54	Unnamed	FFG_123	861.00	•), Table 2, p.28
Unname		FFG_084	654.70	Richey, 1989, Table 2, p.26	55	Unnamed	FFG_124	830.90), Table 2, p.28
Unname	d	FFG_085	649.00	Richey, 1989, Table 2, p.26	56	Unnamed	FFG_125	842.10), Table 2, p.28
Unname	ed	FFG_086	657.40	Richey, 1989, Table 2, p.26	57	Unnamed	FFG_126	846.60), Table 2, p.28
Unname	d	FFG_087	630.00	Richey, 1989, Table 2, p.26	58	Unnamed	FFG 127	851.60	Richey, 1989	, Table 2, p.28
Unname	d	FFG_088	622.70	Richey, 1989, Table 2, p.26	59	Unnamed	FFG ¹²⁸	877.60	•	, Table 2, p.28
Unname	d	FFG_089	606.60	Richey, 1989, Table 2, p.26	60	Unnamed	FFG 129	852.20	Richey, 1989), Table 2, p.28
Unname	d	FFG_091	643.80	Richey, 1989, Table 2, p.26	61	Unnamed	FFG_130	888.50	Richey, 1989	, Table 2, p.28
Unname	d	FFG_092	662.30	Richey, 1989, Table 2, p.26	62	Unnamed	FFG_132	890.90	Richey, 1989	, Table 2, p.29
Unname	d	FFG_093	668.10	Richey, 1989, Table 2, p.26	63	Unnamed	FFG 133	895.50		, Table 2, p.29
Unname	d	FFG_094	666.60	Richey, 1989, Table 2, p.26	64	Unnamed	FFG_134	896.80	•	, Table 2, p.29
Unname	d	FFG_095	645.20	Richey, 1989, Table 2, p.26	65	Unnamed	FFG 135	875.10	•	, Table 2, p.29
Unname	d	FFG_096	629.40	Richey, 1989, Table 2, p.26	66	Unnamed	FFG ¹ 36	876.40	•	, Table 2, p.29
Unname	d	FFG_097	608.40	Richey, 1989, Table 2, p.27	67	Unnamed	FFG_137	884.60	Richey, 1989	, Table 2, p.29
Unname	d I	FFG_098	581.80	Richey, 1989, Table 2, p.27	68	Unnamed	FFG ¹ 38	834.90		, Table 2, p.29
Unname	d I	FFG_099	574.60	Richey, 1989, Table 2, p.27	69	Unnamed	FFG 139	847.90	Richey, 1989	, Table 2, p.29
Unname	d I	FFG_100	558.70	Richey, 1989, Table 2, p.27	70	Unnamed	FFG ¹⁴⁰	785.00	•	, Table 2, p.29
Unname	d I	FFG_101	527.30	Richey, 1989, Table 2, p.27	71		FFG_141	812.50	•	, Table 2, p.29
Unname	d I	FFG_102	542.90	Richey, 1989, Table 2, p.27	72	Unnamed	FFG 142	788.30	-	, Table 2, p.29
Unname	d l	FFG_103	601.70	Richey, 1989, Table 2, p.27	73	Unnamed	FFG 143	797.30		, Table 2, p.29
Unname	d f	FFG_104	502.10	Richey, 1989, Table 2, p.27	74		FFG_144	883.70	•	, Table 2, p.29
Unname	d I	FFG_105	861.40	Richey, 1989, Table 2, p.27	75		FFG 145	887.00	•	, Table 2, p.29
Unname	d F	FFG ¹⁰⁶	894.60	Richey, 1989, Table 2, p.27	76		FFG 146	897.70	•	, Table 2, p.29

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevation	Source		Layer	Well ID	Elev	ation	Source
Unnamed	FFG_147	875.40	Richey, 1989, Table 2, p.29	39	Unnamed	FFG_194	780.60	Richey, 1989), Table 2, p.33
Unnamed	FFG_148	894.90	Richey, 1989, Table 2, p.29	40	Unnamed	FFG_195	792.80	Richey, 1989), Table 2, p.33
Unnamed	FFG_149	9O 3.10	Richey, 1989, Table 2, p.30	41	Unnamed	FFG_196	827.50	Richey, 1989), Table 2, p.33
Unnamed	FFG_152	893.10	Richey, 1989, Table 2, p.30	42	Unnamed	FFG_197	831.20	Richey, 1989	, Table 2, p.33
Unnamed	FFG_155	894.00	Richey, 1989, Table 2, p.30	43	Unnamed	FFG_198	831.80	Richey, 1989), Table 2, p.33
Unnamed	FFG_156	895.50	Richey, 1989, Table 2, p.30	44	Unnamed	FFG_199	818.70	Richey, 1989), Table 2, p.33
Unnamed	FFG_157	898.60	Richey, 1989, Table 2, p.30	45	Unnamed	FFG_200	828.10	Richey, 1989	, Table 2, p.33
Unnamed	FFG_158	918.00	Richey, 1989, Table 2, p.30	46	Unnamed	FFG_201	830.00	Richey, 1989	, Table 2, p.33
Unnamed	FFG_159	891.60	Richey, 1989, Table 2, p.30	47	Unnamed	FFG_202	763.20	Richey, 1989	, Table 2, p.33
Unnamed	FFG_160	8 8 6.10	Richey, 1989, Table 2, p.30	48	Unnamed	FFG_203	767.50	Richey, 1989	, Table 2, p.33
Unnamed	FFG_161	894.90	Richey, 1989, Table 2, p.30	49	Unnamed	FFG_204	805.30	Richey, 1989	, Table 2, p.33
Unnamed	FFG_162	884.60	Richey, 1989, Table 2, p.30	50	Unnamed	FFG_205	816.60	Richey, 1989	, Table 2, p.33
Unnamed	FFG_163	888.20	Richey, 1989, Table 2, p.30	51	Unnamed	FFG_206	828.10	Richey, 1989	, Table 2, p.33
Unnamed	FFG 164	928.50	Richey, 1989, Table 2, p.30	52	Unnamed	FFG_207	826.00	Richey, 1989	, Table 2, p.33
Unnamed	FFG_165	902.20	Richey, 1989, Table 2, p.30	53	Unnamed	FFG_208	834.50	Richey, 1989	, Table 2, p.34
Unnamed	FFG_166	891.80	Richey, 1989, Table 2, p.31	54	Unnamed	FFG_209	829.70	Richey, 1989	, Table 2, p.34
Unnamed	FFG_167	877.90	Richey, 1989, Table 2, p.31	55	Unnamed	FFG_210	818.70	Richey, 1989	, Table 2, p.34
Unnamed	FFG_168	898.90	Richey, 1989, Table 2, p.31	56	Unnamed	FFG_212	809.00	Richey, 1989	, Table 2, p.34
Unnamed	FFG_169	909.20	Richey, 1989, Table 2, p.31	57	Unnamed	FFG_213	828.80	Richey, 1989	, Table 2, p.34
Unnamed	FFG_170	893.00	Richey, 1989, Table 2, p.31	58	Unnamed	FFG_214	808.60	Richey, 1989	, Table 2, p.34
Unnamed	FFG_171	909.30	Richey, 1989, Table 2, p.31	59	Unnamed	FFG_215	784.90	Richey, 1989	, Table 2, p.34
Unnamed	FFG_172	906.10	Richey. 1989, Table 2, p.31	60	Unnamed	FFG_216	682.70	Richey, 1989	, Table 2, p.34
Unnamed	FFG_173	867.80	Richey, 1989, Table 2, p.31	61	Unnamed	FFG_217	805.60	Richey, 1989	, Table 2, p.34
Unnamed	FFG_177	880.00	Richey, 1989, Table 2, p.31	62	Unnamed	FFG_218	794.30	Richey, 1989	, Table 2, p.34
Unnamed	FFG_178	7 1 1.40	Richey, 1989, Table 2, p.31	63	Unnamed	FFG_219	840.30	Richey, 1989	, Table 2, p.34
Unnamed	FFG_179	875.10	Richey. 1989, Table 2, p.31	64	Unnamed	FFG_220	789.50	Richey, 1989	, Table 2, p.34
Unnamed	FFG_180	874.70	Richey, 1989, Table 2, p.31	65	Unnamed	FFG_221	744.30	Richey, 1989	, Table 2, p.34
Unnamed	FFG_181	922.90	Richey, 1989, Table 2, p.32	66	Unnamed	FFG_222	705.00	Richey, 1989	, Table 2, p.34
Unnamed	FFG_182	804.30	Richey, 1989, Table 2, p.32	67	Unnamed	FFG_224	590.10	Richey, 1989	, Table 2, p.35
Unnamed	FFG_183	893.40	Richey, 1989, Table 2, p.32	68	Unnamed	FFG_225	598.00	Richey, 1989	Table 2, p.35
Unnamed	FFG_184	883.60	Richey, 1989, Table 2, p.32	69	Unnamed	FFG_226	594.80	Richey, 1989	Table 2, p.35
Unnamed	FFG_185	89 1.80	Richey, 1989, Table 2, p.32	70	Unnamed	FFG_228	580.70	Richey, 1989	, Table 2, p.35
Unnamed	FFG_186	819.30	Richey, 1989, Table 2, p.32	71	Unnamed	FFG_229	607.10	Richey, 1989	Table 2, p.35
Unnamed	FFG_188	837.60	Richey, 1989, Table 2, p.32	72	Unnamed	FFG_230	595.00	Richey, 1989	Table 2, p.35
Unnamed	FFG_189	859.60	Richey, 1989, Table 2, p.32	73	Unnamed	FFG_231	613.80	Richey, 1989	Table 2, p.35
Unnamed	FFG_190	835.10	Richey, 1989, Table 2, p.32	74	Unnamed	FFG_232	625.80	Richey, 1989,	Table 2, p.35
Unnamed	FFG_191	839.40	Richey, 1989, Table 2, p.32	75	Unnamed	FFG_233	617.90	Richey, 1989,	Table 2, p.35
Unnamed	FFG_192	764.40	Richey, 1989, Table 2, p.32	76	Unnamed	FFG ²³⁴	653.50	Richey, 1989,	Table 2, p.35

.

Layer	Well ID	Elevation	Source		Layer	Well ID	Elev	ation	Source
Unnamed	FFG_235	628.50	Richey, 1989, Table 2, p.35	39	Unnamed	FFG_273	745.30	Richey, 198	9, Table 2, p.38
Unnamed	FFG 236	677,20	Richey, 1989, Table 2, p.35	40	Unnamed	FFG 274	785.80	Richey, 198	9, Table 2, p.38
Unnamed	FFG_237	634.40	Richey, 1989, Table 2, p.35	41	Unnamed	FFG 275	794.60	Richey, 198	9, Table 2, p.38
Unnamed	FFG_238	621.50	Richey, 1989, Table 2, p.36	42	Unnamed	FFG 276	795.80	Richey, 198	9, Table 2, p.38
Unnamed	FFG_239	613.50	Richey, 1989, Table 2, p.36	43	Unnamed	FFG_277	789.10	Richey, 198	9, Table 2, p.38
Unnamed	FFG_240	602.60	Richey, 1989, Table 2, p.36	44	Unnamed	FFG 278	765.40	Richey, 198	9, Table 2, p.38
Unnamed	FFG_241	598.10	Richey, 1989, Table 2, p.36	45	Unnamed	FFG_279	767.70	Richey, 198	9, Table 2, p.38
Unnamed	FFG_242	724.20	Richey, 1989, Table 2, p.36	46	Unnamed	FFG_280	780.00	Richey, 198	9, Table 2, p.38
Unnamed	FFG_243	659.30	Richey, 1989, Table 2, p.36	47	Unnamed	FFG_281	754.40	Richey, 198	9, Table 2, p.38
Unnamed	FFG_244	715.20	Richey, 1989, Table 2, p.36	48	Unnamed	FFG_283	489.20	Richey, 198	9, Table 2, p.39
Unnamed	FFG_245	503.50	Richey, 1989, Table 2, p.36	49	Unnamed	FFG_284	641.30	Richey, 198	9, Table 2, p.39
Unnamed	FFG_246	508.10	Richey, 1989, Table 2, p.36	50	Unnamed	FFG_285	660.50	Richey, 198	9, Table 2, p.39
Unnamed	FFG_247	493.70	Richey, 1989, Table 2, p.36	51	Unnamed	FFG_286	766.20	Richey, 198	9, Table 2, p.39
Unnamed	FFG_248	498.30	Richey, 1989, Table 2, p.36	52	Unnamed	FFG 287	733.30	Richey, 198	9, Table 2, p.39
Unnamed	FFG_249	498.30	Richey, 1989, Table 2, p.36	53	Unnamed	FFG_288	662.60	Richey, 198	9, Table 2, p.39
Unnamed	FFG_250	580.50	Richey, 1989, Table 2, p.36	54	Unnamed	FFG_289	673.90	Richey, 198	9, Table 2, p.39
Unnamed	FFG_251	470.00	Richey, 1989, Table 2, p.36	55	Unnamed	FFG_290	760.80	Richey, 198	9, Table 2, p.39
Unnamed	FFG_252	612.60	Richey, 1989, Table 2, p.36	56	Unnamed	FFG_291	660.80	Richey, 198	9, Table 2, p.39
Unnamed	FFG_253	561.50	Richey, 1989, Table 2, p.36	57	Unnamed	FFG_292	717.80	Richey, 198	9, Table 2, p.39
Unnamed	FFG_254	554.70	Richey, 1989, Table 2, p.36	58	Unnamed	FFG_293	710.50	Richey, 198	9, Table 2, p.39
Unnamed	FFG_255	506.30	Richey, 1989, Table 2, p.37	59	Unnamed	FFG_294	497.50	Richey, 198	9, Table 2, p.39
Unnamed	FFG_256	470.90	Richey, 1989, Table 2, p.37	60	Unnamed	FFG_295	480.00	Richey, 198	9, Table 2, p.39
Unnamed	FFG_257	517.20	Richey, 1989, Table 2, p.37	61	Unnamed	FFG_297	455.40	Richey, 198	9, Table 2, p.39
Unnamed	FFG_258	536.40	Richey, 1989, Table 2, p.37	62	Unnamed	FFG_298	520.40	Richey, 198	9, Table 2, p.40
Unnamed	FFG_259	494.90	Richey, 1989, Table 2, p.37	63	Unnamed	FFG_299	489.80	Richey, 198	9, Table 2, p.40
Unnamed	FFG_260	548.90	Richey. 1989, Table 2, p.37	64	Unnamed	FFG_300	473.00	Richey, 198	9, Table 2, p.40
Unnamed	FFG_261	537.30	Richey, 1989, Table 2, p.37	65	Unnamed	FFG_301	430.40	Richey, 198	9, Table 2, p.40
Unnamed	FFG_262	477.00	Richey, 1989, Table 2, p.37	66	Unnamed	FFG_302	436.80	Richey, 198	9, Table 2, p.40
Unnamed	FFG_263	448.50	Richey, 1989, Table 2, p.37	67	Unnamed	FFG_303	442.00	Richey, 198	9, Table 2, p.40
Unnamed	FFG_264	696.20	Richey, 1989, Table 2, p.37	68	Unnamed	FFG_304	438.90	Richey, 198	9, Table 2, p.40
Unnamed	FFG_265	677.30	Richey, 1989, Table 2, p.37	69	Unnamed	FFG_305	434.60	Richey, 198	9, Table 2, p.40
Unnamed	FFG_266	656.80	Richey, 1989, Table 2, p.37	70	Unnamed	FFG_306	405.30	Richey, 198	9, Table 2, p.40
Unnamed	FFG_267	632.70	Richey, 1989, Table 2, p.37	71	Unnamed	FFG_307	424.30	Richey, 198	9, Table 2, p.40
Unnamed	FFG_268	606.30	Richey, 1989, Table 2, p.37	72	Unnamed	FFG_308	367.80	Richey, 1989	9, Table 2, p.40
Unnamed	FFG_269	617.60	Richey, 1989, Table 2, p.38	73	Unnamed	FFG_309	427.90	Richey, 1989	9, Table 2, p.40
Unnamed	FFG_270	721.10	Richey, 1989, Table 2, p.38	74	Unnamed	FFG_310	469.10	Richey, 1989	9, Table 2, p.40
Unnamed	FFG_271	767.80	Richey, 1989, Table 2, p.38	75	Unnamed	FFG_311	420.30	Richey, 1989	9, Table 2, p.40
Unnamed	FFG 272	743.90	Richey, 1989, Table 2, p.38	76	Unnamed	FFG_312	424.00	Richey, 1989	9, Table 2, p.40

 Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

Layer	Well ID	Elevatio n	Source		Layer	Well ID	Elev	ation	Source
Unnamed	FFG_313	862.00	Richey, 1989, Table 2, p.41	39	Unnamed	FFG 354	756.00	Richey, 1989	, Table 2, p.43
Unnamed	FFG_314	781.60	Richey, 1989, Table 2, p.41	40	Unnamed	FFG_361	948.50	Richey, 1989	, Table 2, p.44
Unnamed	FFG_315	694.20	Richey, 1989, Table 2, p.41	41	Unnamed	FFG ³⁶²	911.00		, Table 2, p.44
Unnamed	FFG_316	670.20	Richey, 1989, Table 2, p.41	42	Unnamed	FFG_363	937.90	Richey, 1989	, Table 2, p.44
Unnamed	FFG_317	725.10	Richey, 1989, Table 2, p.41	43	Unnamed	FFG_364	909.80	Richey, 1989	, Table 2, p.44
Unnamed	FFG_318	702.60	Richey, 1989, Table 2, p.41	44	Unnamed	FFG_366	904.00	Richey, 1989	, Table 2, p.44
Unnamed	FFG_319	696.40	Richey, 1989, Table 2, p.41	45	Unnamed	FFG_367	922.60	Richey, 1989	, Table 2, p.44
Unnamed	FFG_320	662.00	Richey, 1989, Table 2, p.41	46	Unnamed	FFG_370	962.60	Richey, 1989	, Table 2, p.44
Unnamed	FFG_321	661.70	Richey, 1989, Table 2, p.41	47	Unnamed	FFG_371	958.60	Richey, 1989	, Table 2, p.44
Unnamed	FFG_322	662.20	Richey, 1989, Table 2, p.41	48	Unnamed	FFG_372	941.50	Richey, 1989	, Table 2, p.45
Unnamed	FFG_323	667.90	Richey, 1989, Table 2, p.41	49	Unnamed	FFG_373	902.00	Richey, 1989	, Table 2, p.45
Unnamed	FFG_324	692.20	Richey, 1989, Table 2, p.41	50	Unnamed	FFG_374	902.20	Richey, 1989,	, Table 2, p.45
Unnamed	FFG_325	753.20	Richey, 1989, Table 2, p.41	51	Unnamed	FFG_376	939.70	Richey, 1989,	, Table 2, p.45
Unnamed	FFG_326	698.00	Richey, 1989, Table 2, p.41	52	Unnamed	FFG_381	908.60	Richey, 1989,	Table 2, p.45
Unnamed	FFG_327	681.90	Richey, 1989, Table 2, p.42	53	Unnamed	FFG_383	902.20	•	Table 2, p.45
Unnamed	FFG_328	664.70	Richey, 1989, Table 2, p.42	54	Unnamed	FFG_384	912.30	Richey, 1989,	Table 2, p.45
Unnamed	FFG_329	661.40	Richey, 1989, Table 2, p.42	55	Unnamed	FFG_385	906.80	•	Table 2, p.45
Unnamed	FFG_330	661.00	Richey, 1989, Table 2, p.42	56	Unnamed	FFG_387	901.60	Richey, 1989,	Table 2, p.45
Unnamed	FFG_331	646.80	Richey, 1989, Table 2, p.42	57	Unnamed	FFG_388	893.70	•	Table 2, p.46
Unnamed	FFG_332	632.80	Richey, 1989, Table 2, p.42	58	Unnamed	FFG_389	917.50	Richey, 1989,	Table 2, p.46
Unnamed	FFG_333	643.00	Richey, 1989, Table 2, p.42	59	Unnamed	FFG_390	913.50		Table 2, p.46
Unnamed	FFG_334	637.00	Richey, 1989, Table 2, p.42	60	Unnamed	FFG_391	913.10	Richey, 1989,	Table 2, p.46
Unnamed	FFG_335	655.00	Richey, 1989, Table 2, p.42	61	Unnamed	FFG_392	904.40	Richey, 1989,	Table 2, p.46
Unnamed	FFG_336	650.40	Richey, 1989, Table 2, p.42	62	Unnamed	FFG_393	781.00	Richey, 1989,	Table 2, p.46
Unnamed	FFG_337	634.30	Richey, 1989, Table 2, p.42	63	Unnamed	FFG_394	877.20	•	Table 2, p.46
Unnamed	FFG_338	639.00	Richey, 1989, Table 2, p.42	64	Unnamed	FFG_395	867.50	Richey, 1989,	Table 2, p.46
Unnamed	FFG_339	604.10	Richey, 1989, Table 2, p.42	65	Unnamed	FFG_396	847.10	•	Table 2, p.46
Unnamed	FFG_340	609.30	Richey, 1989, Table 2, p.42	66	Unnamed	FFG_398	767.20		Table 2, p.46
Unnamed	FFG_342	676.30	Richey, 1989, Table 2, p.43	67	Unnamed	FFG_399	780.60	Richey, 1989,	Table 2, p.46
Unnamed	FFG_344	650.90	Richey, 1989, Table 2, p.43	68	Unnamed	FFG_401	833.60	•	Table 2, p.46
Unnamed	FFG_345	671.30	Richey, 1989, Table 2, p.43	69	Unnamed	FFG_402	936.70		Table 2, p.46
Unnamed	FFG_347	692.80	Richey, 1989, Table 2, p.43	70	Unnamed	FFG_403	903.30	•	Table 2, p.47
Unnamed	FFG_348	733.00	Richey, 1989, Table 2, p.43	71	Unnamed	FFG_404	867.20	Richey, 1989,	
Unnamed	FFG_349	709.30	Richey, 1989, Table 2, p.43	72	Unnamed	FFG_407	898.90	• • • •	Table 2, p.47
Unnamed	FFG_350	739.70	Richey, 1989, Table 2, p.43	73	Unnamed	FFG_408	901.00	•	Table 2, p.47
Unnamed	FFG_351	621.20	Richey, 1989, Table 2, p.43	74	Unnamed	FFG_409	932.40	Richey, 1989,	
Unnamed Unnamed	FFG_352 FFG_353	621.80 644.10	Richey, 1989, Table 2, p.43 Richey, 1989, Table 2, p.43	75 76	Unnamed Unnamed	FFG_411 FFG_413	873.90 906.20	Richey, 1989, Richey, 1989,	· •

Layer	Well ID	Elevation	Source		Layer	Well ID	Elev	ration	Source
Unnamed	FFG 418	923.00	Richey, 1989, Table 2, p.48	39	Unnamed	FFG_486	708.40	Bichey 1989	Table 2, p.52
Unnamed	FFG_419	936.70	Richey, 1989, Table 2, p.48	40	Unnamed	FFG 487	706.90		Table 2, p.52
Unnamed	FFG_420	927.80	Richey, 1989, Table 2, p.48	41	Unnamed	FFG_488	692.50		Table 2, p.52
Unnamed	FFG_421	913.80	Richey, 1989, Table 2, p.48	42	Unnamed	FFG_489	708.80	•	Table 2, p.52
Unnamed	FFG_422	915.60	Richey, 1989, Table 2, p.48	43	Unnamed	FFG 490	801.30	-	Table 2, p.52
Unnamed	FFG_426	919.30	Richey, 1989, Table 2, p.48	44	Unnamed	FFG 491	793.10	•	Table 2, p.52
Unnamed	FFG_432	876.90	Richey, 1989, Table 2, p.48	45	Unnamed	FFG 492	757.10	•	Table 2, p.52
Unnamed	FFG_433	892.40	Richey, 1989, Table 2, p.48	46	Unnamed	FFG 493	743.20		Table 2, p.53
Unnamed	FFG_438	829.80	Richey, 1989, Table 2, p.49	47	Unnamed	FFG 494	747.00		Table 2, p.53
Unnamed	FFG_445	911.60	Richey, 1989, Table 2, p.49	48	Unnamed	FFG 495	743.10	-	Table 2, p.53
Unnamed	FFG_453	772.90	Richey, 1989, Table 2, p.50	49	Unnamed	FFG 496	604.20	Richey, 1989,	Table 2, p.53
Unnamed	FFG_455	761.40	Richey, 1989, Table 2, p.50	50	Unnamed	FFG_497	642.20	Richey, 1989,	Table 2, p.53
Unnamed	FFG_456	769.90	Richey, 1989, Table 2, p.50	51	Unnamed	FFG_498	637.60	Richey, 1989,	Table 2, p.53
Unnamed	FFG_457	822.60	Richey, 1989, Table 2, p.50	52	Unnamed	FFG_499	603.20	Richey, 1989,	Table 2, p.53
Unnamed	FFG_458	825.10	Richey, 1989, Table 2, p.50	53	Unnamed	FFG 500	635.20	Richey, 1989,	Table 2, p.53
Unnamed	FFG_459	752.30	Richey, 1989, Table 2, p.50	54	Unnamed	FFG_501	665.60	Richey, 1989,	Table 2, p.53
Unnamed	FFG_462	820.70	Richey, 1989, Table 2, p.50	55	Unnamed	FFG_502	630.90	Richey, 1989,	Table 2, p.53
Unnamed	FFG_463	843.70	Richey, 1989, Table 2, p.51	56	Unnamed	FFG_503	616.30	Richey, 1989,	Table 2, p.53
Unnamed	FFG_464	833.60	Richey, 1989, Table 2, p.51	57	Unnamed	FFG_504	667.60	Richey, 1989,	Table 2, p.53
Unnamed	FFG_465	835.10	Richey, 1989, Table 2, p.51	58	Unnamed	FFG_505	696.20	Richey, 1989,	Table 2, p.53
Unnamed	FFG_467	423.00	Richey, 1989, Table 2, p.51	59	Unnamed	FFG_506	690.60	Richey, 1989,	Table 2, p.53
Unnamed	FFG_468	373.10	Richey, 1989, Table 2, p.51	60	Unnamed	FFG_507	599.40	Richey, 1989,	Table 2, p.53
Unnamed	FFG_470	402.60	Richey, 1989, Table 2, p.51	61	Unnamed	FFG_508	680.70	Richey, 1989,	Table 2, p.53
Unnamed	FFG_471	420.60	Richey, 1989, Table 2, p.51	62	Unnamed	FFG_509	662.30	Richey, 1989,	Table 2, p.54
Unnamed	FFG_472	495.60	Richey, 1989, Table 2, p.51	63	Unnamed	FFG_510	658.80	Richey, 1989,	Table 2, p.54
Unnamed	FFG_473	383.70	Richey, 1989, Table 2, p.51	64	Unnamed	FFG_511	619.40	Richey, 1989,	Table 2, p.54
Unnamed	FFG_474	671.70	Richey, 1989, Table 2, p.51	65	Unnamed	FFG_512	634.60	Richey, 1989,	Table 2, p.54
Unnamed	FFG_475	677.70	Richey, 1989, Table 2, p.51	66	Unnamed	FFG_513	659.30	Richey, 1989,	Table 2, p.54
Unnamed	FFG_476	751.70	Richey, 1989, Table 2, p.51	67	Unnamed	FFG_514	637.00	Richey, 1989,	Table 2, p.54
Unnamed	FFG_477	718.80	Richey, 1989, Table 2, p.51	68	Unnamed	FFG_515	610.80	Richey, 1989,	Table 2, p.54
Unnamed	FFG_478	694.00	Richey, 1989, Table 2, p.52	69	Unnamed	FFG_516	601.60	Richey, 1989,	Table 2, p.54
Unnamed	FFG_479	698.90	Richey, 1989, Table 2, p.52	70	Unnamed	FFG_517	750.70	Richey, 1989,	Table 2, p.54
Unnamed	FFG_480	681.30	Richey, 1989, Table 2, p.52	71	Unnamed	FFG_518	735.80	Richey, 1989,	Table 2, p.54
Unnamed	FFG_481	674.50	Richey, 1989, Table 2, p.52	72	Unnamed	FFG_519	696.50	Richey, 1989,	Table 2, p.54
Unnamed	FFG_482	703.80	Richey, 1989, Table 2, p.52	73	Unnamed	FFG_520	585.40	Richey, 1989,	Table 2, p.54
Unnamed	FFG_483	732.70	Richey, 1989, Table 2, p.52	74	Unnamed	FFG_521	628.20	Richey, 1989,	Table 2, p.54
Unnamed	FFG_484	720.70	Richey, 1989, Table 2, p.52	75	Unnamed	FFG_522	427.50	Richey, 1989,	Table 2, p.54
Unnamed	FFG_485	723.00	Richey, 1989, Table 2, p.52	76	Unnamed	FFG_523	443.20	Richey, 1989,	Table 2, p.54

Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

_	Layer	Well ID	Elevation	Source		Layer	Well ID	Elev	ation	Source
U	Innamed	FFG_524	607.40	Richey, 1989, Table 2, p.55	39	Unnamed	FFG_640	586.60	Richey, 198	9, Table 2, p.60
U	Innamed	FFG_525	436.60	Richey, 1989, Table 2, p.55	40	Unnamed	FFG_643	637.10	Richey, 198	9, Table 2, p.60
U	Innamed	FFG_526	943.10	Richey, 1989, Table 2, p.55	41	Unnamed	FFG_644	670.50	Richey, 198	9, Table 2, p.60
U	Innamed	FFG_527	888.10	Richey, 1989, Table 2, p.55	42	Unnamed	FFG_648	500.50	Richey, 198	9, Table 2, p.60
U	Innamed	FFG_528	891.50	Richey, 1989, Table 2, p.55	43	Unnamed	FFG_652	815.90	Richey, 198	9, Table 2, p.60
U	Innamed	FFG_530	957.70	Richey, 1989, Table 2, p.55	44	Unnamed	FFG_653	815.70	Richey, 198	9, Table 2, p.61
U	Innamed	FFG_531	888.80	Richey, 1989, Table 2, p.55	45	Unnamed	FFG_654	839.10	Richey, 198	9, Table 2, p.61
U	Innamed	FFG_532	873.00	Richey, 1989, Table 2, p.55	46	Unnamed	FFG_655	840.30	Richey, 198	9, Table 2, p.61
U	Innamed	FFG_534	883.30	Richey, 1989, Table 2, p.55	47	Unnamed	FFG_656	838.50	Richey, 198	9, Table 2, p.61
U	Innamed	FFG_535	875.70	Richey, 1989, Table 2, p.55	48	Unnamed	FFG_657	856.20	Richey, 198	9, Table 2, p.61
U	Innamed	FFG_536	884.50	Richey, 1989, Table 2, p.55	49	Unnamed	FFG_658	842.70	Richey, 198	9, Table 2, p.61
U	Innamed	FFG_537	872.60	Richey, 1989, Table 2, p.55	50	Unnamed	FFG_659	848.60	Richey, 198	9, Table 2, p.61
U	Innamed	FFG_543	926.70	Richey, 1989, Table 2, p.56	51	Unnamed	FFG_660	866.40	Richey, 198	9, Table 2, p.61
U	Innamed	FFG_548	877.20	Richey, 1989, Table 2, p.56	52	Unnamed	FFG_662	837.30	Richey, 198	9, Table 2, p.61
U	Innamed	FFG_552	722.00	Richey, 1989, Table 2, p.56	53	Unnamed	FFG_664	830.90	Richey, 198	9, Table 2, p.61
U	Innamed	FFG_562	614.50	Richey, 1989, Table 2, p.57	54	Unnamed	FFG_666	883.90	Richey, 198	9, Table 2, p.62
U	Innamed	FFG_563	528.20	Richey, 1989, Table 2, p.57	55	Unnamed	FFG_667	869.30	Richey, 198	9, Table 2, p.62
U	Innamed	FFG_564	663.00	Richey, 1989, Table 2, p.57	56	Unnamed	FFG_668	919.40	Richey, 198	9, Table 2, p.62
U	Innamed	FFG_568	625.80	Richey, 1989, Table 2, p.57	57	Unnamed	FFG_669	905.80	Richey, 198	9, Table 2, p.62
U	Innamed	FFG_569	624.20	Richey, 1989, Table 2, p.57	58	Unnamed	FFG_670	889.10	Richey, 198	9, Table 2, p.62
U	Innamed	FFG_584	736.60	Richey, 1989, Table 2, p.58	59	Unnamed	FFG_671	891.20	Richey, 198	9, Table 2, p.62
U	Innamed	FFG_585	678.40	Richey, 1989, Table 2, p.58	60	Unnamed	FFG_672	889.80	Richey, 198	9, Table 2, p.62
U	Innamed	FFG_600	692.50	Richey, 1989, Table 2, p.58	61	Unnamed	FFG_673	887.50	Richey, 198	9, Table 2, p.62
U	nnamed	FFG_601	572.70	Richey, 1989, Table 2, p.58	62	Unnamed	FFG_674	885.50	Richey, 1989	9, Table 2, p.62
U	nnamed	FFG_602	794.30	Richey, 1989, Table 2, p.58	63	Unnamed	FFG_675	844.20	Richey, 1989	9, Table 2, p.62
U	nnamed	FFG_606	667.60	Richey. 1989, Table 2, p.58	64	Unnamed	FFG_676	854.70	Richey, 1989	9, Table 2, p.62
U	nnamed	FFG_607	671.80	Richey, 1989, Table 2, p.59	65	Unnamed	FFG_677	883.30	Richey, 1989	9, Table 2, p.62
Ur	nnamed	FFG_608	654.70	Richey, 1989, Table 2, p.59	66	Unnamed	FFG_679	883.90	Richey, 1989	9, Table 2, p.62
U	nnamed	FFG_609	646.70	Richey, 1989, Table 2, p.59	67	Unnamed	FFG_685	911.10	Richey, 1989	9, Table 2, p.63
U	nnamed	FFG_610	640.10	Richey, 1989, Table 2, p.59	68	Unnamed	FFG_689	756.80	Richey, 1989	9, Table 2, p.63
Ur	nnamed	FFG_611	635.50	Richey, 1989, Table 2, p.59	69 (Unnamed	FFG_690	760.80	Richey, 1989	9, Table 2, p.63
Ur	nnamed	FFG_612	669.70	Richey, 1989, Table 2, p.59	70	Unnamed	FFG_691	752.90	Richey, 1989	9, Table 2, p.63
Ur	nnamed	FFG_613	668.70	Richey, 1989, Table 2, p.59	71	Unnamed	FFG_692	741.60	Richey, 1989	9, Table 2, p.63
Ur	nnamed	FFG_618	679.10	Richey, 1989, Table 2, p.59	72	Unnamed	FFG_693	753.70	Richey, 1989	9, Table 2, p.63
Ur	nnamed	FFG_620	731.20	Richey, 1989, Table 2, p.59	73	Unnamed	FFG_694	743.10	Richey, 1989	9, Table 2, p.63
Ur	nnamed	FFG_621	695.00	Richey, 1989, Table 2, p.59	74	Unnamed	FFG_695	749.20	Richey, 1989	9, Table 2, p.63
Ur	nnamed	FFG_638	530.10	Richey, 1989, Table 2, p.60	75	Unnamed	FFG_696	751.60	Richey, 1989	9, Table 2, p.63
Ur	nnamed	FFG_639	498.40	Richey, 1989, Table 2, p.60	76	Unnamed	FFG 697	754.10	Richey, 1989	9, Table 2, p.64

Layer	Well ID	Elevation	Source		Layer	Well ID	Elev	ation	Source
Unnamed	FFG_698	795.30	Richey, 1989, Table 2, p.64	39	Unnamed	FFG 737	611.80	Richey, 1989,	Table 2, p.66
Unnamed	FFG_699	749.50	Richey, 1989, Table 2, p.64	40	Unnamed	FFG 738	654.40	Richey, 1989,	Table 2, p.66
Unnamed	FFG_700	744.40	Richey, 1989, Table 2, p.64	41	Unnamed	FFG_739	683.80	Richey, 1989,	Table 2, p.66
Unnamed	FFG_701	740.80	Richey, 1989, Table 2, p.64	42	Unnamed	FFG_740	653.20	Richey, 1989,	Table 2, p.66
Unnamed	FFG_702	747.00	Richey, 1989, Table 2, p.64	43	Unnamed	FFG ⁷⁴¹	651.10	Richey, 1989,	Table 2, p.66
Unnamed	FFG_703	753.80	Richey, 1989, Table 2, p.64	44	Unnamed	FFG_742	690.70	Richey, 1989,	Table 2, p.67
Unnamed	FFG_704	737.30	Richey, 1989, Table 2, p.64	45	Unnamed	FFG [_] 743	675.20	Richey, 1989,	Table 2, p.67
Unnamed	FFG_705	671.80	Richey, 1989, Table 2, p.64	46	Unnamed	FFG ⁷⁴⁴	670.80	Richey, 1989,	Table 2, p.67
Unnamed	FFG_706	694.40	Richey, 1989, Table 2, p.64	47	Unnamed	FFG ⁷⁴⁵	650.40	Richey, 1989,	Table 2, p.67
Unnamed	FFG_707	677.00	Richey, 1989, Table 2, p.64	48	Unnamed	FFG_746	637.20	Richey, 1989,	Table 2, p.67
Unnamed	FFG_708	728.80	Richey, 1989, Table 2, p.64	49	Unnamed	H1	822.60	Mercer, 1983,	Table 1
Unnamed	FFG_709	625.80	Richey, 1989, Table 2, p.64	50	Unnamed	H10C	699.80	Mercer, 1983,	Table 1
Unnamed	FFG_710	625.20	Richey, 1989, Table 2, p.64	51	Unnamed	H2C	833.00	Mercer, 1983,	Table 1
Unnamed	FFG_711	626.10	Richey, 1989, Table 2, p.65	52	Unnamed	НЗ	821.80	Mercer, 1983,	Table 1
Unnamed	FFG_712	669.50	Richey, 1989, Table 2, p.65	53	Unnamed	H4C	858.90	Mercer, 1983,	Table 1
Unnamed	FFG_713	613.70	Richey, 1989, Table 2, p.65	54	Unnamed	H5C	787.30	Mercer, 1983,	Table 1
Unnamed	FFG_714	725.10	Richey, 1989, Table 2, p.65	55	Unnamed	H6C	829.40	Mercer, 1983,	Table 1
Unnamed	FFG_715	735.10	Richey, 1989, Table 2, p.65	56	Unnamed	H7C	880.60	Mercer, 1983,	Table 1
Unnamed	FFG_716	597.30	Richey, 1989, Table 2, p.65	57	Unnamed	H8C	859.30	Mercer, 1983,	Table 1
Unnamed	FFG_717	665.20	Richey, 1989, Table 2, p.65	58	Unnamed	H9C	831.80	Mercer, 1983,	Table 1
Unnamed	FFG_718	656.10	Richey, 1989, Table 2, p.65	59	Unnamed	P1	847.40	Mercer, 1983,	Table 1
Unnamed	FFG_719	618.70	Richey, 1989, Table 2, p.65	60	Unnamed	P10	777.80	Mercer, 1983,	Table 1
Unnamed	FFG_720	614.50	Richey, 1989, Table 2, p.65	61	Unnamed	P11	782.10	Mercer, 1983,	Table 1
Unnamed	FFG_721	639.50	Richey, 1989, Table 2, p.65	62	Unnamed	P12	828.50	Mercer, 1983,	Table 1
Unnamed	FFG_723	755.10	Richey, 1989, Table 2, p.65	63	Unnamed	P13	828.50	Mercer, 1983,	Table 1
Unnamed	FFG_724	678.00	Richey, 1989, Table 2, p.65	64	Unnamed	P14	842.70	Mercer, 1983,	Table 1
Unnamed	FFG_725	646.50	Richey, 1989, Table 2, p.65	65	Unnamed	P15	876.30	Mercer, 1983,	Table 1
Unnamed	FFG_726	641.00	Richey, 1989, Table 2, p.65	66	Unnamed	P16	851.90	Mercer, 1983,	Table 1
Unnamed	FFG_727	630.70	Richey, 1989, Table 2, p.66	67	Unnamed	P17	839.10	Mercer, 1983,	Table 1
Unnamed	FFG_728	638.20	Richey, 1989, Table 2, p.66	68	Unnamed	P18	773.90	Mercer, 1983,	Table 1
Unnamed	FFG_729	641.00	Richey, 1989, Table 2, p.66	69	Unnamed	P19	776.60	Mercer, 1983,	Table 1
Unnamed	FFG_730	665.30	Richey, 1989, Table 2, p.66	70	Unnamed	P2	791.30	Mercer, 1983,	Table 1
Unnamed	FFG_731	662.80	Richey, 1989, Table 2, p.66	71	Unnamed	P20	784.60	Mercer, 1983,	Table 1
Unnamed	FFG_732	678.20	Richey, 1989, Table 2, p.66	72	Unnamed	P21	787.90	Mercer, 1983,	Table 1
Unnamed	FFG_733	741.90	Richey, 1989, Table 2, p.66	73	Unnamed	P3	828.40	Mercer, 1983,	Table 1
Unnamed	FFG_734	699.20	Richey, 1989, Table 2, p.66	74	Unnamed	P4	805.30	Mercer, 1983,	Table 1
Unnamed	FFG_735	630.30	Richey, 1989, Table 2, p.66	75	Unnamed	P5	805.90	Mercer, 1983,	Table 1
Unnamed	FFG 736	667.80	Richey, 1989, Table 2, p.66	76	Unnamed	P6	851.60	Mercer, 1983,	Table 1

 Table B.2. Elevations of Stratigraphic Layers Near WIPP (Continued)

	Layer	Well ID	Elevation	Source		Layer	Well ID	Eleva	tion	Source
	Unnamed	P7	856.50	Mercer, 1983, Table 1	39	V_Triste	SaltShft	627.89	Bechtel, In	c., 1986, Appendix D
	Unnamed	P8	838.50	Mercer, 1983, Table 1	40	V_Triste	SaltShft	628.33	Bechtel, In	c., 1986, Appendix D
	Unnamed	P9	809.30	Mercer, 1983, Table 1	41	√_Triste	WIPP11	611.20		ISGS, 1982a, Table 2
	Unnamed	REF	816.40	Rechard et al.,1991, Figure 2.2-1	42	V_Triste	WIPP11	612.70	SNL and L	ISGS, 1982a, Table 2
	Unnamed	SaltShft	813.97	Bechtel, Inc., 1986, Appendix D	43	V_Triste	WIPP12	620.80	D'Appolon	ia Consulting, 1983, Table 2
	Unnamed	WIPP11	779.90	Mercer, 1983, Table 1	44	V_Triste	WIPP12	621.70	D'Appolon	ia Consulting, 1983, Table 2
	Unnamed	WIPP11	780.00	SNL and USGS, 1982a, Table 2	45	_				
	Unnamed	WIPP12	803.90	D'Appolonia Consulting, 1983, Table 2						
	Unnamed	WIPP12	803.80	Mercer, 1983, Table 1						
	Unnamed	WIPP13	817.10	Mercer, 1983, Table 1						
	Unnamed	WIPP15	996.40	Mercer, 1983, Table 1						
	Unnamed	WIPP16	672.70	Mercer, 1983, Table 1						
	Unnamed	WIPP18	807.10	Mercer, 1983, Table 1						
	Unnamed	WIPP19	809.60	Mercer, 1983, Table 1						
	Unnamed	WIPP21	812.00	Mercer, 1983, Table 1						
I	Unnamed	WIPP22	811.30	Mercer, 1983, Table 1						
	Unnamed	WIPP25	835.40	Mercer, 1983, Table 1						
I	Unnamed	WIPP26	897.00	Mercer, 1983, Table 1						
I	Unnamed	WIPP27	871.40	Mercer, 1983, Table 1						
I	Unnamed	WIPP28	884.30	Mercer, 1983, Table 1						
I	Unnamed	WIPP29	894.60	Mercer, 1983, Table 1	ľ					
I	Unnamed	WIPP30	845.60	Mercer, 1983, Table 1						
I	Unnamed	WIPP32	894.00	Mercer, 1983, Table 1						
1	Unnamed	WIPP33	836.70	Mercer, 1983, Table 1						
I	Unnamed	WIPP34	784.30	Mercer, 1983, Table 1						
I	Unnamed	WastShft	817.02	Bechtel, Inc., 1986, Appendix E						
١	V_Triste	AirShft	622.89	IT Corporation, 1990, Figure 22						
١	V_Triste	AirShft	625.30	IT Corporation, 1990, Figure 22						
١	V_Triste	DOE1	604.50	TME 3159, Sep 1982, Table 2						
١	V_Triste	DOE1	605.70	TME 3159, Sep 1982, Table 2						
١	V Triste	DOE2	598.10	Mercer et al., 1987, Table 3-2						
١	V Triste	DOE2	600.30	Mercer et al., 1987, Table 3-2						
١	V_Triste	ERDA9	625.70	SNL and USGS, 1982b, Table 2	l					
١	V_Triste	ERDA9	627.60	SNL and USGS, 1982b, Table 2						
١	V_Triste	ExhtShft	625.11	Bechtel, Inc., 1986, Appendix F						
١	V_Triste	ExhtShft	626.66	Bechtel, Inc., 1986, Appendix F						
	V_Triste	REF	625.70	Rechard et al., 1991, Figure 2.2-1						
١	V_Triste	REF	627.60	Rechard et al., 1991, Figure 2.2-1						

REFERENCES FOR APPENDIX B

Bechtel, Inc. 1986. WIPP Design Validation Final Report. DOE/WIPP-86-010. Prepared for U.S. Department of Energy. San Francisco, CA: Bechtel National, Inc.

Gonzales, M. 1989. Compilation and Comparison of Test-Hole Location Surveys in the Vicinity of the Waste Isolation Pilot Plant Site. SAND88-1065. Albuquerque, NM: Sandia National Laboratories.

Holt, R. M. and D. W. Powers. 1990. Geologic Mapping of the Air Intake Shaft at the Waste Isolation Pilot Plant. DOE-WIPP 90-051. Carlsbad, NM: U.S. Department of Energy.

Krieg, R. D. 1984. Reference Stratigraphy and Rock Properties for the Waste Isolation Pilot Plant (WIPP) Project. SAND83-1908. Albuquerque, NM: Sandia National Laboratories.

Mercer, J. W. 1983. Geohydrology of the Proposed Waste Isolation Pilot Plant Site, Los Medaños Area, Southeastern New Mexico. U.S. Geological Survey Water Resources Investigation 83-4016.

Mercer, J. W., R. L. Beauheim, R. P. Snyder, and G. M. Fairer. 1987. Basic Data Report for Drilling and Hydrologic Testing of Drillhole DOE-2 at the Waste Isolation Pilot Plant (WIPP) Site. SAND86-0611. Albuquerque, NM: Sandia National Laboratories.

Rechard, R. P., H. J. Iuzzolino, J. S. Rath, R. D. McCurley, and D. K. Rudeen. 1989. User's Manual for CAMCON: Compliance Assessment Methodology Controller. SAND88-1496. Albuquerque, NM: Sandia National Laboratories.

Richey, S. F. 1989. Geologic and Hydrologic Data for the Rustler Formation near the Waste Isolation Pilot Plant, Southeastern New Mexico. Albuquerque, NM: U.S. Geological Survey Open-File Report 89-32.

SNL (Sandia National Laboratories) and U.S. Geological Survey. 1982a. Basic Data Report for Drillhole WIPP 11 (Waste Isolation Pilot Plant - WIPP). SAND79-0272. Albuquerque, NM: Sandia National Laboratories.

SNL (Sandia National Laboratories) and U.S. Geological Survey. 1982b. Basic Data Report for Drillhole ERDA 9 (Waste Isolation Pilot Plant - WIPP). SAND79-0270. Albuquerque, NM: Sandia National Laboratories.

SNL (Sandia National Laboratories) and D'Appolonia Consulting Engineers. 1983. Basic Data Report for Drillhole WIPP 12 (Waste Isolation Pilot Plant - WIPP). SAND82-2336. Albuquerque, NM: Sandia National Laboratories.

U.S. DOE (Department of Energy). 1982. Basic Data Report for Borehole DOE-1, Waste Isolation Pilot Plant (WIPP) Project, Southeastern New Mexico. TME 3159. Albuquerque, NM: Sandia National Laboratories.

(page date: 11-SEP-91)

(database version: V.x.x)

	NOMENCLATURE
Mathematic	cal Symbols
A	- cross-sectional area (m ²)
A _m	- amplitude scaling factor for precipitation variation
a	- minimum range of distribution
a _R	- factor for Redlich-Kwong-Soave equation of state
a ₀ ,a ₁ ,a ₂	- coefficients of empirical equations
2B	- characteristic fracture spacing or block length (m)
B_{ℓ}, B_{g}	- formation volume factor (reservoir conditions/standard conditions) for liquid or gas, respectively
b	- maximum range of distribution
b _R	- factor for Redlich-Kwong-Soave equation of state
2b _f	- fracture aperature (m)
С	- concentration (kg/m ³)
C _w	- total concentration of water in solution (e.g., brine)
$C_{\ell}(S_j)$	- ℓ th consequence model of scenario set S_j of the performance assessment methodology
Ĉ	- mass fraction (kg/kg)
C°	- solubility (kg chemical/m ³ fluid)
с	- capacitance $(\beta_b + \phi \beta_\ell)$ (Pa ⁻¹)
D _m	- molecular diffusion in porous media matrix $(D^{n} \bullet \tau) (m^{2}/s)$
D¤	- molecular diffusion in pure fluid (m^2/s)
D _L , D _T	- hydrodynamic dispersion $D_m + \alpha_L \overline{V}$ and $D_m + \alpha_T \overline{V}$, respectively (m^2/s)

Nomenclature

1	D	- hydrodynamic dispersion tensor
2 3	d	- diameter
4 5 6 7	di	- separation distance to grid point i, e.g., separation distance between interpolated point and a nearby point
7 8 9	d _s	- distance traveled by solute
10	E	- Young's modulus (Pa)
11 12	e	- weighting power for inverse-distance interpolation
13 14	f	- fanning friction factor
15 16	f_w	- waste unit factor
17 18 19	f_c, f_m, f_s	- volume fraction of combustibles, metals/glass, and sludge, respectively
19 20	f_{rchg}	- recharge factor evaluated from precipitation fluctuation
21 22 23	F(x)	- cumulative distribution function, integral of $f(x)$, probability density function of parameter x
24 25	f(x)	- distribution of x
26 27 28 29 30 31 32	g	- acceleration due to gravity = ~9.8 m/s ² or 9.80616 - 2.5928 x 10 ⁻² $\cos 2\phi_{lat}$ + 6.9 x 10 ⁻⁵ $\cos^2 2\phi_{lat}$ - 3.086 x 10 ⁻⁶ z_{sur} - 1.543 x 10 ⁻⁶ Δz , where ϕ_{lat} is the latitude, z_{sur} is the surface elevation in meters, and Δz is the depth in meters below the surface (Helmert's equation) (Weast and Astle, 1981, F-78) (9.792 m/s ² at 1039.06 m [surface] and 9.791 m/s ² at 351 m [repository level])
33 34	h	- multiplier factor
35 36	h*	- Plank's constant, $6.6262 \times 10^{-34} \text{ J} \cdot \text{s}$
37 38	K	- hydraulic conductivity (m/s)
39 40	K _d	- distribution (or partition) coefficient (m^3/kg)
41 42	K _{bulk}	- bulk modulus $(E/(3(1-2\nu)))$ (Pa)
43 44	k*	- Boltzmann's constant 1.3806 \times 10 ⁻²³ (J/K)
45 46 47	k	- permeability (m ²)

Nomenclature

1	k _{rl} ,k _{rg}	- relative liquid and gas permeability, respectively	
2	∴rℓ, rg	relative require and Eas permeasinely, respectively	
3	L _i	- release limit for radionuclide i (from 40 CFR 191 Appendix A, Table 1)
4 5	М	- molecular weight (g/mol)	
6			
7	M_{dc}, M_{dm}, M_{ds}	 average mass of combustibles, metals/glass, and sludge, respectively, pe drum (kg) 	r
8 9			
10	m _A	- atomic mass	
11 12	ՠ _b ,ՠ _c ,ՠ _t	- gas generation rate, biodegradation (mol/kg cellulose/s), corrosion	
13	_D , _c ,t	$(mol/m^2 \text{ surface area steel/s})$, and total, respectively	
14			
15678	N _R	- Reynold's number, $\frac{\rho_{\rm f} v d}{\mu}$	
18 19	it.	μ	
29	Np	- Peclet number, $\overline{V}d_{50}/\tau D^{\mu}$, where d_{50} is average particle diameter (leng	th
22		dimension)	
23	NT		
24 25	N	- molarity (mol/l)	
26	n	- number of moles	
27	-	number of grid points used for interpolation	
28 29	n _g	- number of grid points used for interpolation	
30	nR	- number of radionuclides released from repository	
31 32	nS	- number of mutually-exclusive release scenario classes	
33	110	number of mutually exclusive release social to classes	
34	nk	- number of sampling vectors from Monte Carlo (LHS) sampling	
35 36	nV	- number of model parameters	
37	15 Y		
38	P(r>R)	- probability of $r > R$	
39 40	$P(r>R S_i)$	- conditional probability of $r > R$ given scenario set S_i occurs	
41	- (
42	$P(S_j)$	- probability model of scenario set S _j occurring over 10,000 yr	
43 44	p	- pressure (Pa)	
45	r		
46	p _c	- capillary pressure (Pa)	
47 48	p _{cr}	- critical pressure (Pa)	
49	• 0		

1	0	<u>61</u>
2	Q	- flow rate
3	0	
4	$Q_{i,k}$	- predicted cumulative release for radionuclide i for run k (Ci)
5		
6	$\mathbf{q}_{\mathbf{i},\mathbf{k}}$	- predicted release at time t for radionuclide i for run k (Ci/s)
7	D	
8	Risk	- risk, $Risk = \{S_j, P(S_j), R(S_j), j = 1,, nS\}$
9	пп	notordation motion and fractions reconnectional.
10	R _m , R _f	- retardation, matrix and fracture, respectively
11	$\mathbf{D}(\mathbf{C}(\mathbf{w}))$	coloristed summed FDA normalized selected for Mante Cale south 1
20124000-00040	$R(S_j(\mathbf{x_k}))$	- calculated, summed, EPA normalized releases for Monte Carlo vector k
15		$r_{r} Q_{ik}$
17		$R(S_{j}(\mathbf{x}_{k})) = \sum_{i=1}^{n} \frac{Q_{i,k}}{L_{i}} k = 1, 2,, nK$
19 20		
21		$\left(P_{2} \bullet m^{3} \right)$
24	R*	- universal gas constant $\left[8.31441 \frac{\text{Pa} \cdot \text{m}^3}{\text{mol} \cdot \text{K}} \right]$
26		
27	r _{rank}	- correlation coefficient, actual and rank transform, respectively
28	-rank	
29	Г _{vec}	- Monte Carlo simulation (vector) ID
30	- vec	
31	r _g /ℓ	- gas (nonwetting phase)/liquid (wetting phase) ratio
32	- g/ t	Sao (non working prize), induita (working prizec) ratio
33	T_p, T_f	- average annual precipitation (m/s), present and future, respectively
34	- p, -1	
35	S _i	- scenario class j
36]	
37	S _s	- specific storage (γ c) (m ⁻¹)
38	5	
	S _b	- bulk storativity (A • $\Delta z • S_{-}$) (m ³ /Pa)
39 40 41	-0	- bulk storativity $(A \bullet \Delta z \bullet S_s) (m^3/Pa)$
42		
43	S	- standard deviation, (s ² is variance)
44		
45	S _g ,Sℓ	- saturation (ratio of gas or liquid volume to total void volume), gas
46	0	(nonwetting phase) and liquid (wetting phase), respectively (V/V_y)
47		
48	s _{gr} ,s _{ℓr}	- residual saturation, gas (nonwetting phase) and liquid (wetting phase),
49	gi' ti	respectively
50		
51	Т _К	- transmissivity (m ² /s)
52	17	
53	Т	- temperature (K)
54		
55	T _{cr}	- critical temperature (Pa)
56	Cr	

1		
2	Tr	- reduced temperature (T/T_{cr})
3		
4	t	- time (s)
5		
6	t _{1/2}	- radionuclide half life (s)
7	X 7	
8 9	V	- volume (m ³)
9 10	V _{cr}	- theoretical volume of gas assuming ideal gas behavior at critical
11	' cr	temperature and pressure of the gas
12		Components and Proceeds of Sec
13	V_d, V_s, V_w	- volume of the drum, solids, and design capacity of the repository,
14		respectively (m ³)
15		
16	V	- velocity (m/s)
17		
18	x,y,z	- variable or parameter
19 00		
20 21	x	- mean or expected value
22		
23	x ₅₀ ,x ₉₉	- value of x at 50% (0.50) quantile and 99% (0.99) quantile
24 05	Z	- gas compressibility factor
25 26	L	- gas compressionity racion
27	Δz	- thickness
28		
29	α	- parameter of probability density function
30		
31	$\alpha_{ m R}$	- factor for Redlich-Kwong-Soave equation of state
32		
33	$\alpha_{\rm L}, \ \alpha_{\rm T}$	- dispersivity, longitudinal or transverse, respectively (m)
34 25	B B. B.	- material compressibility solid, bulk [(1 - ϕ) β_s], and liquid, respectively
35 36	$\beta_{\rm s}, \ \beta_{\rm b}, \ \beta_{\ell}$	- material compressionity solid, butk $[(1 - \phi)\mu_g]$, and require, respectively (Pa ⁻¹)
37		(14)
38	Г	- strain rate (dv/dy) (s ⁻¹)
39		
40	γ	- unit weight (pg)
41		
42	3	- roughness height (m)
43		
44	ξ ₁ ,ξ ₂	 oldroyd viscosity parameter
45	0	- Pleistocene glaciation frequercy (s ⁻¹)
46 47	θ	- rieistocelle glaciation frequei cy (5 °)
47 48	8	- angular velocity of drill bit (m/s)
	U	

Nomenclature

1		
2	λ	- parameter of probability density function
З		
4	$\Lambda(t)$	- failure rate function for probability model of human intrusion
5		
6	μ_{ℓ}, μ_{g}	- viscosity, liquid or gas, respectively (Pa • s)
7		density solid bulls and fluid respectively (1/2/m3)
8 9	$ ho_{\rm s}, ho_{\rm b}, ho_{\rm f}$	- density, solid, bulk, and fluid, respectively (kg/m ³)
10	τ	- tortuosity $(\ell/\ell_{path})^2$
11		
12	Φ	- Holocene precipitation fluctuation frequency (s ⁻¹)
13		
14	$\phi_{ m lat}$	- latitude
15		
16	$\phi_{ m m},~\phi_{ m f}$	- porosity, matrix and fracture $(b/[B + b])$, respectively
17 18	5	- skin resistance from materials lining fractures, (b_s/D_s)
19	3	- skin resistance from materials mining fractures, $(0_8/D_8)$
20	υ	- molar volume (m ³ /mol)
21		
22	ν	- Poisson's ratio
23		
24	$\omega_{ m R}$	- acentric factor for Redlich-Kwong-Soave equation of state
25		
26	X	- mole fraction
27 28	η	- Brooks-Corey relative permeability model parameter exponent
29	"	brooks corey relative permeability model parameter exponent
30		
31	Superscripts	
32		
33	*	- physical constants
34		
35 36	0	- property at reference conditions
37	Ø	- property in pure fluid
38		
39	•	- parameter with respect to time (rate)
40		F
41	_	- mean of parameter
42		
43	Subscripts	
44		
45	g	- gas
46	£	- liquid
47	ι	- nquia

1		
2	f	- fracture
3		
4	m	- matrix
5		
6		

2 3 4	Acronyms	
4 6 7	ANL-E	- Argonne National Laboratories, East
8 9	ASCII	- American Standard Code for Information Interchange
10 11	ALGEBRA	- support program for manipulating data in CAMDAT
12 13	BLOT	- a mesh and curve plot program for CAMDAT data
14 15 16	BOAST	- Black Oil Applied Simulation Tool; 3-D, 3-phase code for flow-through porous media
17 18	BRAGFLO	- Brine And Gas Flow; 2-D, 2-phase code for flow-through porous media
19 20	CAM	- Compliance Assessment Methodology
21 22 23	CAMCON	 Compliance Assessment Methodology CONtroller—controller (driver) for compliance evaluations developed for WIPP
24 25 26	CAMDAT	 Compliance Assessment Methodology DATa—computational data base developed for WIPP (modification of GENESIS and EXODUS)
27 28	CCDF	- Complementary Cumulative Distribution Function
29 30 31	CCDFPLT	 program to calculate and display complementary cumulative distribution function
32 33	СН	- Contact Handled (TRU waste)
34 35	DCL	- Digital Equipment Corporation Command Language
36 37	DOE	- U.S. Department of Energy
38 39	DRZ	- Disturbed Rock Zone
40 41	EPA	- U.S. Environmental Protection Agency
42 43	EOS	- equation of state
44 45	FD	- Finite-Difference numerical analysis
46 47	FE	- Finite-Element numerical analysis
48 49	Fm	- formation
50	GENMESH	- rectilinear three-dimensional finite-difference grid generator

1	HANF	- Hanford Reser	vation	
2 3 4	HLW	- High-Level Wa	aste	
5 6	HST3D	- a program to s groundwater fl		ransport in a three-dimensional
7 8 9	INEL	- Idaho National	Engineering Laboratory	
10 11	LANL	- Los Alamos Na	ational Laboratory	
12 13	LHS	- Latin Hypercu	be Sampling (efficient, st	tratified Monte Carlo sampling)
14 15	LLNL	- Lawrence Live	ermore National Laborato	ry
16 17 18	MATSET	 a program to i computational 	_	neter or material values into the
19 20	MOUND	- Mound Labora	itory	
21 22	NEFTRAN	- NEtwork Flow	and TRANsport code	
23 24	NRC	- U.S. Nuclear H	Regulatory Commission	
25 26	NTS	- Nevada Test S	ite	
27 28	ORNL	- Oak Ridge Na	tional Laboratory	
29 30 31	PCCSRC		alculating partial correlat egression coefficients (SR	ion coefficients (PCC) and RC)
32 33	PREBOAST	- preprocessor (translator) for input to B	OAST
34 35	PREBRAG	- preprocessor (translator) for input to B	RAGFLO
36 37	PREHST	- preprocessor (translator) for input to H	ST3D
38 39	PRELHS	- preprocessor (translator) for input to L	HS
40 41	PREPCC	- preprocessor (translator) for input to Pe	CC/SRC
42 43	PRENEF	- preprocessor (translator) for input to N	EFTRAN
44 45	PRESTEP	- preprocessor (translator) for input to S	TEPWISE
46 47	PRESUTRA	- preprocessor (translator) for input to S	UTRA
48 49	PRESWFT	- preprocessor (translator) for input to S	WIFT II
	(page date: 15-	NOV-91)	N-9	(database version: X-2.19PR)

Nomenclature

1	POSTBOAST	- postprocessor (translator) of output from BOAST to CAMDAT
2 3	POSTBRAG	- postprocessor (translator) of output from BRAGFLO to CAMDAT
4 5	POSTHST	- postprocessor (translator) of output from HST3D to CAMDAT
6 7	POSTLHS	- postprocessor (translator) of output from LHS to CAMDAT
8 9 10	POSTSUTRA	- postprocessor (translator) of output from SUTRA to CAMDAT
10 11 12	POSTSWFT	- postprocessor (translator) of output from SWIFT II to CAMDAT
13 14	QA	- Quality Assurance
15 16 17	RCRA	- Resource, Conservation, and Recovery Act of 1976 (Public Law 94-580) and subsequent amendments (e.g., HSWA——Hazardous and Solid Waste Amendments of 1984)
18 19 20	RFP	- Rocky Flats Plant
21 22	RH	- Remote Handled (TRU waste)
23 24	SNL	- Sandia National Laboratories, Albuquerque, NM
25 26	SRS	- Savannah River Site
27 28 29	STEPWISE	 stepwise regression program with rank regression and predicted error sum of squares criterion
30 31 32 33	SWIFTII	- Sandia Waste-Isolation, Flow and Transport code for solving transient, three-dimensional, coupled equations for fluid flow, heat transport, brine-miscible displacement, and radionuclide-miscible displacement in porous and fractured media
34 35 36	SUTRA	- Saturated-Unsaturated TRAnsport code
37 38 39	TRACKER	- a support program to estimate the pathway of a particle released in a fluid velocity field
40 41	TRU	- Transuranic
41 42 43	WIPP	- Waste Isolation Pilot Plant
43 44 45 46	40 CFR 191	- Code of Federal Regulations, Title 40, Part 191

CONVERSION TABLES FOR SI AND COMMON ENGLISH UNITS

	Quantity	Name	Symbol	Expression in Terms of Other Units	Expression in Terms of SI Base Units
Base SI Units	loogth				·····
	length	meter	m		
	time	second	S		
	mass	kilogram	kg		
	temperature	kelvin	К		
	amount of substance	mole	mol		
	electric current	ampere	А		
SI-Derived Un	its				
	force	newton	N		kg ∙ m ∙ s ⁻²
	pressure, stress	pascal	Pa	N/m ²	kg • m⁻¹ • s⁻²
	energy, work, quantity of heat	joule	J	N•m	kg • m² •s⁻²
	power, radiant flux	watt	W	J/s	kg ∙ m² ∙ s⁻³
	electric potential	volt	V	W/A	kg • m² • s⁻³ • A⁻¹
	electric resistance	ohm	Ω	V/A	kg • m ² • s ^{−3} • A ^{−2}
	frequency	hertz	Hz		s ⁻¹
	activity (of a radionuclide)	bequerel	Bq		s ⁻¹
	absorbed dose	gray	Gy	J/kg	m ² • s ⁻²
	quantity of electricity, electric charge	coulomb	С		A•s

Table 1. Base and Derived SI Units

Factor	Prefix	Symbol*	
10 ¹²	tera	Τ	
10 ⁹	giga 🖌	G	
10 ⁶	mega	М	
10 ³	kilo	k	
10 ²	hecto	h	
10	deka	da	
10-1	deci	d	
10 ⁻²	centi	С	
10 ⁻³	milli	m	
10 ⁻⁶	micro	μ	
10 ⁻⁹	nano	n	
10 ⁻¹²	pico	р	
10-15	femto	f	
10 ⁻¹⁸	atto	a	

Table 2. List of Prefixes

* Only the symbols T (tera), G (giga), and M (mega) are capitalized. Compound prefixes are not allowed — for example, use nm (*nano*metre) rather than mµm (*millimicro*metre).

	m	cm	Å	in.	ft	mi	nmi
meter (m)	1	*100	*1x10 ¹⁰	39.37	3.281	6.214x10 ⁻⁴	5.400x10 ⁻⁴
centimeter (cm)	*0.01	1	-1x10 ⁸	0.3937	3.281×10 ⁻²	6.214x10 ⁻⁶	5.400x10 ⁻⁶
angstrom (Å)	*1x10 ⁻¹⁰	1x10 ⁻⁸	1	3.937x10 ⁻⁹	3.281x10 ⁻¹⁰	6.214x10 ⁻¹⁴	5.400x10 ⁻¹⁴
inch (in.)	*0.0254	*2.54	*2.54x10 ⁸	1	8.333x10 ⁻²	1.578x10 ⁻⁵	1.371x10 ⁻⁵
foot (ft)	*0.3048	*30.48	*3.048x10 ⁹	•12	1	1.894x10 ⁻⁴	1.646x10 ⁻⁴
mile (U.S.) (mi)	1609	1.609x10 ⁵	1.609x10 ¹³	*6.336x10 ⁴	*5280	1	0.8690
nautical mile (nmi)	*1852	*1.852x10 ⁵	*1.852×10 ¹³	7.291x10 ⁴	6.076x10 ³	1.151	1

Table 3. Length Conversions

• Exact

Table 4. Area or Permeability

	m²	ha	in. ²	ft ²	ac	mi ²	Darcy	cm ²
square meters (m ²)	1	*1×10 ⁻⁴	1550	10.76	2.471x10 ⁻⁴	3.861x10 ⁻⁷	1.013x10 ¹²	*1.000x10 ⁴
hectare (ha)	*1x10 ⁴	1	1.550x10 ⁷	1.076x10 ⁵	2.471	3.861x10 ⁻³	1.013x10 ¹⁶	*1.000x10 ⁸
square inches (in. ²)	6.452x10 ⁻⁴	6.452x10 ⁻⁸	1	6.944x10 ⁻³	1.594x10 ⁻⁷	2.491x10 ⁻¹⁰	6.537x10 ⁸	6.452
square feet (ft ²)	9.290x10 ⁻²	9.290x10 ⁻⁶	144	1	2.296x10 ⁻⁵	3.587x10 ⁻⁸	9.413x10 ¹⁰	929
acre (ac)	4047	0.4047	6.273x10 ⁶	*4.356x10 ⁴	1	1.563x10 ⁻³	4.100x10 ¹⁵	4.047x10 ⁷
square miles (mi ²)	2.590x10 ⁶	2590	4.015x10 ⁹	2.788x10 ⁷	*640	1	2.624	2.590x10 ¹⁰
darcy (D)	9.869x10 ⁻¹³	9.869x10 ⁻¹⁷	1.530x10 ⁻⁹	1.062x10-11	2.439x10 ⁻¹⁶	3.811x10 ⁻¹⁹	1	9.864x10 ⁻⁹
square centimeters (cm ²)	*1x10 ⁻⁴	1×10 ⁻⁸	0.1550	1.076x10 ⁻³	2.471x10 ⁻⁸	3.861x10 ⁻¹¹	1.013x10 ⁸	1

*Exact

Conversion Tables - 3

	m ³	1	ft ³	yd ³	gal (U.S.)	ррі	drum	std bx	room	panel	disposal	ac-ft	sec-ft-day	bushel
cubic meters (m ³)	1	•1000	35.31	1.308	264.2	6.290	4.803	0.5618	2.744x10 ⁻⁴	2.169x10 ⁻⁵	2.293x10 ⁻⁶	8.107x10 ⁻⁴	4.087x10 ⁻⁴	28.38
liter (I)	*1x10 ⁻³	1	3.531x10 ⁻²	1.308x10 ⁻³	0.2642	6.290x10 ⁻³	4.803x10 ⁻³	5.618x10 ⁻⁴	2.744x10 ⁻⁷	2.169x10 ⁻⁸	2.293x10 ⁻⁹	8.107x10 ⁻⁷	4.087x10 ⁻⁷	2.838x10 ⁻²
cubic feet (ft ³)	2.832×10 ⁻²	28.32	1	3.704x10 ⁻²	7.481	0.1781	0.1360	1.591x10 ⁻²	7.770x10 ⁻⁶	6.143x10 ⁻⁷	6.494x10 ⁻⁸	2.296x10 ⁻⁵	1.157x10 ⁻⁵	0.8036
cubic yard (yd ³)	0.7646	7646	*27	1	201.97	4.809	3.672	0.4295	2.098x10 ⁻⁴	1.659x10 ⁻⁵	1.753x10 ⁻⁶	6.198x10 ⁻⁴	3.125x10 ⁻⁴	21.70
U.S. gallon (gal)	3.785x10 ⁻³	3.785	0.1337	4.951x10 ⁻³	1	2.381x10 ⁻²	1.818x10 ⁻²	2.127x10 ⁻³	1.039x10 ⁻⁶	8.212x10 ⁻⁸	8.682x10 ⁻⁹	3.069x10 ⁻⁶	1.547x10 ⁻⁶	0.1074
barrel (bbl)	0.1590	159	5.615	0.2079	*42	1	0.7636	8.932x10 ⁻²	4.363x10 ⁻⁵	3.449x10 ⁻⁶	3.646x10 ⁻⁷	1.289x10 ⁻⁴	6.498x10 ⁻⁵	4.512
drum (55-gal)	0.2082	208.2	7.352	0.2723	*55	1.310	1	0.1170	5.713x10 ⁻⁵	4.556x10 ⁻⁶	4.804x10 ⁻⁷	1.688x10 ⁻⁴	8.510x10 ⁻⁵	5.908
standard- waste box (std bx)	1.9	1780	62.86	2.328	470.2	1.120	8.550	1	4.884x10 ⁻⁴	3.895x10 ⁻⁵	4.107x10 ⁻⁶	1.443x10 ⁻³	7.275x10 ⁻⁴	50.51
room volume (room)	3644	3.644x10 ⁶	1.287x10 ⁵	4767	9.627x10 ⁵	2.292x10 ⁴	1.750x10 ⁴	2047	1	7.906x10 ⁻²	8.358x10 ⁻³	2.955	1,490	1.034x10 ⁵
pane! volume (panel)	4.610x10 ⁴	4.610x10 ⁷	1.628x10 ⁶	6.029x10 ⁴	1.218x10 ⁷	2.899x10 ⁵	2.214x10 ⁵	2.590x10 ⁴	1 2.6 5	1	0.1057	37.37	18.84	1.308x10 ⁶
disposal area (disposal)	4.360x10 ⁵	4.360x10 ⁸	1.540x10 ⁷	5.703x10 ⁵	1.152x10 ⁸	2.730x10 ⁵	2.094x10 ⁶	2.450x10 ⁵	119.6	9.459	1	353.5	178.2	1.237x10 ⁷
acre•foot (ac•ft)	1233	1.233x10 ⁶	*43560	1613	3.259x10 ⁵	7758	5925	6.930	0.3385	2.699x10 ⁻²	2.846x10 ⁻³	t	0.5042	3.500x10 ⁴
second=foot=day (sec=ft=day)	2447	2.447x10 ⁶	*86400	•3200	6.463x10 ⁵	1.539x10 ⁴	1.175x10 ⁴	1374	0.6713	5.353x10 ⁻²	5.645x10 ⁻³	1.983	1	6.943x10 ⁴
bushel (bu)	3.524x10 ⁻²	35.24	1.244	4.609x10 ⁻²	9.309	0.2216	0.1693	1.980x10 ⁻²	9.669x10 ⁻⁶	7.711x10 ⁻⁷	8.131x10 ⁻⁸	2.857x10 ⁻⁵	1.440x10 ⁻⁵	1

Table 5. Volume

*Exact

4

Table 6. Discharge (Volume/Time)

	m ³ /s	m ³ /yr	1	ft ³ /s	ft ³ /min	ft ³ /day	acre•ft/day	gal/min	gal/day	bbl/day
cubic meters per second (m ³ /s)	1	3.156x10 ⁷	*1000	35.31	2119	3.051x10 ⁶	70.05	1.585x10 ⁴	2.282x10 ⁷	5.434x10 ⁵
cubic meters per year (m ³ /yr)	3.169x10 ⁻⁸	1	3.169x10 ⁻⁵	1.119x10 ⁻⁶	6.714x10 ⁻⁵	9.669x10 ⁻²	2.220x10 ⁻⁶	5.023x10 ⁻⁴	0.7233	1.722x10 ⁻²
liters per second (l/s)	*1x10 ⁻³	3.156x10 ⁴	1	3.531x10 ⁻²	2.119	3051	7.005x10 ⁻²	15.85	2.282x10 ⁴	543.4
cubic feet per second (ft ³ /s)	2.832x10 ⁻²	8.936x10 ⁵	28.32	1	*60	*8.640x10 ⁴	1.983	448.8	6.463x10 ⁵	1.539x10 ⁴
cubic feet per minute (ft ³ /min)	4.719x10 ⁻⁴	1.489x10 ⁴	0.4719	1.667x10 ⁻²	1	1440	3.306x10 ⁻²	7.481	1.077x10 ⁴	256.5
cubic feet per day (ft ³ /day)	3.277x10 ⁻⁷	10.34	3.277x10 ⁻⁴	1.157x10 ⁻⁵	6.944x10 ⁻⁴	1	2.296x10 ⁻⁵	5.195x10 ⁻³	7.481	0.1781
acre•foot per day (acre• ft/day)	1.428x10 ⁻²	4.505x10 ⁵	14.28	0.5042	30.25	4.356x10 ⁴	1	226.3	3.259x10 ⁵	7758
gallons per minute (gal/min)	6.309x10 ⁻⁵	1991	6.309x10 ⁻²	2.228x10 ⁻³	0.1337	19.25	4.419x10 ⁻³	1	1440	34.29
gallons per day (gal/day)	4.381x10 ⁻⁸	1.383	4.381x10 ⁻⁵	1.547x10 ⁻⁶	9.283x10 ⁻⁵	0.1337	3.069x10 ⁻⁶	6.944x10 ⁻⁴	1	2.381x10 ⁻²
barrels per day (bbl/day)	1.840x10 ⁻⁶	58.07	1.840x10 ⁻³	6.498x10 ⁻⁵	3.899x10 ⁻³	5.615	1.289x10 ⁻⁴	2.917x10 ⁻²	•42	1

*Exact

.

	m/s	m/yr	in./yr	cm/yr	km/yr	ft/s	ft/day	mph	knots	gal/(day•ft ²)
meters per second (m/s)	1	3.156x10 ⁷	1.242x10 ⁹	3.156x10 ⁹	3.156x10 ⁴	3.281	2.835x10 ⁵	2.237	1.944	2.120x10 ⁶
meters per year (m/yr)	3.169x10 ⁻⁸	1	39.37	*100	*1×10 ⁻³	1.040x10 ⁻⁷	8.983x10 ⁻³	7.089x10 ⁻⁸	6.160x10 ⁻⁸	6.719x10 ⁻²
inches per year (in./yr)	8.049x10 ⁻¹⁰	*2.540x10 ⁻²	1	*2.540	*2.540x10 ⁻⁵	2.641x10 ⁻⁹	2.282x10 ⁻⁴	1.800x10 ⁻⁹	1.565x10 ⁻⁹	1.707x10 ⁻³
cen- timeters per year (cm/yr)	3.169x10 ⁻¹⁰	*1x10 ⁻²	0.3937	1	*1x10 ⁻⁵	1.040x10 ⁻⁹	8.983x10 ⁻⁵	7.089x10 ⁻¹⁰	6.160x10 ⁻¹⁰	6.719x10 ⁻⁴
kilometers per year (km/yr)	3.169x10 ⁻⁵	*1000	3.937x10 ⁴	*1x10 ⁵	1	1.040x10 ⁻⁴	8.983	7.089x10 ⁻⁵	6.160x10 ⁻⁵	67.19
feet per second (ft/s)	*0.3048	9.619x10 ⁶	3.787x10 ⁸	9.619x10 ⁸	9619	1	*8.640x10 ⁴	0.6818	0.5925	6.463x10 ⁵
feet per day (ft/day)	3.528x10 ⁻⁶	111.3	4383	1.113x10 ⁴	0.1113	1.157x10 ⁻⁵	1	7.891x10 ⁻⁶	6.857x10 ⁻⁶	7.481
miles per hour (mph)	0.4470	1.411x10 ⁷	5.554x10 ⁸	1.411x10 ⁹	1.411x10 ⁴	1.467	1.267x10 ⁵	1	0.8690	9.479x10 ⁵
knots	0.5144	1.623x10 ⁷	6.391x10 ⁸	1.623x10 ⁹	1.623x10 ⁴	1.688	1.458x10 ⁵	1.151	1	1.091x10 ⁶
gallons per day per square foot (gal/(day•ft ²))	4.716x10 ⁻⁷	14.88	585.9	1488	1.488x10 ⁻²	1.547x10 ⁻⁶	0.1337	.055x10 ⁻⁶	9.167x10 ⁻⁷	1

Table 8. Force

	Ν	kg-force	dyne	lbf
Newton (N)	1	0.1020	*1x10 ⁵	0.2248
kilogram-force (kg-force)	9.807	1	9.807x10 ⁵	2.205
dyne	*1.00x10 ⁻⁵	1.020x10 ⁻⁶	1	2.248x10 ⁻⁶
pound force (lbf)	4.448	0.4536	4.448x10 ⁵	1

*Exact

Table 9. Pressure and Stress

	Ра	bar	dyne/cm ²	atm	mm Hg	psi	lb/ft ²
pascal (Pa)	1	*1x10 ⁻⁵	*10	9.869x10 ⁻⁶	7.501x10 ⁻³	1.450x10 ⁻⁴	2.089x10 ⁻²
bar	*1x10 ⁵	t	*1x10 ⁶	0.9869	750.1	14.50	2089
dyne per square centimeters (dyne/cm ²)	*0.1	*1x10 ⁻⁶	1	9.869x10 ⁻⁷	7.501x10 ⁻⁴	1.450x10 ⁻⁵	2.089x10 ⁻³
atmosphere (atm)	1.013x10 ⁵	1.013	1.013x10 ⁶	1	*760	14.70	2116
millimeter of Mercury (mm Hg)	1333	1.333x10 ⁻³	1333	1.316x10 ⁻³	1	1.934x10 ⁻²	2.785
pound per square inch (psi)	698.5	6.895x10 ⁻²	6.895x10 ⁴	6.805x10 ⁻²	51.71	1	*144
pounds per square foot (lb/ft ²)	47.88	4.788x10 ⁻⁴	478.8	4.725x10 ⁻⁴	0.3591	6.944x10 ⁻³	1

	Pa•s (kg/(m•s))	cP	lbm/ft/s	slug/(ft•s) lbf • ft/s ²
Pascal-second (Pa•s) (kg/(m•s))	1	*1000	0.6720	2.089x10 ⁻²
centipoise (cP)	*1x10 ⁻³	1	6.720x10 ⁻⁴	2.089x10 ⁻⁵
pound mass per foot per second (lbm/ft/s)	1.488	1488	1	3.108x10 ⁻²
slug per foot per second (slug/(ft•s) or lbf • ft/s ²)	47.88	4.788x10 ⁴	32.17	1

Table 10. Absolute Viscosity

*Exact

Table 11. Mass

	kg	metric tonne	oz	lbm	short ton	long ton	slug
kilogram (kg)	1	*1x10 ⁻³	35.27	2.205	1.102x10 ⁻³	9.842x10 ⁻⁴	6.852x10 ⁻²
metric tonne (t)	*1000	1	3.527x10 ⁴	2205	1.102	0.9842	68.52
avoirdupois ounce (oz)	2.835x10 ⁻²	2.835x10 ⁻⁵	1	*0.0625	*3.125x10 ⁻⁵	2.790x10 ⁻⁵	1.943x10 ⁻³
pound mass (lbm)	0.4536	4.536x10 ⁻⁴	*16	1	*5.000x10 ⁻⁴	4.464x10 ⁻⁴	3,108x10 ⁻²
short ton	907.2	9.072	*32000	*2000	1	0.8927	62.16
long ton	1016	1.016	*35840	*2240	*1.12	1	69.62
slug	14.59	1.459x10 ⁻²	514.8	32.17	1.609x10 ⁻²	1.436x10 ⁻²	1

Table 12.	Density
-----------	---------

	kg/m ³	g/cm ³	lb/ft ³	lb/gal	lb/bbl
kilogram per cubic meters (kg/m ³)	1	*1x10 ⁻³	6.243x10 ⁻²	8.345x10 ⁻³	2.853
grams per cubic centimeters (g/cm ³)	*1000	1	62.43	8.345	350.5
pounds per cubic feet (lb/ft ³)	16.02	1.602x10 ⁻²	1	0.1337	5.615
pounds per gallon (lb/gal)	119.8	0.1198	7.481	1	*42
pounds per barrel (lb/bbl)	2.853	2.853x10 ⁻³	0.1781	2.381x10 ⁻²	1

*Exact

Table 13. Time

	S	min	h	day	yr
mean solar second (s)	1	1.6667x10 ⁻²	2.7779x10 ⁻⁴	1.15741x10 ⁻⁵	3.1689x10 ⁻⁸
mean solar minute (min)	*60	1	1.6667x10 ⁻²	6.9444x10 ⁻⁴	1.9013x10 ⁻⁶
mean solar hour (h)	*3600	*60	1	4.16667x10 ⁻²	1.1408x10 ⁻⁴
mean solar day	*8.640x10 ⁴	*1440	*24	1	2.7379x10 ⁻³
tropical time year (yr)	3.1557x10 ⁷	5.2595x10 ⁵	8765.8	365.24	1

	К	°C	۴R	۶F
kelvin (K)	1	K-273.15	K x 9/5	(K-273.15) x 9/5 +32
Celsius (°C)	°C + 273.15	1	(°C + 273.15) x 9/5	°C x 9/5 +32
Rankine (°R)	°R x 5/9	(°R x 5/9) -273.15	1	°R -459.67
Fahrenheit (°F)	(°F + 459.67) x 5/9	(°F - 32) x 5/9	°F + 459.67	1

•

Table 14. Temperature (T)

Table 15. Specific Activity⁽¹⁾

	Bq	Ci	kg
becquerel (Bq)	1	2.703x10 ⁻¹¹	$\frac{\ln^2}{t_{1/2}} \times \frac{6.022 \times 10^{23}}{M} \times \frac{10^3 \text{g}}{\text{kg}} = \frac{4.174 \times 10^{26}}{t_{1/2} \times M}$
curie (Ci)	*3.7x10 ¹⁰	1	$\frac{1.128 \times 10^{16}}{t_{1/2} \times M}$
kg	$2.396 \times 10^{-27} \times t \frac{1}{2}^{(2)} \times M^{(3)}$	8.864×10 ⁻¹⁷ ×t $\frac{1}{2}$ ×M	1

(1) Specific Activity is
$$\frac{ds_A}{s_A}$$
; where $s_A = s_{OA} e^{-\lambda t}$; $\frac{\lambda = \ln^2}{\frac{t_A}{2}}$

- (2) t $\frac{1}{2}$ is half life in seconds
- (3) M is gram molecular weight (g/mol)

To convert:	to	Multiply by	Inverse
1. Angular velocity		$\frac{30}{30} = 9.549$	$\frac{\pi}{1} = 0.1047$
rad/s	rpm	$\frac{30}{\pi} = 9.549$	$\frac{\pi}{30} = 0.1047$
2. Radioactivity			
a. Dose equivalent			
Sv	rem	100	0.01
b. Absorbed dose			
Gy (gray) (1J/kg)	rad	100	0.01
 c. Activity (1 disintegration/s) becquerel (Bq) 	Ci	2.703x10 ⁻¹¹	3.7x10 ¹⁰
d. Charge	51		0.7710
roentgen (R)	c/kg	2.58x10 ⁻⁴	3876

Table 16. Miscellaneous

Distribution

FEDERAL AGENCIES

U. S. Department of Energy (4) Office of Environmental Restoration and Waste Management L. P. Duffy, EM-1 Attn: J. E. Lytle, EM-30 S. Schneider, EM-342 C. Frank, EM-50 Washington, DC 20585 U.S. Department of Energy (5) WIPP Task Force M. Frei, EM-34 (2) Attn: G. H. Daly S. Fucigna J. Rhoderick 12800 Middlebrook Rd. Suite 400 Germantown, MD 20874 U.S. Department of Energy (4) Office of Environment, Safety and Health Attn: R. P. Berube, EH-20 C. Borgstrum, EH-25 R. Pelletier, EH-231 K. Taimi, EH-232 Washington, DC 20585 U. S. Department of Energy (4) WIPP Project Integration Office W. J. Arthur III Attn: L. W. Gage P. J. Higgins D. A. Olona P.O. Box 5400 Albuquerque, NM 87115-5400 U. S. Department of Energy (12) WIPP Project Site Office (Carlsbad) \dot{A} . Hunt (4) Attn: M. McFadden V. Daub (4)J. Lippis K. Hunter R. Becker P.O. Box 3090 Carlsbad, NM 88221-3090

U. S. Department of Energy, (5) Office of Civilian Radioactive Waste Management Deputy Director, RW-2 Attn: Associate Director, RW-10 Office of Program Administration and Resources Management Associate Director, RW-20 Office of Facilities Siting and Development Associate Director, RW-30 Office of Systems Integration and Regulations Associate Director, RW-40 Office of External **Relations and Policy** Office of Geologic Repositories Forrestal Building Washington, DC 20585 U. S. Department of Energy Attn: National Atomic Museum Library Albuquerque Operations Office P.O. Box 5400 Albuquerque, NM 87185 U. S. Department of Energy Research & Waste Management Division Director Attn:

P.O. Box E
Oak Ridge, TN 37831
U. S. Department of Energy (2)
Idaho Operations Office
Fuel Processing and Waste
Management Division

785 DOE Place
Idaho Falls, ID 83402
U.S. Department of Energy
Savannah River Operations Office
Defense Waste Processing
Facility Project Office
Attn: W. D. Pearson
P.O. Box A

Aiken, SC 29802

U.S. Department of Energy (2) **Richland Operations Office** Nuclear Fuel Cycle & Production Division R. E. Gerton Attn: 825 Jadwin Ave. P.O. Box 500 Richland, WA 99352 U.S. Department of Energy (3) Nevada Operations Office J. R. Boland Attn: **D.** Livingston P. K. Fitzsimmons 2753 S. Highland Drive Las Vegas, NV 87183-8518 U.S. Department of Energy (2) **Technical Information Center** P.O. Box 62 Oak Ridge, TN 37831 U.S. Department of Energy (2) Chicago Operations Office Attn: J. C. Haugen 9800 South Cass Avenue Argonne, IL 60439 U.S. Department of Energy Los Alamos Area Office 528 35th Street Los Alamos, NM 87544 U.S. Department of Energy (3) Rocky Flats Area Office W. C. Rask Attn: G. Huffman T. Lukow P.O. Box 928 Golden, CO 80402-0928 U.S. Department of Energy Dayton Area Office R. Grandfield Attn: P.O. Box 66 Miamisburg, OH 45343-0066 U.S. Department of Energy E. Young Attn: Room E-178 GAO/RCED/GTN Washington, DC 20545 U.S. Bureau of Land Management

U.S. Bureau of Land Management 101 E. Mermod Carlsbad, NM 88220 U.S. Bureau of Land Management New Mexico State Office P.O. Box 1449 Santa Fe, NM 87507 U.S. Environmental Protection Agency (2) Office of Radiation Protection Programs (ANR-460) Attn: Richard Guimond (2) Washington, D.C. 20460 U.S. Nuclear Regulatory Commission Division of Waste Management H. Marson Attn: Mail Stop 4-H-3 Washington, DC 20555 U.S. Nuclear Regulatory Commission (4) Advisory Committee on Nuclear Waste Dade Moeller Attn: Martin J. Steindler Paul W. Pomeroy William J. Hinze 7920 Norfolk Avenue Bethesda, MD 20814 Defense Nuclear Facilities Safety Board **Dermot Winters** Attn: 625 Indiana Avenue NW Suite 700 Washington, DC 20004 Nuclear Waste Technical Review Board (2) Dr. Don A. Deere Attn: Dr. Sidney J. S. Parry Suite 910 1100 Wilson Blvd. Arlington, VA 22209-2297 Katherine Yuracko Energy and Science Division Office of Management and Budget 725 17th Street NW Washington, DC 20503 U.S. Geological Survey (2) Water Resources Division Cathy Peters Attn: Suite 200 4501 Indian School, NE Albuquerque, NM 87110

INSTITUTIONAL DISTRIBUTION

NEW MEXICO CONGRESSIONAL DELEGATION:

Jeff Bingaman U.S. Senate 524 SHOB Washington, DC 20510

Pete V. Domenici U.S. Senate 427 SDOB Washington, DC 20510

Bill Richardson House of Representatives 332 CHOB Washington, DC 20510

Steven H. Schiff House of Representatives 1520 LHOB Washington, DC 20510

Joe Skeen House of Representatives 1007 LHOB Washington, DC 20510

STATE AGENCIES

Environmental Evaluation Group (5) Attn: Robert Neill Suite F-2 7007 Wyoming Blvd., N.E. Albuquerque, NM 87109

New Mexico Bureau of Mines and Mineral Resources Socorro, NM 87801

New Mexico Department of Energy & Minerals Attn: Librarian 2040 S. Pacheco Santa Fe, NM 87505

New Mexico Radioactive Task Force (2) (Governor's WIPP Task Force) Attn: Anita Lockwood, Chairman Chris Wentz, Coordinator/Policy Analyst 2040 Pacheco Santa Fe, NM 87505 Bob Forrest Mayor, City of Carlsbad P.O. Box 1569 Carlsbad, NM 88221

Chuck Bernard Executive Director Carlsbad Department of Development P.O. Box 1090 Carlsbad, NM 88221

Robert M. Hawk (2) Chairman, Hazardous and Radioactive Materials Committee Room 334 State Capitol Sante Fe, NM 87503

New Mexico Environment Department Secretary of the Environment Attn: J. Espinosa (3) P.O. Box 968 1190 St. Francis Drive Santa Fe, NM 87503-0968

New Mexico Environment Department Attn: Pat McCausland WIPP Project Site Office P.O. Box 3090 Carlsbad, NM 88221-3090

ADVISORY COMMITTEE ON NUCLEAR FACILITY SAFETY

John F. Ahearne Executive Director, Sigma Xi 99 Alexander Drive Research Triangle Park, NC 27709

James E. Martin 109 Observatory Road Ann Arbor, MI 48109

Dr. Gerald Tape Assoc. Universities 1717 Massachusetts Ave. NW Suite 603 Washington, DC 20036

WIPP PANEL OF NATIONAL RESEARCH COUNCIL'S BOARD ON RADIOACTIVE WASTE MANAGEMENT

Charles Fairhurst, Chairman Department of Civil and Mineral Engineering University of Minnesota 500 Pillsbury Dr. SE Minneapolis, MN 55455-0220

John O. Blomeke 3833 Sandy Shore Drive Lenoir City, TN 37771-9803

John D. Bredehoeft Western Region Hydrologist Water Resources Division U.S. Geological Survey (M/S 439) 345 Middlefield Road Menlo Park, CA 94025

Fred M. Ernsberger 1325 NW 10th Avenue Gainsville, FL 32601

Rodney C. Ewing Department of Geology University of New Mexico 200 Yale, NE Albuquerque, NM 87131

B. John Garrick
Pickard, Lowe & Garrick, Inc.
2260 University Drive
Newport Beach, CA 92660

Leonard F. Konikow U.S. Geological Survey 431 National Center Reston, VA 22092

Jeremiah O'Driscoll 505 Valley Hill Drive Atlanta, GA 30350

Christopher Whipple Clement International Corp. 160 Spear St. Suite 1380 San Francisco, CA 94105-1535 National Research Council (3) Board on Radioactive Waste Management RM HA456 Attn: Peter B. Myers, Staff Director (2) Dr. Geraldine J. Grube 2101 Constitution Avenue Washington, DC 20418

PERFORMANCE ASSESSMENT PEER REVIEW PANEL

G. Ross Heath College of Ocean and Fishery Sciences HN-15 583 Henderson Hall University of Washington Seattle, WA 98195

Thomas H. Pigford Department of Nuclear Engineering 4159 Etcheverry Hall University of California Berkeley, CA 94720

Thomas A. Cotton JK Research Associates, Inc. 4429 Butterworth Place, NW Washington, DC 20016

Robert J. Budnitz President, Future Resources Associates, Inc. 2000 Center Street Suite 418 Berkeley, CA 94704

C. John Mann Department of Geology 245 Natural History Bldg. 1301 West Green Street University of Illinois Urbana, IL 61801

Frank W. Schwartz Department of Geology and Mineralogy The Ohio State University Scott Hall 1090 Carmack Rd. Columbus, OH 43210

FUTURE SOCIETIES EXPERT PANEL

Theodore S. Glickman Resources for the Future 1616 P St., NW Washington, DC 20036

Norman Rosenberg Resources for the Future 1616 P St., NW Washington, DC 20036

Max Singer The Potomac Organization, Inc. 5400 Greystone St. Chevy Chase, MD 20815

Maris Vinovskis Institute for Social Research Room 4086 University of Michigan 426 Thompson St Ann Arbor, MI 48109-1045

Gregory Benford University of California, Irvine Department of Physics Irvine, CA 92717

Craig Kirkwood College of Business Administration Arizona State University Tempe, AZ 85287

Harry Otway Health, Safety, and Envir. Div. Mail Stop K-491 Los Alamos National Laboratory Los Alamos, NM 87545

Martin J. Pasqualetti Department of Geography Arizona State University Tempe, AZ 85287-3806

Michael Baram Bracken and Baram 33 Mount Vernon St. Boston, MA 02108

Wendell Bell Department of Sociology Yale University 1965 Yale Station New Haven, CT 06520 Bernard L. Cohen Department of Physics University of Pittsburgh Pittsburgh, PA 15260

Ted Gordon The Futures Group 80 Glastonbury Blvd. Glastonbury, CT 06033

Duane Chapman 5025 S. Building, Room S5119 The World Bank 1818 H Street NW Washington, DC 20433

Victor Ferkiss 23 Sage Brush Circle Corrales, NM 87048

Dan Reicher Senior Attorney Natural Resources Defense Council 1350 New York Ave. NW, #300 Washington, DC 20005

Theodore Taylor P.O. Box 39 3383 Weatherby Rd. West Clarksville, NY 14786

MARKERS EXPERT PANEL

Dr. Dieter Ast Department of Materials Science Bard Hall Cornell University Ithaca, NY 14853-1501

Dr. Victor Baker Department of Geosciences Building #77, Gould-Simpson Building University of Arizona Tucson, AZ 85721

Mr. Michael Brill President BOSTI 1479 Hertel Ave. Buffalo, NY 14216

Dr. Frank Drake Board of Studies in Astronomy and Astrophysics Lick Observatory University of California, Santa Cruz Santa Cruz, CA 95064 Distribution

Dr. Ben Finney University of Hawaii at Manoa Department of Anthropology Porteus Hall 346, 2424 Maile Way Honolulu, HI 96822

Dr. David Givens American Anthropological Association 1703 New Hampshire Ave., NW Washington, D.C. 20009

Dr. Ward Goodenough Department of Anthropology University of Pennsylvania 325 University Museum 33rd and Spruce Streets Philadelphia, PA 19104-6398

Dr. Maureen Kaplan Eastern Research Group, Inc. 6 Whittemore Street Arlington, MA 02174

Mr. Jon Lomberg P.O. Box 207 Honaunau, HI 96726

Dr. Louis Narens Department of Cognitive Sciences School of Social Sciences University of Califormia, Irvine Irvine, CA 92717

Dr. Frederick Newmeyer Department of Linguistics GN-40 University of Washington Seattle, WA 98195

Dr. Woodruff Sullivan Department of Astonomy FM-20 University of Washington Seattle, WA 98195

Dr. Wendell Williams Materials Science and Engineering White Building Case Western Reserve University Cleveland, OH 44106

NATIONAL LABORATORIES

Argonne National Labs (2) Attn: A. Smith D. Tomasko 9700 South Cass, Bldg. 201 Argonne, IL 60439 Battelle Pacific Northwest Laboratories (3) R. E. Westerman Attn: S. Bates H. C. Burkholder Battelle Boulevard Richland, WA 99352 Lawrence Livermore National Laboratory Attn: G. Mackanic P.O. Box 808, MS L-192 Livermore, CA 94550 Los Alamos National Laboratories Attn: B. Erdal, CNC-11 P.O. Box 1663 Los Alamos, NM 87544 Los Alamos National Laboratories Attn: A. Meijer Mail Stop J514 Los Alamos, NM 87545 Los Alamos National Laboratories (3) HSE-8 M. Enoris Attn: L. Soholt J. Wenzel P.O. Box 1663 Los Alamos, NM 87544 Los Alamos National Laboratories (2) HSE-7 A. Drypolcher Attn: S. Kosciewiscz P.O. Box 1663 Los Alamos, NM 87544 Oak Ridge National Labs Martin Marietta Systems, Inc. Attn: J. Setaro P.O. Box 2008, Bldg. 3047 Oak Ridge, TN 37831-6019 Savannah River Laboratory (3) N. Bibler Attn: M. J. Plodinec G. G. Wicks Aiken, SC 29801

Savannah River Plant (2) Attn: Richard G. Baxter Building 704-S K. W. Wierzbicki Building 703-H Aiken, SC 29808-0001

CORPORATIONS/MEMBERS OF THE PUBLIC

Benchmark Environmental Corp. (3) John Hart Attn: C. Frederickson K. Lickliter 4501 Indian School Rd., NE Suite 105 Albuquerque, NM 87110 Deuel and Associates, Inc. Attn: R. W. Prindle 7208 Jefferson, NE Albuquerque, NM 87109 Disposal Safety, Inc. Attn: Benjamin Ross Suite 314 1660 L Street NW Washington, DC 20006 Ecodynamics Research Associates (2) Pat Roache Attn: **Rebecca** Blaine P.O. Box 8172 Albuquerque, NM 87198 E G & G Idaho (3)**1955 Fremont Street** C. Atwood Attn: C. Hertzler T. I. Clements Idaho Falls, ID 83415

Geomatrix Attn: Kevin Coppersmith 100 Pine Street #1000 San Francisco, CA 94111

Golden Associates, Inc. (3) Attn: Mark Cunnane Richard Kossik Ian Miller 4104 148th Avenue NE Redmond, WA 98052

In-Situ, Inc. (2) Attn: S. C. Way C. McKee 209 Grand Avenue Laramie, WY 82070 INTERA, Inc. Attn: A. M. LaVenue 8100 Mountain Road NE Suite 213 Albuquerque, NM 87110 INTERA, Inc. Attn: J. F. Pickens Suite #300 6850 Austin Center Blvd. Austin, TX 78731 INTERA, Inc. Wayne Stensrud Attn: P.O. Box 2123 Carlsbad, NM 88221 INTERA, Inc. William Nelson Attn: 101 Convention Center Drive Suite 540 Las Vegas, NV 89109 IT Corporation (2) P. Drez Attn: J. Myers Regional Office - Suite 700 5301 Central Avenue, NE Albuquerque, NM 87108 **IT** Corporation R. J. Eastmond 825 Jadwin Ave. Richland, WA 99352 MACTEC (2) J. A. Thies Attn: D. K. Duncan 8418 Zuni Road SE Suite 200 Albuquerque, NM 87108 Pacific Northwest Laboratory **Bill Kennedy** Attn: Battelle Blvd. P.O. Box 999 Richland, WA 99352 RE/SPEC, Inc. (2) Attn: W. Coons Suite 300 4775 Indian School NE Albuquerque, NM 87110 RE/SPEC, Inc. Attn: J. L. Ratigan P.O. Box 725 Rapid City, SD 57709

Reynolds Elect/Engr. Co., Inc. Building 790, Warehouse Row Attn: E. W. Kendall P.O. Box 98521 Las Vegas, NV 89193-8521 Roy F. Weston, Inc. CRWM Tech. Supp. Team Attn: Clifford J. Noronha 955 L'Enfant Plaza, S.W. North Building, Eighth Floor Washington, DC 20024 Science Applications International Corporation Howard R. Pratt, Attn: Senior Vice President 10260 Campus Point Drive San Diego, CA 92121 Science Applications International Corporation (2) George Dymmel Attn: Chris G. Pflum 101 Convention Center Dr. Las Vegas, NV 89109 Science Applications International Corporation (2) John Young Attn: Dave Lester 18706 North Creek Parkway Suite 110 Bothell, WA 98011 Southwest Research Institute Center for Nuclear Waste Regulatory Analysis (2) Attn: P. K. Nair 6220 Culebra Road San Antonio, Texas 78228-0510 Systems, Science, and Software (2) Attn: E. Peterson P. Lagus Box 1620 La Jolla, CA 92038 TASC Attn: Steven G. Oston 55 Walkers Brook Drive Reading, MA 01867

Tech. Reps., Inc. (5) Attn: Janet Chapman Terry Cameron Debbie Marchand John Stikar **Denise Bissell** 5000 Marble NE Suite 222 Albuquerque, NM 87110 Tolan, Beeson, & Associates Terry L. Tolan Attn: 2320 W. 15th Avenue Kennewick, WA 99337 TRW Environmental Safety Systems (TESS) Ivan Saks Attn: 10306 Eaton Place Suite 300 Fairfax, VA 22030 Westinghouse Electric Corporation (4) Attn: Library L. Trego C. Cox L. Fitch R. F. Kehrman P.O. Box 2078 Carlsbad, NM 88221 Westinghouse Hanford Company Attn: Don Wood P.O. Box 1970 Richland, WA 99352 Western Water Consultants Attn: D. Fritz 1949 Sugarland Drive #134 Sheridan, WY 82801-5720 Western Water Consultants Attn: P. A. Rechard P.O. Box 4128 Laramie, WY 82071 Neville Cook **Rock Mechanics Engineering** Mine Engineering Dept. University of California Berkeley, CA 94720 Dennis W. Powers Star Route Box 87

Anthony, TX 79821

Shirley Thieda P.O. Box 2109, RR1 Bernalillo, NM 87004

Jack Urich c/o CARD 144 Harvard SE Albuquerque, NM 87106

UNIVERSITIES

University of California Mechanical, Aerospace, and Nuclear Engineering Department (2) Attn: W. Kastenberg D. Browne 5532 Boelter Hall Los Angeles, CA 90024

University of Hawaii at Hilo Attn: S. Hora Business Administration Hilo, HI 96720-4091

University of New Mexico Geology Department Attn: Library Albuquerque, NM 87131

University of New Mexico Research Administration Attn: H. Schreyer 102 Scholes Hall Albuquerque, NM 87131

University of Wyoming Department of Civil Engineering Attn: V. R. Hasfurther Laramie, WY 82071

University of Wyoming Department of Geology Attn: J. I. Drever Laramie, WY 82071

University of Wyoming Department of Mathematics Attn: R. E. Ewing Laramie, WY 82071

LIBRARIES

Thomas Brannigan Library Attn: Don Dresp, Head Librarian 106 W. Hadley St. Las Cruces, NM 88001 Hobbs Public Library Attn: Marcia Lewis, Librarian 509 N. Ship Street Hobbs, NM 88248

New Mexico State Library Attn: Norma McCallan 325 Don Gaspar Santa Fe, NM 87503

New Mexico Tech Martin Speere Memorial Library Campus Street Socorro, NM 87810

New Mexico Junior College Pannell Library Attn: Ruth Hill Lovington Highway Hobbs, NM 88240

Carlsbad Municipal Library WIPP Public Reading Room Attn: Lee Hubbard, Head Librarian 101 S. Halagueno St. Carlsbad, NM 88220

University of New Mexico General Library Government Publications Department Albuquerque, NM 87131

NEA/PSAC USER'S GROUP

Timo K. Vieno Technical Research Centre of Finland (VTT) Nuclear Engineering Laboratory P.O. Box 169 SF-00181 Helsinki FINLAND

Alexander Nies (PSAC Chairman) Gesellschaft für Strahlen- und Institut für Tieflagerung Abteilung für Endlagersicherheit Theodor-Heuss-Strasse 4 D-3300 Braunscheweig GERMANY

Eduard Hofer Gesellschaft für Reaktorsicherheit (GRS) MBH Forschungsgelände D-8046 Garching GERMANY Distribution

Takashi Sasahara Environmental Assessment Laboratory Department of Environmental Safety Research Nuclear Safety Research Center, Tokai Research Establishment, JAERI Tokai-mura, Naka-gun Ibaraki-ken JAPAN

Alejandro Alonso Cátedra de Tecnología Nuclear E.T.S. de Ingenieros Industriales José Gutiérrez Abascal, 2 E-28006 Madrid SPAIN

Pedro Prado CIEMAT Instituto de Tecnología Nuclear Avenida Complutense, 22 E-28040 Madrid SPAIN

Miguel Angel Cuñado ENRESA Emilio Vargas, 7 E-28043 Madrid SPAIN

Francisco Javier Elorza ENRESA Emilio Vargas, 7 E-28043 Madrid SPAIN

Nils A. Kjellbert Swedish Nuclear Fuel and Waste Management Company (SKB) Box 5864 S-102 48 Stockholm SWEDEN

Björn Cronhjort Swedish National Board for Spent Nuclear Fuel (SKN) Sehlsedtsgatan 9 S-115 28 Stockholm SWEDEN

Richard A. Klos Paul-Scherrer Institute (PSI) CH-5232 Villingen PSI SWITZERLAND NAGRA (2) Attn: Charles McCombie Fritz Van Dorp Parkstrasse 23 CH-5401 Baden **SWITZERLAND** Brian G. J. Thompson Department of the Environment Her Majesty's Inspectorate of Pollution Room A5.33, Romney House 43 Marsham Street London SW1P 2PY UNITED KINGDOM **INTERA/ECL** (2) Trevor J. Sumerling Attn: Daniel A. Galson Chiltern House 45 Station Road Henley-on-Thames Oxfordshire RG9 1AT UNITED KINGDOM U.S. Nuclear Regulatory Commission (2) Attn: Richard Codell Norm Eisenberg Mail Stop 4-H-3 Washington, D.C. 20555 Paul W. Eslinger Battelle Pacific Northwest Laboratories (PNL) P.O. Box 999, MS K2-32 Richland, WA 99352 Andrea Saltelli Commission of the European Communities Joint Resarch Centre od Ispra I-21020 Ispra (Varese) ITALY Budhi Sagar Center for Nuclear Waste Regulatory Analysis (CNWRA) Southwest Research Institute P.O. Drawer 28510

6220 Culebra Road San Antonio, TX 78284 Shaheed Hossain Division of Nuclear Fuel Cycle and Waste Management International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna AUSTRIA

Claudio Pescatore Division of Radiation Protection and Waste Management 38, Boulevard Suchet F-75016 Paris FRANCE

FOREIGN ADDRESSES

Studiecentrum Voor Kernenergie Centre D'Energie Nucleaire Attn: A. Bonne SCK/CEN Boeretang 200 B-2400 Mol BELGIUM

Atomic Energy of Canada, Ltd. (3) Whiteshell Research Estab. Attn: Michael E. Stevens Bruce W. Goodwin Donna Wushke Pinewa, Manitoba ROE 1L0 CANADA

Ghislain de Marsily Lab. Géologie Appliqué Tour 26, 5 étage 4 Place Jussieu F-75252 Paris Cedex 05 FRANCE

Jean-Pierre Olivier OECD Nuclear Energy Agency (2) 38, Boulevard Suchet F-75016 Paris FRANCE

D. Alexandre, Deputy Director
ANDRA
31 Rue de la Federation
75015 Paris
FRANCE

Claude Sombret Centre D'Etudes Nucleaires De La Vallee Rhone **CEN/VALRHO** S.D.H.A. BP 171 30205 Bagnols-Sur-Ceze FRANCE Bundesministerium fur Forschung und Technologie Postfach 200 706 5300 Bonn 2 **GERMANY** Bundesanstalt fur Geowissenschaften und Rohstoffe Attn: Michael Langer Postfach 510 153 3000 Hannover 51 **GERMANY** Gesellschaft fur Reaktorsicherheit (GRS) mb (2)Bruno Baltes Attn: Wolfgang Muller Schwertnergasse 1 D-5000 Cologne GERMANY

Hahn-Mietner-Institut fur Kernforschung Attn: Werner Lutze Glienicker Strasse 100 100 Berlin 39 GERMANY

Institut fur Tieflagerung (2) Attn: K. Kuhn Theodor-Heuss-Strasse 4 D-3300 Braunschweig GERMANY

Physikalisch-Technische Bundesanstalt Attn: Peter Brenneke Postfach 33 45 D-3300 Braunschweig GERMANY

Shingo Tashiro Japan Atomic Energy Research Institute Tokai-Mura, Ibaraki-Ken 319-11 JAPAN Netherlands Energy Research Foundation **ECN** L. H. Vons Attn: 3 Westerduinweg P.O. Box 1 1755 ZG Petten THE NETHERLANDS Johan Andersson Statens Kärnkraftinspektion SKI Box 27106 S-102 52 Stockholm **SWEDEN** Fred Karlsson Svensk Karnbransleforsorjning AB SKB Box 5864 S-102 48 Stockholm **SWEDEN** Nationale Genossenschaft fur die Lagerung Radioaktiver Abfalle (NAGRA) (2) Attn: Stratis Vomvoris Piet Zuidema Hardstrasse 73 CH-5430 Wettingen **SWITZERLAND** D. R. Knowles British Nuclear Fuels, plc Risley, Warrington, Cheshire WA3 6AS 1002607 UNITED KINGDOM **AEA** Technology J.H. Rees Attn: D5W/29 Culham Laboratory Abington Oxfordshire OX14 3DB UNITED KINGDOM **AEA** Technology W. R. Rodwell Attn: O44/A31 Winfrith Technical Centre Dorchester Dorset DT2 8DH UNITED KINGDOM

AEA Technology Attn: J. E. Tinson B4244 Harwell Laboratory Didcot Oxfordshire OX11 ORA UNITED KINGDOM

INTERNAL

		6342
1	A. Narath	6342
20	O. E. Jones	6342
1510	J. C. Cummings	6342
1511	D. K. Gartling	6342
3151	S. M. Wayland	6342
3200	N. R. Ortiz	6342
6000	D. L. Hartley	6342
6233	J. C. Eichelberger	6342
6300	T. O. Hunter	6342
6301	E. Bonano	6342
6310	T. E. Blejwas, Acting	6342
6313	L. E. Shephard	6343
6312	F. W. Bingham	6344
6313	L. S. Costin	6344
6315	Supervisor	6344
6316	R. P. Sandoval	6344
6320	R. E. Luna, Acting	6344
6340	W. D. Weart	634
6340	S. Y. Pickering	634.
6341	J. M. Covan	634:
6341	D. P. Garber	634
6341	R. C. Lincoln	634
6341	J. Orona*	634
6341	Sandia WIPP Central Files (250)	634
6342	D. R. Anderson	634
6342	B. M. Butcher	634
6342	D. P. Gallegos	640
6342	L. S. Gomez	641
6342	M. Gruebel	641
6342	R. Guzowski	641
6342	R. D. Klett	641
6342	M. G. Marietta	662
6342	D. Morrison	930
6342	A. C. Peterson	931
6342	R. P. Rechard	932
6342	P. Swift	932
6342	M. Tierney	933
6342	K. M. Trauth	852
6342	B. L. Baker*	314
6342	J. Bean*	314
6342	J. Berglund*	
6342	W. Beyeler*	315
6342	T. Blaine*	

6342	K. Brinster*
6342	K. Byle*
6342	L. Clements*
6342	J. Garner*
6342	A. Gilkey*
6342	H. Iuzzolino*
6342	J. Logothetis*
6342	R. McCurley*
6342	J. Rath*
6342	D. Rudeen*
6342	J. Sandha*
6342	J. Schreiber*
6342	P. Vaughn*
6343	T. M. Schultheis
6344	R. L. Beauheim
6344	P. B. Davies
6344	S. J. Finley
6344	E. Gorham
6344	C. F. Novak
6344	S. W. Webb
6345	R. Beraun
6345	L. Brush
6345	A. R. Lappin
6345	M. A. Molecke D. E. Munson
6346	
6346	E. J. Nowak J. R. Tillerson
6346	A. L. Stevens
6347	
6400 6413	D. J. McCloskey J. C. Helton
6415	R. M. Cranwell
6415	C. Leigh
6415	R. L. Iman
6622	M.S.Y. Chu
9300	J. E. Powell
9310	J. D. Plimpton
9325	J. T. McIlmoyle
9325	R. L. Rutter
9330	J. D. Kennedy
8523-2	
3141	S. A. Landenberger (5)
3145	Document Processing (8) for
	DOE/OSTI
3151	G. C. Claycomb (3)

•

^{*6342/}Geo-Centers